
10.2. Boundedness, completeness and compactness. In a general metric space the property of being
bounded is much weaker than one’s instincts initially imagine. One can show for example that any metric
space is homeomorphic to a metric space which is bounded. There is however a property stronger than
boundedness which is often more useful:

Definition 10.12. A metric space X is said to be totally bounded if, given any ≤ > 0 there is a finite set
{x1, x2, . . . , xn} in X such that X =Sn

i=1 B(xi ,≤).

Lemma 10.13. Let X be a compact metric space. Then X is totally bounded.

Proof. Suppose that r > 0 is given and that, for the sake of a contradiction, no such set S exists. We
claim there exists a sequence (ai ) in X such that d(ai , a j ) ∏ r for every i 6= j . Indeed suppose we have
{a1, . . . , an} such that d(ai , a j ) ∏ r whenever 1 ∑ i 6= j ∑ n (one can begin with the empty set). Our as-
sumption that the union of any finite collection of open r -balls cannot cover X , implies that there must
exist an an+1 such that d(an+1, ai ) ∏ r for all i , (1 ∑ i ∑ n), and hence we may construct the sequence (ai )
inductively as required. But any such sequence clearly cannot contain a convergent subsequence, and
hence we have a contradiction.

⇤
Proposition 10.14. Let X be a compact metric space. Then X is complete.

Proof. Suppose that (xn) is a Cauchy sequence in X . Since X is compact, (xn) has a convergent subse-
quence (xnk ) say, so that xnk ! a 2 X as k !1. We claim that xn ! a as n !1. Indeed given ≤> 0 there
is some N 2N such that for all n,m ∏ N we have d(xn , xm) < ≤/2. Now since xnk ! a as k !1 we may
find a K such that d(xnk , a) < ≤/2 for all k ∏ K and nK > N . But then if n ∏ N we have

d(xn , a) ∑ d(xn , xnK )+d(xnK , a) < ≤/2+≤/2 = ≤,

as required. ⇤
Remark 10.15. We have shown that if X is a compact metric space then it is complete and totally bounded.
In fact any complete and totally bounded metric space is compact as we will now show.

Lemma 10.16. Let X be a totally bounded metric space and suppose that (xn) is a sequence in X . Then
(xn) has a subsequence which is a Cauchy sequence.

Proof. Since X is totally bounded, for every n 2Z∏0 there is a finite collection of open balls {B n
i : i 2 Mn}

each with radius 2°n whose union is all of X (thus the indexing set Mn is finite). Since M0 is finite, there is
some i0 2 M0 such that S0 = {n 2N : xn 2 B 0

i0
} is infinite. Now suppose inductively that S0 ∂ S1 ∂ . . . ∂ Sk°1

have been chosen, each an infinite subset of N with the property that for each j = 0,1, . . . ,k °1 there is
an i j 2 M j with xn 2 B j

i j
for all n 2 S j . Thus all the xns with n 2 S j lie in an open ball of radius 2° j . Then

since Sk°1 is infinite and Mk is finite there is an ik 2 Nk such that

Sk = {n 2 Sk°1 : xn 2 B k
ik

}.

is infinite. Proceeding in this way23 we get an infinite nested collection of sequences of integers Sk =
{nk

1 < nk
2 < . . .} such that for each k, (xnk

i
)i∏1 is a subsequence of (xn) which lies in B k

ik
, and hence the

terms of this subsequence are at distance at most 2°n+1 from each other. But then the subsequence
(yk ) where yk = xnk

k
must be a Cauchy subsequence of (xn): If m ∏ k then by construction all the terms

ym = xnm
m

are such that nm
m 2 Sm µ Sk and hence they are at distance at most 2°k+1 apart from each other

and hence since 2°k+1 ! 0 as k !1 it follows that (yk ) is Cauchy as required. ⇤
23This part of the proof is similar to the argument we used to prove that a product of compact metric spaces X £ Y is

compact. We need a new trick here however – the diagonal argument – to deal with the fact that now we obtain an infinite
number of nested subsequences.
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Remark 10.17. The same “divide and conquer” proof strategy can be used to prove that [°R,R]n is se-
quentially compact in R

n , as you can find in many textbooks. The additional subtlety of this proof is
that we need an infinite nested sequence of subsequences, and hence have to use a version of Cantor’s
diagonal argument to finish the proof.

Corollary 10.18. A complete and totally bounded metric space X is compact.

