Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2019

Problem Sheet 3

Unless otherwise stated. \mathbb{R}^n is equipped with the standard topology (and hence notion of convergence and continuity).

1. Determine which of the following subsets of \mathbb{R}^2 are homeomorphic to each other, giving either a homeomorphism in the case where one exists or a proof that one does not exist. (Thus for each pair X_1, X_2 of subsets in the list below, you must decide whether or not X_1 and X_2 are homeomorphic.)

 \mathbb{R}^2 ; B(0,1); $\bar{B}(0,1)$; $[0,1] \times [0,1]$; $S^1 = \{x \in \mathbb{R}^2 : ||x||_2 = 1\}$; $\mathbb{R} \times \{0\}$.

2. Let $(V, \|.\|)$ be a normed vector space. Show that V has the property that any bounded sequence in V has a convergent subsequence if and only if $S = \{v \in V : \|v\| = 1\}$ is compact. Show moreover that in this case V must be complete. Give an example of a normed vector space which is not complete.

3. Let c_0 denote the normed vector space of bounded sequences equipped with the supremum norm. Show that, given any bounded sequence (x^n) in c_0 there exists a subsequence (x^{n_k}) such that for each coordinate *i*, the real sequence $(x_i^{n_k})$ converges. Explain why this does *not* show that any such sequence has a convergent subsequence.

[*Hint:* Adapt the argument which shows any sequence has a Cauchy subsequence in a totally bounded metric space.]

4. Let $X = \mathbb{R}$ and suppose that (f_n) is a sequence in $\mathcal{C}_b(X)$ with $||f_n||_{\infty} \leq 1$ for all $n \in \mathbb{N}$. Suppose that for all $\epsilon > 0$ there is a δ such that if $d(x, y) < \delta$ then $d(f_n(x), f_n(y)) < \epsilon$ for all $n \in \mathbb{N}$. Show, by constructing a counter-example, that (f_n) need not have a convergent subsequence.

5. If $a, b \in \mathbb{C}$ are distinct and $k \in (0, 1]$ then the locus $L = \{z \in \mathbb{C} : |z - a| = k|z - b|\}$ is a line or circle, depending on whether k = 1 or k < 1. Show that every circle or line can be realised as such a locus.

6. *i*) Sketch the following subsets of the complex plane:

$$\{z: |z-i| < |z-1|\}; \quad \{z: \operatorname{Im}(\frac{z+i}{2i}) < 0\}; \quad \{z: \operatorname{Re}(z+1) = |z-1|\}; \quad \{e^z: z \in \mathbb{C}\}.$$

ii) Describe geometrically each of the following maps of the complex plane:

$$z \mapsto \overline{z}; \quad z \mapsto e^{i\pi/3}.z; \quad z \mapsto \overline{z} + 2i; \quad z \mapsto iz + 1.$$

The third map is a reflection, say what its invariant line is. The fourth is a rotation, give the angle and centre of rotation.

iii) Which of the following complex sequences converge?

$$(i^n/n);$$
 $((-1)^n n/(n+i));$ $(\frac{n^2+in}{n^2+i});$ $(e^{ni}).$

7. Suppose that f(z) = (az + b)/(cz + d) is a Mobius transformation. Find the subgroup Γ of Mob, the group of all Mobius transformations, which consists of those Mobius transformations which are isometries with respect to the standard metric on the Riemann sphere (*i.e.* the one induced from the Euclidean metric on \mathbb{R}^3).

[*Hint:* In the lecture notes it is shown that the distance on the Riemann sphere corresponds to the distance function on \mathbb{P}^1 given by

$$d(L_1, L_2) = 2\sqrt{1 - \frac{|\langle v, w \rangle|^2}{\|v\|^2 \|w\|^2|}},$$

where $v \in L_1 \setminus \{0\}$ and $w \in L_2 \setminus \{0\}$. A Mobius map corresponds to the action of a matrix $A \in GL_2(\mathbb{C})$ on lines in \mathbb{C}^2 . Which 2×2 matrices automatically preserve the above expression for d? Use these to find all of Γ in the same way one finds all isometries of \mathbb{R}^n .]