We are now ready to define the integral of a function f: C — C along a piecewise-C' curve.

Definition 16.11. If y: [a, b] — C is a piecewise-C! path and f: C — C, then we define the integral of f
along y to be

b
ff(Z)dZ=/ foy@)y (ndt.
Y a

In order for this integral to exist in the sense we have defined, we have seen that it suffices for the func-
tions f(y(1)) and y'(f) to be bounded and continuous at all but finitely many ¢. Our definition of a
piecewise C'-path ensures that y'(¢) is bounded and continuous away from finitely many points (the
boundedness follows from the existence of the left and right hand limits at points of discontinuity of
¥'(1)). For most of our applications, the function f will be continuous on the whole image y* of y, but it
will occasionally be useful to weaken this to allow f(y(#)) finitely many (bounded) discontinuities.

Lemma 16.12. Ify: [a, b] — C be a piecewise C' path and¥: [c,d] — C is an equivalent path, then for any
continuous function f: C — C we have

[f(z)dzsz(z)dz.
Y 7

In particular, the integral only depends on the oriented curve [y].

Proof. Since ¥ is equivalent to y there is a continuously differentiable function s: [c,d] — [a, b] with
s(c)=a, s(d) =band s'(t) >0 forall t € [c, d]. Suppose first that y is C!. Then by the chain rule we have

d
f.f(z)dz=f Foysyos) (ndt
¥ c
d
=f Fys)y (s(o)s'(ndt

b
=f fiys)y'(s)ds

=ff(z)dz.
Y

where in the second last equality we used the change of variables formula. Ifa=xy < x; <...<x,=bis
a decomposition of [a, b] into subintervals such that y is C! on [x;, x;11] for 1 <i < n—1 then since s is
a continuous increasing bijection, we have a corresponding decomposition of [c, d] given by the points
s 1(xp) <... < s7(x,), and we have

a
ﬁf(z)dz=[ Fa @)y (s()s' (t)dt
e c

S_l(xh-l)

n—1
=) Fir(s()Y (s(0)s (Ddt
i=0YS

~1(xp)

n-1 rx

=) Foyrx))y (xdx
i=0YXi

b
:f f(Y(x))Y'(X)dXfo(z)dz.
a Y

where the third equality follows from the case of C! paths established above. U
Definition 16.13. Ify: [a,b] = Cisa C 1 path then we define the length of y to be

b
146%) =f ly'(Dldt.
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Using the chain rule as we did to show that the integrals of a function f: C — C along equivalent paths
are equal, one can check that the length of a parametrized path is also constant on equivalence classes
of paths, so in fact the above defines a length function for oriented curves. The definition extends in the
obvious way to give a notion of length for piecewise C!-paths. More generally, one can define the integral
with respect to arc-length of a function f: U — C such that y* < U to be

b
ff(Z)leIZf Faymly' (nldt.
Y a

This integral is invariant with respect to C! reparametrizations s: [c,d] — [a, b] if we require s' () # 0 for
all £ € [¢,d] (the condition s'(¢) > 0 is not necessary because of this integral takes the modulus of y'(1)).
In particular £(y) = £(y™).

The integration of functions along piecewise smooth paths has many of the properties that the integral
of real-valued functions along an interval possess. We record some of the most standard of these:

Proposition 16.14. Let f,g: U — C be continuous functions on an open subset U < C andy,n: [a,b] — C
be piecewise-C' paths whose images lie in U. Then we have the following:

(1) (Linearity): Fora,BeC,
f(af(z)+,6g(z))dz:aff(z)dz+ﬁ[g(z)dz.
Y Y Y

(2) Ify™ denotes the opposite path toy then

f fl2)dz= —f f(2)dz.
Y Y
(3) (Additivity): Ify % n is the concatenation of the pathsy,n in U, we have

f(z)dz:ff(z)dz+ff(z)dz.
Y n

Y*n
(4) (Estimation Lemma.) We have

Iff(Z)dZI <suplf(2)].4(y).
Y

zZEY*

Proof. Since f, g are continous, and 7,7 are piecewise C!, all the integrals in the statement are well-
defined: the functions f(y(£)y'(8), f(n())n' (1), gly(1)y'(¢) and gn(1))n'(¢) are all Riemann integrable.
It is easy to see that one can reduce these claims to the case where y is smooth. The first claim is im-
mediate from the linearity of the Riemann integral, while the second claim follows from the definitions
and the fact that (y™)'(t) = —y/(a+ b— t). The third follows immediately for the corresponding additivity
property of Riemann integrable functions.