Proof. By Lemma 10.16, any sequence (xn) in X has a Cauchy subsequence. Since X is complete, this
subsequence converges, and hence X is compact as required. ⇤

11. COMPACTNESS AND OPEN SETS

We have already noted that compactness is a “topological property” of metric spaces, in the sense that
two metric spaces which are homeomorphic have to either both be compact or both be non-compact.
This might lead one to consider if the notion of compactness can be expressed in terms of open sets.
In fact this is possible, though we wont quite prove the equivalence of the definition we give in terms
of open sets to the one we began with in terms of convergence of subsequences24. For clarity in this
section we will refer to the notion of compactness given by the existence of convergent subsequences as
sequential compactness. The key definition is the following:

Definition 11.1. Let X be a metric space and U = {Ui : i 2 I } a collection of open subsets of X . We say
that U is an open cover of X if X =S

i2I Ui . If J µ I is a subset such that X =S
i2J Ui = X then we say that

{Ui : i 2 J } is a subcover of U and if |J | < 1 then we say that it is a finite subcover. Recall that if Z is a
subspace of a metric space X , then the open sets of Z are of the form Z \U where U is an open subset
of X . In this situation it is often convenient to think of an open cover of Z as a collection U = {Ui : i 2 I }
of open subsets of X whose union contains (but need not be equal to) the subspace Z .

We can now give the definition of compactness in terms of open covers:

Definition 11.2. A metric space (X ,d) is compact if every open cover U = {Ui : i 2 I } has a finite subcover.

For example, any finite subset of a metric space is compact. To have some more non-trivial examples,
we prove the following:

Proposition 11.3. (Heine-Borel.) The interval [a,b] is compact.

Proof. Let U = {Ui : i 2 I } be an open cover of [a,b] (where we view the Ui as open subsets of R). Then
set S = {x 2 [a,b] : [a, x] lies in a finite union of Ui s}. Then S is a non-empty subset of [a,b] (because
a 2 S). Let c = sup(S). We may find a Ui0 2U such that c 2Ui0 and hence a ±> 0 with (c °±,c +±) µUi0 .
Now by the approximation property there is a d 2 S with c °± < d ∑ c, and so there is a finite subset
of I , say i1, . . . , in , such that [a,d ] µ Ui1 [ . . .[Uin . But then clearly [a,c +±) µ (Ui1 [ . . .[Uin )[Ui0 so
that [a,b]\ [a,c +±) µ S, which contradicts the definition of c unless c = b 2 S. But then U has a finite
subcover as required.

⇤
It is easy to prove that a closed subset of a compact metric space is compact, which combined with the

previous proposition shows that any closed bounded subset of R is compact (note we have already see
this for sequentially compact subsets of R). The next Proposition shows compactness implies sequential
compactness, hence all the results we have shown for such metric spaces also apply to compact metric
space. We first need a technical lemma.

Lemma 11.4. Let (xn) be a sequence in a metric space X , and let An = {xk : k ∏ n}. Then (xn) has a
convergent subsequence if and only if

T
n∏1 Ān 6=;.

24One should be a little careful here – the two notions are equivalent for metric spaces, but for general topological spaces
they are distinct.
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Proof. Suppose (xn) has a convergent subsequence (xnk ), so that xnk ! ` 2 X as k !1. Then since for
any m 2N all terms of the subsequence (xnk+m )k∏1 lie in Am , it follows that ` 2 Ām for all m, so that the
intersection

T
n∏1 Ān is non-empty.

Conversely, suppose that ` 2 T
n∏1 Ān . Then we claim there is a subsequence of (xn) tending to `:

Certainly since ` 2 Ā1, we may find an xn1 such that d(xn1 , a) < 1. Now suppose that n1 < n2 < . . . < nk
have been found such that d(xn j ,`) < 1/ j for each j with 1 ∑ j ∑ k. Then since ` 2 Ānk+1 we may find an
nk+1 > nk with d(xnk+1 ,`) < 1/(k +1). This subsequence (xnk ) clearly converges to ` so we are done. ⇤
Proposition 11.5. Let (X ,d) be a compact metric spaces. Then every sequence in X has a convergent
subsequence, that is, X is sequentially compact.

