Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2019

Problem Sheet 4

1. Let $f: \mathbb{C} \to \mathbb{C}$ be the function defined by

$$f(x+iy) = \sqrt{|x||y|} \quad \forall x, y \in \mathbb{R}.$$

Show that f satisfies the Cauchy-Riemann equations at z = 0 but is not complex differentiable there.

2. Suppose that D is a domain in \mathbb{C} and $f: D \to \mathbb{C}$ is a holomorphic¹ function on D. Show that if any one of the conditions

- (1) $\Re(f)$ is constant,
- (2) $\Im(f)$ is constant,
- (3) |f| is constant,
- is satisfied, then f is constant.

You may assume that a complex differentiable function whose derivative vanishes on D must be constant.]

3. If $\mathbb{N} = \{1, 2, 3, \ldots\}$ and $S \subset \mathbb{N}$, we say that S is an arithmetic progression if there are integers a, dsuch that $S = \{a + nd : n \in \mathbb{Z}_{\geq 0}\}$. We call d the step of the arithmetic progression. Show that N cannot be partitioned into finitely many arithmetic progressions with distinct steps (excluding the trivial case of one progression with a = d = 1).

[*Hint: Consider the power series* $\sum_{n=1}^{\infty} z^n$.]

4. Suppose that $f(z) = \sum_{n \ge 0} a_n z^n$ is a power series with radius of convergence R. Show that f has a power series expansion about any $z_0 \in B(0, R)$.

[*Hint:* Let $z = (z_0 + (z - z_0))$ and use the binomial theorem.]

5. Consider the multifunction $[F(z)] = (z^2 - 1)^{1/2}$. It was asserted in lectures that $\{1, -1\}$ were branch points for this multifunction. Prove this carefully, using the branches which were constructed in lectures. [Hint: Suppose, for the case of -1, there was a continuous branch f(z) of [F(z)] defined on some $B(-1,r)\setminus\{-1\}$. Compare this to a branch as we constructed in lectures to obtain a contradiction.]

i) Suppose that l(z) is holomorphic on $\mathbb{C}\setminus(-\infty,0]$ and satisfies $\exp l(z) = z$. Show that 6.

$$l(z) = L(z) + 2n\pi i$$

for some $n \in \mathbb{Z}$ where L(z) is the holomorphic branch of log defined in lectures.

- *ii*) Show that there is no holomorphic function $\lambda(z)$ on $\mathbb{C}\setminus\{0\}$ such that $\exp \lambda(z) = z$.
- *iii*) There are unique holomorphic branches of log z, \sqrt{z} and $\sqrt[3]{z}$ on the cut plane $\mathbb{C} \setminus \{\text{negative imaginary axis}\}$ such that $\log 1 = 0$; $\sqrt{1} = 1$; $\sqrt[3]{1} = 1$. For these branches determine

$$\log(1+i)$$
, $\sqrt{-1-i}$, $\sqrt[3]{-2}$, $\sqrt{1-i}$.

iv) Let C denote the logarithmic spiral given in polar coordinates by $r = 2e^{\theta}$. There is a unique holomorphic branch of log on $\mathbb{C} \setminus C$ such that $\log 1 = 0$. For this branch determine

$$\log i$$
, $\log 3$, $\log(-1)$, $\log 1000$, $\log(-1000)$, $\log 2000$

i) Suppose that $(a_n)_{n=1}^N$ and $(b_n)_{n=1}^N$ are two finite sequences of complex numbers. 7 (Optional).

Write
$$B_N = \sum_{n=1}^N b_n$$
 (taking by convention $B_0 = 0$). Show that for any $1 \le M \le N$

$$\sum_{n=M}^{N} a_n b_n = (a_N B_N - a_M B_{M-1}) - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n$$

- *ii*) Now consider the power series $s(z) = \sum_{n=0}^{\infty} \frac{z^n}{n}$. Show that s has radius of convergence 1 and converges on $\{z \in \mathbb{C} : |z| = 1 |\} \setminus \{1\}.$
- *iii*) Show that, given any finite subset T of the unit circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$, there is a power series with radius of convergence 1 which converges on all of $S^1 \setminus T$.

¹*i.e.* f is complex differentiable at each point of D.