For the fourth part, first note that y([a, b]) is compact in C since it is the image of the compact set [a, b]
under a continuous map. It follows that the function | f| is bounded on this set so that sup zey(la,b) |f (=)
exists. Thus we have

b
| f f2)dzl = | f For o)y (il
'}/ a

b
sf I (Dldt
a

b
<ssup|f(2| | ly'(Dldt

zZEy*
=sup|f(2)].€(y).
zZEY*
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where for the first inequality we use the triangle inequality for complex-valued functions as in Lemma
16.10 and the positivity of the Riemann integral for the second inequality. g

Remark 16.15. We give part (4) of the above proposition a name (the “estimation lemma”) because it will
be very useful later in the course. We will give one important application of it now:

Proposition 16.16. Let f,: U — C be a sequence of continuous functions on an open subset U of the
complex plane. Suppose that y: [a,b] — C is a path whose image is contained in U. If (f,) converges
uniformly to a function f on the image of y then

ffn(z)dz—>ff(z)dz.
Y Y

Proof. We have

f(f(Z)—fn(Z))dz
Y
< supi{lf(z) — fu(2)1}.£(y),

zey*

’fyf(z)dz—fyfn(z)dz

by the estimation lemma. Since we are assuming that f;, tends to f uniformly on y* we have sup{| f(z) —
fn(@]:z€y*t — 0as n — oo which implies the result. O

Definition 16.17. Let U < C be an open set and let f: U — C be a continuous function. If there exists a
differentiable function F: U — C with F'(z) = f(z) then we say F is a primitive for f on U.

The fundamental theorem of calculus has the following important consequence>’:

Theorem 16.18. (Fundamental theorem of Calculus): Let U < C be a open and let f: U — C be a con-
tinuous function. If F: U — C is a primitive for f andy: [a,b] — U is a piecewise C* path in U then we
have

f f(@)dz=F(y(b)) — F(y(a)).
Y

In particular the integral of such a function f around any closed path is zero.

Proof. First suppose that y is C!. Then we have

b
ff(z)dz=fF’(z)dz=f F'iy()y (ndt
Y Y

a

b g
:fa — (Fopdr
=F(y(b)) - F(y(a),

where in second line we used a version of the chain rule®® and in the last line we used the Fundamental
theorem of Calculus from Prelims analysis on the real and imaginary parts of Foy.

37You should compare this to the existence of a potential in vector calculus.
38gee the appendix for a discussion of this — we need a version of the chain rule for a composition of real-differentiable
functions f: R — R? and g: R — R2.
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If y is only®® piecewise C', then take a partition a = ag < a; <... < ai = b such that y is C! on [a;, a;11]
foreach i €{0,1,..., k—1}. Then we obtain a telescoping sum:

b
[f(2)=f fy@)y' (nde
Y a

k-1 aj+1

=3 Fay@)y (de

i=0v4di
k-1

= Y (FOr(ais)) - Fiy(@)
i=0

=F(y(b) - F(y(a),

Finally, since y is closed precisely when y(a) = y(b) it follows immediately that the integral of f along
a closed path is zero. ([l

Remark 16.19. If f(z) has finitely many point of discontinuity S < U but is bounded near them, and
y(t) € S for only finitely many ¢, then provided F is continuous and F’ = f on U\S, the same proof shows
that the fundamental theorem still holds — one just needs to take a partition of [a, b] to take account of
those singularities along with the singularities of y'(z).