Proof. Suppose that (xn) is a sequence in X . For each n 2 N let An = {xk : k ∏ n}. Then Ā1 ∂ Ā2 ∂
. . . form a nested sequence of non-empty closed subsets of X . Now by Lemma 11.4 we know that (xn)
has a convergent subsequence if and only if

T
n∏1 Ān is non-empty. Thus if we suppose for the sake of

contradiction that the sequence (xn) has no convergent subsequence it follows that
T

n∏1 Ān = ;. But
then if we let Un = X \Ān we have X = S

n∏1 Un , so that {Un : n ∏ 1} is an open cover of X . However
U1 µU2 µ . . . and each is a proper subset of X , thus this cover clearly has no finite subcover, contradicting
the assumption that X is compact. ⇤

We end this section with a simple Lemma on compact sets which are contained in an open subset of
a metric space, which will be useful later in the course:

Lemma 11.6. Let (X ,d) be a metric space and suppose K µU µ X where K is compact and U is open. Then
there is an ≤> 0 such that for any z 2 K we have B(z,≤) µU .

Proof. Suppose for the sake of contradiction that no such ≤ exists. Then for each n 2 N we may find
sequences xn 2 K and yn 2 U c with |xn ° yn | < 1/n. But since K is sequentially compact we can find
a convergent subsequence of (xn), say (xnk ) which converges to p 2 K . But then it follows (ynk ) also
converges to p, which is impossible since p 2 K µ U while (ynk ) is a sequence in the U c and as U c is
closed it must contain all its limit points. ⇤
Exercise 11.7. Use the technique of the proof of the previous Lemma to show that if≠ is an open subset
of Rn then it can be written as a countable union of compact subsets,≠=S1

n=1 Kn .

11.1. Compactness and function spaces.

Definition 11.8. If X is a metric spaces and F is collection of real-valued function on X , we say that F is
equicontinuous if, for any ≤> 0 there is a ± (which only depends on ≤) such that whenever d(x, y) < ± we
have | f (x)° f (y)| < ≤ for every f 2F . A collection of continuous functions F on X is uniformly bounded
if it is bounded as a subset of the normed vector space (Cb(X ),k.k1).

Theorem 11.9. (Arzela-Ascoli): Let X be a compact metric space and let F µ C (X ) be a collection of
continuous functions on X which are equicontinuous and uniformly bounded. Then any sequence ( fn) in
F contains a subsequence ( fnk ) which converges uniformly on X .

Proof. To prove the theorem it suffices to check that F is totally bounded in C (X ), since then the com-
pleteness of C (X ) implies that F̄ is complete and totally bounded25 and hence compact.

Thus we must show that F is totally bounded. Suppose that ≤> 0 is given. Then since F is equicon-
tinuous we know that there is a ±> 0 such that if x, y 2 X are such that d(x, y) < ± then | f (x)° f (y)| < ≤/6.
Now X is compact and hence totally bounded, so that we may find a finite set {x1, x2, . . . , xn} µ X such
that X =Sn

i=1 B(xi ,±). Now since F is uniformly bounded, there is some N > 0 such that f (X ) µ [°N , N ]
for each f 2 F . Pick an integer M > 0 so that 2N /M < ≤/6 and divide [°N , N ] into M equal parts I j ,

25It is a straight-forward exercise to check that if A is a totally bounded subspace of a metric space X then Ā is also totally
bounded.
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1 ∑ j ∑ M . Let A denote the set of nM functions Æ : {1, . . . ,n} ! {1, . . . , M } and for each such Æ, pick a
function fÆ 2 F (if it exists) such that f (xi ) 2 IÆ(i ). We claim that the open balls B( fÆ,≤) cover F as Æ
runs over those functions Æ for which fÆ exists.26

Indeed suppose that f 2 F . Then for each i 2 {1,2, . . . ,n} we must have f (xi ) 2 IÆ(i ) for some Æ : A.
Consider d( f , fÆ) (which exists by assumption). For each x 2 X then there is some i 2 {1,2, . . . ,n} such
that x 2 B(xi ,±). Thus

d( f (x), fÆ(x)) ∑ d( f (x), f (xi ))+d( f (xi ), fÆ(xi ))+d( fÆ(xi ), fÆ(x)

∑ ≤/6+|IÆ(i )|+≤/6 < ≤/2.

Since this holds for all x 2 X it follows that k f ° fÆk1 ∑ ≤/2 < ≤ and hence f 2 B( fÆ,≤). Thus F is totally
bounded as required.

⇤
Remark 11.10. The previous theorem implies closed bounded equicontinuous subsets of C (X ) are com-
pact. In fact the converse is also true. Since a compact subspace F of any metric space is automatically
closed and bounded, one only needs to show that F is equicontinuous. To prove this one uses the that
if F is compact subset then it is totally bounded, combined with the fact that since X is compact any
f 2C (X ) is uniformly continuous.