Theorem 16.18 already has an important consequence:

Corollary 16.20. Let U be a domain and let f: U — C be a function with f'(z) =0 forallz€ U. Then f is
constant.

Proof. Pick zy € U. Since U is path-connected, if w € U, we may find*® a piecewise C'-path y: [0,1] — U
such that y(a) = zyp and y(b) = w. Then by Theorem 16.18 we see that

fw - fe = [ fadz=o
Y
so that f is constant as required. g

The following theorem is a kind of converse to the fundamental theorem:

Theorem 16.21. If U is a domain (i.e. it is open and path connected) and f: U — C is a continuous
function such that for any closed path in U we have fy f(2)dz =0, then f has a primitive.

Proof. Fix zpin U, and for any z € U set

F(z):ff(z)dz.
Y

where y: [a, b] — U with y(a) = zp and y(b) = z.

We claim that F(z) is independent of the choice of y. Indeed if y1, 7 are two such paths, lety =y xy;
be the path obtained by concatenating y, and the opposite y; of y» (that is, y traverses the path y; and
then goes backward along y»). Then v is a closed path and so, using Proposition 16.14 we have

O:ff(z)dz= fl2)ydz+ f(2)dz,
Y T Y2
hence since f?’i f(z)dz= —szf(z)dz we see that fYI f(2)dz= szf(z)dz.
Next we claim that F is differentiable with F'(z) = f(z). To see this, fix w € U and € > 0 such that
B(w,e) € U and choose a path y: [a, b] — U from zy to w. If z; € B(w,€) < U, then the concatenation of y

39The reason we must be careful about this case is that the Fundamental Theorem of Calculus only holds when the integrand
is continuous.
40Check that you see that if U is an open subset of C which is path-connected then any two points can be joined by a
piecewise C!-path.
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with the straight-line path s: [0,1] — U given by s(¢) = w + t(z— w)from w to z is a path y; from zj to z.
It follows that

F(Z1)—F(W)=f
Y1

f(z)dz—ff(z)dz

Y

:(ff(z)dz+ff(z)dz)—ff(z)dz
Y s Y

=ff(z)dz.
N
But then we have for z; # w
F(z)) - F(w) B 1 1
v —f(w)' ol P ([0 fw+t(z; —w)(z w)dt) f(w)’
1
= Uo (f(w+t(z1 —w)) —f(W))dt'
< sup |f(w+ t(z; — w)) — f(w)]
1€[0,1]
—0asz —w
as f is continuous at w. Thus F is differentiable at w with derivative F'(w) = f(w) as claimed. g

Remark 16.22. Note that any two primitives for a function f differ by a constant: This follows imme-
diately from Corollary 16.20, since if F; and F, are two primitives, their difference (F; — F>) has zero
derivative.

17. WINDING NUMBERS

The previous section on the fundamental theorem of calculus in the complex plane shows that not
every holomorphic function can have a primitive. The most fundamental example of this is the function
f(z) =1/z on the domain C*.

Example 17.1. Let f: C* — C* be the function f(z) = 1/z. Then f does not have a primitive on C*.
Indeed if y: [0,1] — C is the path y(f) = exp(27it) then

! / ! 1 . ; P
fyf(z)dz:fo f(y(t))y(t)dt—fo m.(anexp(th))dt—Zm.

Since the path y is closed, this integral would have to be zero if f(z) has a primitive in an open set con-
taining y*, thus f(z) has no primitive on C* as claimed.

Note that 1/ z doeshave a primitive on any domain in C* where we can chose a branch of the argument
function (or equivalently a branch of [Log(z)]): Indeed if /(z) is a branch of [Log(z)] on a domain D c C*
then since exp(I(z)) = z the chain rule shows that exp(l(z)).l'(z) = 1 and hence I'(z) = 1/ z.

In the present section we investigate the change in argument as we move along a path. It will turn
out to be a basic ingredient in computing integrals around closed paths. In more detail, suppose that
v: [0,1] — C is a closed path which does not pass through 0. We would like to give a rigorous definition
of the number of times y “goes around the origin”. Roughly speaking, this will be the change in argument
arg(y (1)), and therein lies the difficulty, since arg(z) cannot be defined continuously on all of C\{0}. The
next Proposition shows that we can however always define the argument as a continuous function of the
parameter t € [0,1]:

Proposition 17.2. Lety: [0,1] — C\{0} be a path. Then there is continuous function a: [0,1] — R such that
Y@ =y,

Moreover, if a and b are two such functions, then there exists n € Z such that a(t) = b(t)+n forall t € [0, 1].
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Proof. Byreplacing y(t) with y(t)/|y(t)| we may assume that |y(#)| = 1 for all ¢. Since vy is continuous on a
compact set, it is uniformly continuous, so that there is a § > 0 such that |y(s) -y (¢)| < V3 for any s, r with
|s—t| < 6. Choose an integer n > 0 such that n > 1/6 so that on each subinterval [i/n, (i + 1)/ n] we have
[y(s)—y()] < v/3/2. Now on any half-plane in C we may certainly define a holomorphic branch of [Log(z)]
(simply pick a branch cut along a ray in the opposite half-plane) and hence a continuous argument
function, and if |z;| = |z2| = 1 and |z; — 2| < V/3, then the angle between z; and z; is at most /3. It follows
there exists a continuous functions a;: [j/n, (j+1)/n] — Rsuch thaty(z) = e2miai(t) for r e [j/n,(j+1)/n]
(since y([j/n, (j + 1)/n]) must lie in an arc of length at most 27/3). Now since e2mia;(jin) = g2miaj(j/n)
aj-1(j/n) and a;(j/n) differ by an integer. Thus we can successively adjust the a; for j > 1 by an integer
(asify(r) = e2mia;() then Y = e2mitaln+n) for any n € Z) to obtain a continuous function a: [0,1] — C
such that y(t) = 27141 as required. Finally, the uniqueness statement follows because e?*/(@(D=b(0) = 1,
hence a(f) — b(t) € Z, and since [0, 1] is connected it follows a(#) — b(¢) is constant as required. g

Definition 17.3. If y: [0,1] — C\{0} is a closed path and y(#) = Iy(t)lez’”“m as in the previous lemma,
then since y(0) = y(1) we must have a(1) — a(0) € Z. This integer is called the winding number I1(y,0) of
Y around 0. It is uniquely determined by the path y because the function a is unique up to an integer.
By translation, if y is any closed path and z is not in the image of y, we may define the winding number
I(y, zp) of y about zj in the same fashion. Explicitly, if y is a closed path with zy ¢ y* thenlet ¢t: C — C be
given by #(z) = z — zp and define I(y, zg) = I(toy,0).

Remark 17.4. Note thatif y: [0,1] — U where 0 ¢ U and there exists a holomorphic branch L: U — C of
[Log(z)] on U, then I(y,0) = 0. Indeed in this case we may define a(f) = S(L(y(#))), and since y(0) =y (1)
it follows a(1) —a(0) = 0 as claimed. Note also that the definition of the winding number only requires the
closed path y to be continuous, not piecewise C'. Of course as usual, we will mostly only be interested
in piecewise C! paths, as these are the ones along which we can integrate functions.

We now see that the winding number has a natural interpretation in term of path integrals: Note that if
Y is piecewise C! then the function a(¢) is also piecewise C1, since any branch of the logarithm function
is in fact differentiable where it is defined, and a(t) is locally given as S(log(y(t)) for a suitable branch.