Remark 11.11. The are various ways to generalise the above theorem to spaces X which are not compact.
For example, if ≠ is an open subset of Rn , one can show that ≠ can be written as a countable union
≠ = S1

n=1 Kn where each Kn is a closed bounded subset of ≠ and then deduce that if ( fn) is a sequence
in an equicontinuous uniformly bounded family of functions F µ Cn(≠), there is a subsequence ( fnk )
which converges uniformly on any compact subset of≠.

12. THE COMPLEX PLANE: TOPOLOGY AND GEOMETRY.

For the rest of the course we will study functions on C the complex plane, focusing on those which
satisfy the complex analogue of differentiability. We will thus need the notions of convergence and limits
which C possesses because it is a metric space (in fact normed vector space).

In this regard, the complex plane is just R2 and we have seen that there are a number of norms on R2

which give us the same notion of convergence (and open sets). The additional structure of multiplication
which we equip R2 with when we view it as the complex plane however, makes it natural to prefer the
Euclidean one |z| =

p
(Re(z)2 + Im(z)2. More explicitly, if z = (a,b) and w = (c,d) are vectors in R2, then

we define their product to be

z.w = (ac °bd , ad +bc).

It is straight-forward, though a bit tedious, to check that this defines an associative, commutative mul-
tiplication on R2 such that every non-zero element has a multiplicative inverse: if z = (a,b) 6= (0,0) has
z°1 = (a,°b)/(a2 +b2). The number (1,0) is the multiplicative identity (and so is denoted 1) while (0,1)
is denoted i (or j if you’re an engineer) and satisfies i 2 =°1. Since (1,0) and (0,1) form a basis for R2 we
may write any complex number z uniquely in the form a + i b where a,b 2 R. We refer to a and b as the
real and imaginary parts of z, and denote them by <(z) and =(z) or Re(z) and Im(z) respectively.

Definition 12.1. If z = (a,b) we write z̄ = (a,°b) for the complex conjugate of z. It is easy to check that
zw = z̄.w̄ and z +w = z̄ + w̄ . The Euclidean norm on R

2 is related to the multiplication of complex
numbers by the formula |z| =

p
zz̄, which moreover makes it clear that |zw | = |z||w |. (We call such a

norm multiplicative). If z 6= 0 then we will also write arg(z) 2 R/2ºZ for the angle z makes with the
positive half of the real axis.

26It may be helpful to draw a picture in the case X = [a,b].
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Because subsets of the complex plane can have a much richer structure than subsets of the real line,
the topological material we developped in the first half of the course will be indespensible in under-
standing complex differentiable functions. We will need the notions of completeness, compactness, and
connectedness, along with the basic notions of open and closed sets.

Definition 12.2. A connected open subset D of the complex plane will be called a domain. As we have
already seen, an open set in C is connected if and only if it is path-connected.

We will also use the notations of closure, interior and boundary of a subset of the complex plane. The
diameter diam(X ) of a set X is sup{|z°w | : z, w 2 X }. A set is bounded if and only if it has finite diameter.
Recall that the Heine-Borel theorem in the case of R2 ensures that a subset X µ C is compact (that is,
every open covering has a finite subcover) if and only if it is closed and bounded.

Definition 12.3. Because the complex numbers form a field, we can, for a function f : U !C defined on
some subset U µCwhich is a neighbourhood of a 2U , define the (complex) derivative of f at a to be

lim
z!a

f (z)° f (a)
z °a

,

exactly as in the real variable case. We say that f is complex differentiable at a, and if f is complex
differentiable at every a 2U then we say that f is holomorphic on U .

It is straight-forward to check from this definition that the basic results about real derivatives, such
as the product rule and quotient rule, carry over to the complex setting – the proofs are identical to the
real case (except |.| means the modulus of a complex number rather than the absolute value of a real
number).

Proposition 12.4. Let U be an open subset of C and let f , g be complex-valued functions on U .

(1) If f , g are differentiable at z0 2U then f + g and f g are differentiable at z0 with

( f + g )0(z0) = f 0(z0)+ g 0(z0); ( f .g )0(z0) = f 0(z0).g (z0)+ f (z0).g 0(z0).

(2) If f , g are differentiable at z0 and g (z0) 6= 0 and g 0(z0) 6= 0 then f /g is differentiable at z0 with

( f /g )0(z0) = f 0(z0)g (z0)° f (z0)g 0(z0)
g 0(z0)2 .