Lemma 17.5. Let y be a piecewise C' closed path and zy € C a point not in the image of y. Then the
winding number 1(y, zy) of y around z is given by

10y, 20) = 1 dz
V)= o yZ—2o

Proof. Ify: [0,1] — C we may write y(f) = 29 + r(1)e*™ e (where r(t) = [y (£) — zol > 0 is continuous and
the existence of a(t) is guaranteed by Proposition 17.2). Then we have

dz 1 1 , . / 2mia(r)
[z . :fo r(t)ez’”'“(”'(r (1) +2mir(Ha'(n)e dt
b

1
:f r'(0/r(t) +2mid (Hdt = [log(r(n) +2mia(]}
0

=2mi(a(l) - a(0)),
since r(1) = r(0) = |y(0) — zol. =

The next Proposition will be useful not only for the study of winding numbers. We first need a defini-
tion:

Definition 17.6. If f: U — C is a function on an open subset U of C, then we say that f is analyticon U

if for every z € C there is an r > 0 with B(zg, r) € U such that there is a power series Z,‘f’zo ar(z— 20)* with

radius of convergence at least r and f(z) = 177 ) ax(z — 2z0)*. An analytic function is holomorphic, as any

power series is (infinitely) complex differentiable.
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Proposition 17.7. Let U be an open set in C and lety: [0,1] — U be a closed path. If f(z) is a continuous
function ony* then the function
1 1 f@

2w Jy z— W

Iy, w) = dz,
is analytic. in w.

In particular, if f (z) = 1 this shows that the function w — I(y, w) is a continuous function on C\y*, and
hence, since it is integer-valued, it is constant on the connected components of C\y*.

Proof. We wish to show that I, (f(w) is holomorphic at each zy € C\y*. Translating if necessary we may
assume zg = 0.

Now since C\y* is open, there is some r > 0 such that B(0,2r) ny* = ¢. We claim that I(y, w) is
holomorphic in B(0.r). Indeed if w € B(0,r) and z € y* it follows that |w/z| < 1/2. Moreover, since y* is
compact, M = sup{|f(z)|: z € y*} is finite, and hence

M
If(2).w" 2" = | f(2)llzI w2l < 5(1/2)”, Vzey*.

It follows from the Weierstrass M-test that the series

f f(z).w" B i f(zz)

Zn+l - (W/Z)n:

Z—Ww

1@ (1-wiz)™? /)
n=0 n=0 <
viewed as a function of z, converges uniformly on y* to f(z)/(z— w). Thus for all w € B(0,r) we have

L[ (L,
Ie(r, w)_2m' B (Zni yz”“dz we

y 2-w n=0

hence I¢(y, w) is given by a power series in B(0, ) (and hence is also holomorphic there) as required.
Finally, if f = 1, then since I;(y,z) = I(y, z) is integer-valued, it follows it must be constant on any
connected component of C\y* as required. ([l

Remark 17.8. Note that since the coefficients of a power series centred at a point zy are given by its deriva-
tives at that point, the proof above actually also gives formulae for the derivatives of g(w) = I £y, w) at

20-
(n) :L'/ f(Z)dZ
g (=) 2mi Jy (z—zp)"*1

Remark 17.9. If y is a closed path then y* is compact and hence bounded. Thus there is an R > 0 such
that the connected set C\B(0,R) ny* = ¢. It follows that C\y* has exactly one unbounded connected
component. Since

d
If—clsf(y).suplll((—z)l—m
y6—% ey

as z — oo it follows that I(y, z) = 0 on the unbounded component of C\y*.

Definition 17.10. Let y: [0,1] — C be a closed path. We say that a point z is in the inside*' of y if z ¢
yY* and I(y,z) # 0. The previous remark shows that the inside of y is a union of bounded connected
components of C\y*. (We don’t, however, know that the inside of y is necessarily non-empty.)

Example 17.11. Suppose that y;: [-7,7] — C is given by y; = 1+ e’ and y,: [0,27] — C is given by
y2(t) = —1+e ", Thenif y = y1 x ¥, y traverses a figure-of-eight and it is easy to check that the inside of
Yis B(1,1) U B(-1,1) where I(y, z) = 1 for z € B(1,1) while I(y, z) = -1 for ze B(-1,1).