(3) If U and V are open subsets of C and f : V !U and g : U !Cwhere f is complex differentiable at
z0 2V and g is complex differentiable at f (z0) 2U then g ± f is complex differentiable at z0 with

(g ± f )0(z0) = g 0( f (z0)). f 0(z0).

Proof. These are proved in exactly the same way as they are for a function of a single real variable. ⇤
Remark 12.5. Just as for a single real variable, the basic rules of differentiation stated above allow one to
check that polynomial functions are differentiable: Using the product rule and induction one sees that
zn has derivative nzn°1 for all n ∏ 0 (as a constant obviously has derivative 0). Then by linearity it follows
every polynomial is differentiable.

13. THE EXTENDED COMPLEX PLANE

In this section we introduce the extended complex plane. As a set, the extended complex plane C1 is
simply the complex plane union a single additional point denoted 1. Although we cannot extend the
algebraic properties of the complex plane27 to C1, we will be able to extend its topological and analytic
properties. To understand the metric/topological structure of C1 we will use a construction from real
geometry, while to understand what it should mean for a function on C1 to be differentiable, we will use
complex geometry.

27Though it is sometimes useful to have conventions such as z +1=1
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FIGURE 1. The extended real line.

Example 13.1. We start with a simpler example which is the real analogue of the above approaches to
construct an “extended real line”: We wish to build a natural space which added a point at infinity to
the real line R. If we embed the real line into the plane as the set R of points {(1, t ) : t 2 R}, then clearly
every line through the origin (0,0) intersects R in a unique point, except for the y-axis, which is parallel
to R. Thus the set of lines in the plane R2 naturally adds a “point at infinity” to the real line. Now any
line L through the origin is spanned by any of its nonzero elements, and we can use this to give ourselves
parametrizations of part of the space of all lines: So long as L is not the y-axis, it has a unique element of
the form (1, t ), and so long as it is not the x-axis it has a unique point with coordinates (s,1). This gives
us two systems of parametrizations (both defined almost everywhere) attaching L to t or s, and the two
parametrizations are related (where they are both defined) by s = 1/t .

Alternatively, if one draws the circle tangent to the y-axis and the line R, one sees that each line
through the origin intersects that circle in two points, the origin and one other, except for the y-axis.
Thus we can naturally identify the lines in the plane (and so our extended real line) with a circle.

[Alternatively, another slightly more abstract way to see that the space of lines through the origin is a
circle, is to note that any line intersects the unit circle in two opposite points, thus we can identify the space
of lines in R2 with the space we obtain by identifying opposite points. This might sound abstract, but if you
consider the restriction to the unit circle of the map z 7! z2 on R2 (identified as C), it sends opposite points
on the circle to the same point, so this shows the space we get is just a circle again!]

Let us now examine how similar ideas will let us construct the extended complex plane C1. We begin
with the analogue of the circle construction, which is known as the Riemann sphere.

13.1. Stereographic projection. Let S2 = {(x, y, z) 2 R3 : x2 + y2 + z2 = 1} be the unit sphere of radius 1
centred at the origin in R3, and view the complex plane as the copy of R2 inside R3 given by the plane
{(x, y,0) 2 R3 : x, y 2 R}. Let N be the “north pole” N = (0,0,1) of the sphere S2. Given a point z 2 C,
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there is a unique line passing through N and z, which intersects S\{N } in a point S(z). This map gives
a bijection between C and S\{N }. Indeed, explicitly, if (X ,Y , Z ) 2 S\{N } then it corresponds to28 z 2 C
where z = x + i y with x = X /(1°Z ) and y = Y /(1°Z ). Correspondingly, given z = x + i y 2Cwe have

(13.1) S(z) =
° 2x

x2 + y2 +1
,

2y
x2 + y2 +1

,
x2 + y2 °1
x2 + y2 +1

¢
= 1

1+|z|2
°
2<(z),2=(z), |z|2 °1

¢
.

Thus if we set S(1) = N , then we get a bijection between C1 and S
2, and we use this identification

to make C1 into a metric space (and thus we obtain a notion of continuity for C1): As a subset of R3

equipped with the Euclidean metric S2 is naturally a metric space.

Lemma 13.2. The metric induced on C1 by S is given by

d(z, w) = 2|z °w |
p

1+|z|2
p

1+|w |2
d(z,1) = 2

p
1+|z|2

.

for any z, w 2C.