4The term interior of v might be more natural, but we have already used this in the first part of the course to mean some-
thing quite different.
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FIGURE 3. Subdivision of a triangle

Remark 17.12. Itis a theorem, known as the Jordan Curve Theorem, thatif y: [0,1] — C is a simple closed
curve, so that y(f) =y(s) ifand only if s = ¢ or s, £ € {0, 1}, then C\y* is the union of precisely one bounded
and one unbounded component, and on the bounded component I(y, z) is either 1 or —1. If I(y,z) =1
for z on the inside of y we say y is postively oriented and we say it is negatively oriented if I(y, z) = —1 for
z on the inside.

18. CAUCHY’S THEOREM

The key insight into the study of holomorphic functions is Cauchy’s theorem, which (somewhat infor-
mally) states that if f: U — C is holomorphic and y is a path in U whose interior lies entirely in U then
fy f(2)dz = 0. It will follow from this and Theorem 16.21 that, at least locally, every holomorphic func-
tion has a primitive. The strategy to prove Cauchy’s theorem goes as follows: first show it for the simplest
closed contours — triangles. Then use this to deduce the existence of a primitive (at least for certain kinds
of sufficiently nice open sets U which are called “star-like”) and then use Theorem 16.18 to deduce the
result for arbitrary paths in such open subsets. We will discuss more general versions of the theorem
later, after we have applied Cauchy’s theorem for star-like domains to obtain important theorems on the
nature of holomorphic functions. First we recall the definition of a triangular path:

Definition 18.1. A triangle or triangular path T is a path of the form y; xy, *xy3 where y, () = a+t(b—a),
Y2(t) = b+ t(c—b) and y3(t) = c+ t(a—c) where t € [0,1] and a, b, c € C. (Note that if {a, b, c} are collinear,
then T is a degenerate triangle.) That is, T traverses the boundary of the triangle with vertices a, b, c € C.
The solid triangle 9~ bounded by T is the region

3
I ={ha+tb+13c:t;€[0,1], Z t; =1},
i=1
with the points in the interior of 9 corresponding to the points with #; > 0 for each i € {1,2,3}. We
will denote by [a, b] the line segment {a+ t(b—a) : t € [0, 1]}, the side of T joining vertex a to vertex b.
Whenever it is not evident what the vertices of the triangle T are, we will write T, 3, ..

Theorem 18.2. (Cauchy’s theorem for a triangle): Suppose that U < C is an open subset and let T < U be
a triangle whose interior is entirely contained in U. Then if f: U — C is holomorphic we have

f f(2)dz=0
T

Proof. The proof proceeds using a version of the “divide and conquer” strategy one uses to prove the
Bolzano-Weierstrass theorem. Suppose for the sake of contradiction that fT f(2)dz #0, and let I =
| [+ f(2)dz| > 0. We build a sequence of smaller and smaller triangles T" around which the integral
of f is not too small, as follows: Let T°=T, and suppose that we have constructed T!for0<i< k. Then
take the triangle T%~! and join the midpoints of the edges to form four smaller triangles, which we will
denote S; (1<i<4).
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Then we have [« f(2)dz = Z‘i‘:l J s; f(2)dz, since the integrals around the interior edges cancel (see
Figure 3). In particular, we must have

4
= <
=l s@as Y| rea

so that for some i we must have | [ S; f(2)dz| = I}_1/4.Set T k to be this triangle S;. Then by induction we
see that £(T*) =27%¢(T) while I =471

Now let 7~ be the solid triangle with boundary T and similarly let 9 ¥ be the solid triangle with bound-
ary T*. Then we see that diam(J %) = 2-*¥diam(9") — 0, and the sets I are clearly nested. It follows
from Lemma 8.6 that there is a unique point zy which lies in every 9 ¥. Now by assumption f is holo-
morphic at zp, so we have

f(2) = f(zo) + f'(z0) (2 — 20) + (z— z0)W(2),

where w(z) — 0 = ¥(zp) as z — zy. Note that v is continuous and hence integrable on all of U. Now since
the linear function z — f’(z9)z + f(zo) clearly has a primitive it follows from Theorem 16.18

ff(Z)dzzf (z—zo)y(2)dz
T* Tk

Now since zg lies in 7 ¥ and zis on the boundary Tk of 7%, we see that | z—zg| < diam(F %) = 2= ¥diam(T).
Thus if we set g = sup . 7« [Y(2)], it follows by the estimation lemma that

I = |f (z-z)y(Ddzl < ne.diam(T*)¢(T%)
T
=4"kp . diam(T).4(T).