Proof. First consider the case where z, w 2 C. Since S(z),S(w) 2 S2 we see that kS(z) ° S(w)k2 = 2 °
2S(z).S(w). But using (13.1) we see that

S(z).S(w) = 2(zw̄ + z̄w)+ (|z|2 °1)(|w |2 °1)
(1+|z|2)(1+|w |2)

= 2(zw̄ + z̄w)+ zz̄w w̄ ° zz̄ °w w̄ +1
(1+|z|2)(1+|w |2)

= 1° 2|z °w |2
(1+|z|2)(1+|w |2)

so that

d2(S(z),S(w))2 = 4|z °w |2
(1+|z|2)(1+|w |2)

as required. The case where one or both of z, w is equal to 1 is similar but easier. ⇤
Remark 13.3. Note that in particular, S(z) tends to N = (0,0,1) if and only if |z|!1, thus our notation
z !1 now takes on a literal meaning, consistent with its previous definition. One way we can use this is
as follows: If we take f (z) = 1/z defined on C\{0} and extend it to a map f̃ : C!C1 by setting f̃ (0) =1,
then f̃ is a continuous function on the entire complex plane.

The geometry of the sphere nicely unites lines and circles in the plane as the following Lemma shows:

Lemma 13.4. The map S : C!S induces a bijection between lines in C and circles in Swhich contain N ,
and a bijection between circles in C and circles in S not containing N .

Proof. A circle in S is given by the intersection of S with a plane H . Any plane H in R3 is given by an
equation of the form aX +bY +c Z = d , and H intersects S provided a2 +b2 +c2 > d 2. Indeed to see this
note that H intersects the sphere in a circle if and only if its distance to the origin is less than 1. Since
the closest vector to the origin on H is perpendicular to the plane it is a scalar multiple of (a,b,c), so it
must be d

a2+b2+c2 (a,b,c), hence H is at distance d 2/(a2 +b2 + c2) from the origin and the result follows.
Moreover, clearly H contains N if and only if c = d .

Now from the explicit formulas for S we see that if z = x + i y then S(z) lies on this plane if and only if

2ax +2by + c(x2 + y2 °1) = d(x2 + y2 +1)

() (c °d)(x2 + y2)+2ax +2by ° (c +d) = 0

28Any point on the line between N and (X ,Y , Z ) can be written as t (0,0,1)+ (1° t )(X ,Y , Z ) for some t 2R. It is then easy to
calculate where this line intersects the plane given by the equation z = 0.
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FIGURE 2. The stereographic projection map.

Clearly if c = d this is the equation of a line, while conversely if c 6= d it is the equation of a circle in the
plane. Indeed if c 6= d , we can normalize and insist that c °d = 1, whence our equation becomes

(13.2) (x +a)2 + (y +b)2 = (a2 +b2 + c +d)

that is, the circle with centre (°a,°b) and radius
p

a2 +b2 + c +d . Note that the condition the plane
intersected S becomes the condition that a2 +b2 + c +d > 0, that is, exactly the condition that Equation
(13.2) has a non-empty solution set.

To complete the proof, we need to show that all circles and lines inC are given by the form of the above
equation. When c = d we get 2(ax+by °c) = 0, and clearly the equation of every line can be put into this
form. When c 6= d as before assume c °d = 1, then letting a,b,c +d vary freely we see that we can obtain
circle in the plane as required. ⇤

13.2. The projective line. Our second approach to the extended complex plane is via the projective line
P

1: this is, as a set, simply the collection of one-dimensional subspaces ofC2. Although we cannot readily
draw a picture of these as we could in the real case, the same analysis we did in that setting extends to
the complex one: If e1,e2 denote the standard basis of C2 then we have two subsets of P1, each naturally
in bijection with C. If we set U0 = P1\C.e1 and U1 = P1\Ce2, then we have maps i0, i1 : C! P

1 given by
i0(z) = C.(ze1 + e2) and i1(z) = C.(e1 + ze2) whose images are U0 and U1 respectively. Given a nonzero
vector (z, w) 2 C2 we will write [z, w] 2 P1 for the line it spans. (The numbers z, w are often called the
homogeneous coordinates of [z, w]. They are only defined up to simultaneous rescaling.)

Thus P1 is covered by two pieces U0 and U1 whose union is all of P1. We can use this to make P1 a
topological space: we say that V is an open subset of P1 if and only if V \U0 and V \U1 are identified
with open subsets of C via the bijections i0 and i1 respectively. It is a good exercise to check that this
does indeed define a topology on P1 (in which both U0 and U1 are open, since C and C\{0} are open in
C. We however will take a more direct approach: Note that we can identify P1 with C1 using the map
i0 : C! P

1 extending it to C1 by sending 1 to Ce1 and we can thus transport the metric on C1 (which
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of course we obtained in turn from our identification on C1 withS2) to that on P1. Perhaps surprisingly,
this metric has a natural expression in terms of the Hermitian form h·, ·i on C2 as the next Lemma shows:

Lemma 13.5. The metric induced on P1 by its identification with C1 is given by

d(L1,L2) = 2

s

1° |hv, wi|2
kvk2kwk2

where v 2 L1\{0} and w 2 L2\{0}.

Proof. Suppose L1 = [z,1] and L2 = [w,1]. Then the formula in the statement of the Lemma gives

d(L1,L2) = 2

s

1° |zw̄ +1|2
(1+|z|2)(1+|w2)

= 2

s
1+|z|2 +|w |2 +|z|2|w |2 ° |z|2|w |2 ° zw̄ ° z̄w °1

(1+|z|2)(1+|w |2)

= 2

s
|z °w |2

(1+|z|2)(1+|w |2 = 2|z °w |
p

1+|z|2
p

1+|w |2

The case when L2 =1=Ce1 is similar but easier. ⇤

One advantage of thinking of C1 as the projective line is that we can use the charts U0 and U1 to
define what it means for a function f on C1 to be holomorphic:

Definition 13.6. Suppose that f : W ! P
1 is a continuous function on an open subset W of P1, and let

L 2 V . Suppose that L 2 Up and f (L) 2 Uq where p, q 2 {0,1}. Then f °1(Uq )\Up is an open set in
Up Ω P1, which via ip (or rather its inverse) we can identify with an open subset V of C, and its image
under f lies in Uq which we can identify with C via i°1

q . Thus f yields a continuous function f̃ : V ! C,
where f̃ = i°1

q ± f ± ip and we say f is holomorphic at L if f̃ is holomorphic at ip (z) = L.

f °1(Uq )\Up
f

// Up

i°1
q

✏✏

V µC
f̃

//

ip

OO

C

Since most points in P1 lie in both U0 and U1 the above definition seems ambiguous. In fact, where
there is a choice, it does not matter what which of U0 or U1 you pick. This is because i°1

0 ± i1(z) =
i°1
1 ±i0(z) = 1/z for all z 2C\{0} and the function 1/z is complex differentiable with complex differentiable

inverse (itself!) on C\{0}. This fact and the chain rule combine to show that the definition is independent
of any choices. The essential point is that if f (z) is complex differentiable, then so are f (1/z),1/ f (z) and
1/ f (1/z) wherever they are defined.

Example 13.7. Consider the example of f (z) = 1/(z2 + 1) viewed as a function f : C = U0 ! P
1, where

we extend it to a function on all of C by continuity, so that f (0) =1. We claim that f is in fact complex
differentiable. To check this near 0 we must write f (z) in the form [1 : f1(z)] and check if f1 is complex
diffentiable. For z 6= 0, by definition f (z) = [1/(z2 +1) : 1], thus since [1/(z2 +1) : 1] = [1 : z2 +1] we see
that function f1(z) = z2 +1 which is clearly complex differentiable at z = 0 as required.

You can check using this definition that a holomorphic function f : C! P
1 are precisely the mero-

morphic functions, and with a bit more work show that the holomorphic functions f which are defined
on all of P1 are exactly the set of rational functions.
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13.3. Mobius transformations. Recall that we have identified C1 with the projective line P1. The gen-
eral linear group GL2(C) acts on C2 in the natural way, and this induces an action on the set of lines in C.
We thus get an action of GL2(C) on P1, and so on the extended complex plane. Explicitly, if v = (z1, z2)t

spans a line L =C.v then if g 2 GL2(C) is given by a matrix

g =
µ

a b
c d

∂

we see that

g (L) =C.g (v) =C
µ

az1 +bz2
cz1 +d z2

∂
.

In particular, using our embedding i0 : C!P
1 we see that

g (i0(z)) =C.g
µ

z
1

∂
=C.

µ
az +b
cz +d

∂
=C.

µ az+b
cz+d

1

∂
= i0(

az +b
cz +d

).

Note that f (°d/c) =1 and f (1) = a/c, as is easily checked using the fact that 1= [1 : 0] 2P1.

Definition 13.8. The induced maps z 7! az+b
cz+d from the extended complex plane to itself are known as

Mobius maps or Mobius transformations. Since they come from the action of GL2(C) on P1 they auto-
matically form a group. Note this means that every Mobius transformation is a bijection of the extended
complex plane to itself, and moreover its inverse is also a Mobius transformation. In particular, since
rational functions on C yield holomorphic functions on C1, every Mobius transformation gives an in-
vertible holomorphic function on C1.