But since ¢ (z) — 0 as z — zy, it follows n — 0 as k — oo, and hence 4ka — 0 as k — oo. On the other
hand, by construction we have 4I; > I > 0, thus we have a contradiction as required. U

Definition 18.3. Let X be a subset in C. We say that X is convex if for each z, w € U the line segment
between z and w is contained in X. We say that X is star-like if there is a point zy € X such that for every
w € X the line segment [zy, w] joining zg and w lies in X. We will say that X is star-like with respect to zy
in this case. Thus a convex subset is thus starlike with respect to every point it contains.

Example 18.4. A disk (open or closed) is convex, as is a solid triangle or rectangle. On the other hand a
cross, such as {0} x [-1,1] U [—1, 1] x {0} is star-like with respect to the origin, but is not convex.

Theorem 18.5. (Cauchy’s theorem for a star-like domain): Let U be a star-like domain. Then if f: U — C
is holomorphic andy: [a,b] — U is a closed path in U we have

ff(z)dz: 0.
Y

Proof. The proof proceeds similarly to the proof of Theorem 16.21: by Theorem 16.18 it suffices to show
that f has a primitive in U. To show this, let zy € U be a point for which the line segment from zj to every
zeUliesin U. Let v, = 2y + t(z — zp) be a parametrization of this curve, and define

mm=ff«mc
Yz

We claim that F is a primitive for f on U. Indeed pick € > 0 such that B(z,¢) < U. Then if w € B(z,¢)

note that the triangle T with vertices zy, z, w lies entirely in U by the assumption that U is star-like with

respect to zo. It follows from Theorem 18.2 that [ f({)d{ = 0, and hence if n(¢) = w + t(z — w) is the
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straight-line path going from w to z (so that T is the concatenation of y,,,n and y;) we have

F(z)-F
|M-f(z)|=|fmdf—f@'
w n&-w

1
:|f0 Flw+ 1z - w)di - f(2)]

1
_ |f0 (Flw+ 1z - w) - f(2d]

< sup |f(w+t(z—w)) — f(2)l,
t€[0,1]

which, since f is continuous at w, tends to zero as w — z so that F'(z) = f(z) as required.
O

Note that our proof of Cauchy’s theorem for a star-like domain D proceeded by showing that any holo-
morphic function on D has a primitive, and hence by the fundamental theorem of calculus its integral
around a closed path is zero. This motivates the following definition:

Definition 18.6. We say that a domain D < C is primitive*? if any holomorphic function f: D — C has a
primitive in D.

Thus, for example, our proof of Theorem 18.5 shows that all star-like domains are primitive. The
following Lemma shows however that we can build many primitive domains which are not star-like.

Lemma 18.7. Suppose that D, and D, are primitive domains and D N D, is connected. Then D1 U D, is
primitive.

Proof. Let f: D; U D, — C be a holomorphic function. Then f|p, is a holomorphic function on D;, and
thus it has a primitive F;: D; — C. Similarly f|p, has a primitive, F> say. But then F; — F» has zero de-
rivative on D; N Dy, and since by assumption D; N D» is connected (and thus path-connected) it follows
F) — F, is constant, ¢ say, on D1 N D,. But thenif F: D; U D, — Cis a defined to be F; on D; and F» +c on
D, it follows that F is a primitive for f on D; U D as required. O

18.1. Cauchy’s Integral Formula. We are now almost ready to prove one of the most important conse-
quences of Cauchy’s theorem — the integral formula. This formula will have incredibly powerful conse-
quences.