Mob = { f (z) = az +b
cz +d

: ad °bc 6= 0}.

Note that if we rescale a,b,c,d by the same (nonzero) scalar, then we get the same transformation. In
group theoretic terms, the map from GL2(C) to Mob has a kernel, the scalar matrices, thus Mob is a
quotient group of GL2(C). As a quotient group it is usually denoted PGL2(C) the projective general linear
group.

Any Mobius transformation can be understood as a composition of a small collection of simpler trans-
formations, as we will now show. This can be useful because it allows us to prove certain results about all
Mobius transformations by checking them for the simple transformations.

Definition 13.9. A transformation of the form z 7! az where a 6= 0 is called a dilation. A transformation of
the form z 7! z +b is called a translation. The transformation z 7! 1/z is called inversion. Note that these
are all Mobius transformations, and the inverse of a dilation is a dilation, the inverse of a translation is a
translation, while inversion is an involution and so is its own inverse.

Lemma 13.10. Any Mobius transformation can be written as a composition of dilations, translations and
an inversion.

Proof. Let G denote the set of all Mobius transformations which can be obtained as compositions of
dilations, translations and inversions. The set G is a subgroup of Mob. We wish to show it is the full
group of Mobius transformations.

First note that any transformation of the form z 7! az +b is a composition of the dilation z 7! az and
the translation z 7! z + b. Moreover, if f (z) = az+b

cz+d is a Mobius transformation and c = 0 then f (z) =
(a/d)z + (b/d) (note if c = 0 then ad °bc 6= 0 implies d 6= 0) and so is a composition of a dilation and a
translation. If c 6= 0 then we have

(13.3)
az +b
cz +d

= (a/c)(cz +d)+ (b °d a/c)
cz +d

= a
c
+ (b °d/a)

1
cz +d

.
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Now z 7! 1
cz+d is the composition of an inversion with the map z 7! cz +d , and so lies in G . But then by

equation (23.1) we have f (z) is a composition of this map with a dilation and a translation, and so f lies
in G . Since f was an arbitrary transformation with c 6= 0 it follows G = Mob as required. ⇤
Remark 13.11. The subgroup of Mob generated by translations and dilations is the group of C-linear
affine transformations Aff(C) = { f (z) = az +b : a 6= 0} of the complex plane. It is the stablizer of 1 in
Mob.

Remark 13.12. One should compare the statement of the previous Lemma with the theory or reduced
row echelon form in Linear Algebra: any invertible 2£2 matrix will have the identity matrix as its reduced
row echelon form, and the elementary row operations correspond essentially to the simple transforma-
tions which generate the Mobius group. This can be used to give an alternative proof of the Lemma.

As an example of how we can use this result to study Mobius transformations, we prove the following:

Lemma 13.13. Let f : C1 !C1 be a Mobius transformation. Then f takes circles to circles. (Here we view
C1 as S2 so that by Lemma 13.4 a circle in C1 is a line or a circle in C).

Proof. Since a line in C is given by the equation =(az) = s where s 2 R and |a| = 1, while a circle is given
by the equation |z°a| = r for a 2C, r 2R>0, it is easy to check that any dilation or translation takes a line
to a line and a circle to a circle.

The case of z 7! 1/z is more interesting. One way to show it preserves lines and circles is to use the fact
that these are both just circles viewed on the Riemann sphere. A direct calculation shows that the map
z 7! 1/z = z̄/|z|2 corresponds to the map (x, y, z) 7! (x,°y,°z), which is just the rotation by º about the
x-axis, which is an isometry and so certainly preserves circles on unit sphere.

⇤
As an application of this one has the following:

Lemma 13.14. Let a,b 2 C be distinct complex numbers and let k 2 (0,1]. Then the locus of complex
numbers satisfying |z °a| = k.|z °b| is a line if k = 1 and is a circle otherwise.

Proof. Let f (z) = (z °a)/(z °b). Since a 6= b this is a Mobius map. The condition that |z °a| = k|z °b| is
just that | f (z)| = k, thus the locus of points satisfying this condition is the image of the circle of radius k
centred at the origin under the Mobius map f °1(z) = (az °b)/(z °1). Since we have seen Mobius maps
take lines and circles to lines and circles, this image must be a line or a circle. Since f °1(1) = 1, the
image is a circle if k < 1 and a line if k = 1. ⇤
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