Theorem 18.8. (Cauchy’s Integral Formula.) Suppose that f: U — C is a holomorphic function on an
open set U which contains the disc B(a,r). Then for all w € B(a, r) we have

1 [ f@

2ni Jy z—w

flw) = dz,

wherey is the path t — a+ re*™!.

Proof. Fix w € B(a, r). We use the contours I'; and I'; as shown in Diagram 4 (where I'; follows the direc-
tion of the blue arrows, and I'» the directions of the red arrows). These paths join the circular contours
Y(a,r) and y(w,e)” where € is small enough to lie in the interior of B(a, r). By the additivity properties of
path integrals, the contributions of the line segments cancel so that

/@ dz+ /@ dz:f /@ dz—/ /@ dz.
Y Y

I, 2—w r,2—Ww (ar) 2 — W (we) Z2— W

42This is not standard terminology. The reason for this will become clear later.
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FIGURE 4. Contours for the proof of Theorem 18.8.

On the other hand, each of '}, I'; lies in a primitive domain in which f/(z — w) is holomorphic - indeed
by the quotient rule, f(z)/(z— w) is holomophic on U\{w} — so each of the integrals on the left-hand side
vanish, and hence

1 f(2) 1 f(2)

— dz=— dz.
27‘” y(ayr) zZ—Ww 27‘[1 '}/(wye) Z— W

Thus we can replace the integral over the circle y(a,r) with an integral over an arbtirary small circle
centred at w itself. But for such a small circle,

Lf &dz_;f f@-fw) ,  fw) dz
y(w,e) ¥ (w,e)

2mi z—w  2;i z—-w 271 Jy(we) 2—w'

- 2mi zZ—
1 f@)—f(w)

B 27Tl y(w'g) Z—W

RS f J@RZTW) 4+ by Iy (w0, w)
y(we) w
dz+ f(w)

But since f is complex differentiable at z = w, the term (f(z) — f(w))/(z— w) is bounded as € — 0, so that
by the estimation lemma its integral over y(w,€) tends to zero. Thus as € — 0 the path integral around
y(w,€) tends to f(w). But since it is also equal to (27ri)~! fy( an f () (z—w)dz, which is independent of
€, we conclude that it must in fact be equal to f(w). The result follows.

O

Remark 18.9. The same result holds for any oriented curve y once we weight the left-hand side by the
winding number*? of a path around the point w ¢ y*, provided that f is holomorphic on the inside of y.

43Which, as we used in the proof above, is 1 in the case of a point inside a positively oriented circular path.
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18.2. Applications of the Integral Formula.

Remark 18.10. Note that Cauchy’s integral formula can be interpreted as saying the value of f(w) for w
inside the circle is obtained as the “convolution” of f and the function 1/(z — w) on the boundary circle.
Since the function 1/(z — w) is infinitely differentiable one can use this to show that f itself is infinitely
differentiable as we will shortly show. If you take the Integral Transforms, you will see convolution play
a crucial role in the theory of transforms. In particular, the convolution of two functions often inherits
the “good” properties of either. We next show that in fact the formula implies a strong version of Taylor’s
Theorem.

Corollary 18.11. If f: U — C is holomorphic on an open set U, then for any zo € U, the f(z) is equal to its
Taylor series at zy and the Taylor series converges on any open disk centred at zy lying in U. Moreover the
derivatives of f at zy are given by

n! f(2)
18.1 " (z =—f ————dz.
(18.1) [ (z0) 271 Iyt (- 20"
ForanyaceC, r eRso withzyg€ B(a,r).
Proof. This follows immediately from the proof of Proposition 17.7, and Remark 17.8. The integral for-
mulae of Equation 18.1 for the derivatives of f are also referred to as Cauchy’s Integral Formulae. g

Definition 18.12. Recall that a function which is locally given by a power series is said to be analytic. We
have thus shown that any holomorphic function is actually analytic, and from now on we may use the
terms interchangeably (as you may notice is common practice in many textbooks).
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