
One famous application of the Integral formula is known as Liouville’s theorem, which will give an
easy proof of the Fundamental Theorem of Algebra44. We say that a function f : C! C is entire if it is
complex differentiable on the whole complex plane.

Theorem 18.13. Let f : C!C be an entire function. If f is bounded then it is constant.

Proof. Suppose that | f (z)|∑ M for all z 2 C. Let ∞R (t ) = Re2ºi t be the circular path centred at the origin
with radius R. The for R > |w | the integral formula shows

| f (w)° f (0)| = | 1
2ºi

Z

∞R

f (z)
° 1

z °w
° 1

z

¢
d z|

= 1
2º

|
Z

∞R

w. f (z)
z(z °w)

d z|

∑ 2ºR
2º

sup
z:|z|=R

| w. f (z)
z(z °w)

|

∑ R.
M |w |

R.(R ° |w |) =
M |w |

R ° |w | ,

Thus letting R !1 we see that | f (w)° f (0)| = 0, so that f is constant an required.
⇤

Theorem 18.14. Suppose that p(z) = Pn
k=0 ak zk is a non-constant polynomial where ak 2 C and an 6= 0.

Then there is a z0 2C for which p(z0) = 0.

Proof. By rescaling p we may assume that an = 1. If p(z) 6= 0 for all z 2 C it follows that f (z) = 1/p(z) is
an entire function (since p is clearly entire). We claim that f is bounded. Indeed since it is continuous
it is bounded on any disc B̄(0,R), so it suffices to show that | f (z)| ! 0 as z ! 1, that is, to show that
|p(z)|!1 as z !1. But we have

|p(z)| = |zn +
n°1X

k=0
ak zk | = |zn |

©
|1+

n°1X

k=0

ak

zn °k
|
™
∏ |zn |.(1°

n°1X

k=0

|ak |
|z|n°k

).

Since 1
|z|m ! 0 as |z|!1 for any m ∏ 1 it follows that for sufficiently large |z|, say |z| ∏ R, we will have

1°Pn°1
k=0

|ak |
|z|n°k ∏ 1/2. Thus for |z|∏ R we have |p(z)|∏ 1

2 |z|
n . Since |z|n clearly tends to infinity as |z| does

it follows |p(z)|!1 as required. ⇤

Remark 18.15. The crucial point of the above proof is that one term of the polynomial – the leading
term in this case– dominates the behaviour of the polynomial for large values of z. All proofs of the
fundamental theorem hinge on essentially this point. Note that p(z0) = 0 if and only if p(z) = (z°z0)q(z)
for a polynomial q(z), thus by induction on degree we see that the theorem implies that a polynomial
over C factors into a product of degree one polynomials.

Corollary 18.16. (Riemann’s removable singularity theorem): Suppose that U is an open subset of C and
z0 2U . If f : U \{z0} ! C is holomorphic and bounded near z0, then f extends to a holomorphic function
on all of U .

Proof. Define h(z) by

h(z) =
Ω

(z ° z0)2 f (z), z 6= 0;
0, z = z0

44Which, when it comes down to it, isn’t really a theorem in algebra. The most “algebraic” proof of that I know uses Galois
theory, which you can learn about in Part B.
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The clearly h(z) is holomorphic on U \{z0}, using the fact that f and standard rules for complex differen-
tiablility. On the other hand, at z = z0 we see directly that

h(z)°h(z0)
z ° z0

= (z ° z0) f (z) ! 0

as z ! z0 since f is bounded near z0 by assumption. It follows that h is in fact holomorphic everywhere
in U . But then if we chose r > 0 is such that B̄(z0,r ) ΩU , then by Corollary 18.11 h(z) is equal to its Taylor
series centred at z0, thus

h(z) =
1X

k=0
ak (z ° z0)k .

But since we have h(z0) = h0(z0) = 0 we see a0 = a1 = 0, and so
P1

k=0 ak+2(z ° z0)k defines a holomorphic
function in B(z0,r ). Since this clearly agrees with f (z) on B(z0,r )\{0}, we see that by redefining f (z0) =
a2, we can extend f to a holomorphic function on all of U as required. ⇤

We end this section with a kind of converse to Cauchy’s theorem:

Theorem 18.17. (Morera’s theorem) Suppose that f : U ! C is a continuous function on an open subset
U µC. If for any closed path ∞ : [a,b] !U we have

R
∞ f (z)d z = 0, then f is holomorphic.

Proof. By Theorem 16.21 we know that f has a primitive F : U !C. But then F is holomorphic on U and
so infinitely differentiable on U , thus in particular f = F 0 is also holomorphic. ⇤
Remark 18.18. One can prove variants of the above theorem: If U is a star-like domain for example,
then our proof of Cauchy’s theorem for such domains shows that f : U ! C has a primitive (and hence
will be differentiable itself) provided

R
T f (z)d z = 0 for every triangle in U . In fact the assumption thatR

T f (z)d z = 0 for all triangles whose interior lies in U suffices to imply f is holomorphic for any open
subset U : To show f is holomorphic on U , it suffices to show that f is holomorphic on B(a,r ) for each
open disk B(a,r ) Ω U . But this follows from the above as disks are star-like (in fact convex). It follows
that we can characterize the fact that f : U !C is holomorphic on U by an integral condition: f : U !C

is holomorphic if and only if for all triangles T which bound a solid triangle T with T ΩU , the integralR
T f (z)d z = 0.

This characterization of the property of being holomorphic has some important consequences. We
first need a definition:

Definition 18.19. Let U be an open subset of C. If ( fn) is a sequence of functions defined on U , we
say fn ! f uniformly on compacts if for every compact subset K of U , the sequence ( fn|K ) converges
uniformly to f|K . Note that in this case f is continuous if the fn are: Indeed to see that f is continuous
at a 2U , note that since U is open, there is some r > 0 with B(a,r ) µU . But then K = B̄(a,r /2) µU and
fn ! f uniformly on K , whence f is continuous on K , and so certainly it is continuous at a.

Example 18.20. Convergence of power series f (z) = P1
k=0 an zn is a basic example of convergence on

compacts: if R is the radius of convergences of f (z) the partial sums sn(z) of the power series B(0,R)
converge uniformly on compacts in B(0,R). The convergence is not necessarily uniform on B(0,R), as
the example f (z) =P1

n=0 zn shows. Nevertheless, since B(0,R) =S
r<R B̄(0,r ) is the union of its compact

subsets, many of the good properties of the polynomial functions sn(z) are inherited by the power series
because the convergence is uniform on compact subsets.

Proposition 18.21. Suppose that U is a domain and the sequence of holomorphic functions fn : U ! C

converges to f : U !C uniformly on compacts in U . Then f is holomorphic.

Proof. Note by the above that f is continuous on U . Since the property of being holomorphic is local,
it suffices to show for each w 2U that there is a ball B(w,r ) µU within which f is holomorphic. Since
U is open, for any such w we may certainly find r > 0 such that B(w,r ) µU . Then as B(w,r ) is convex,
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Cauchy’s theorem for a star-like domain shows that for every closed path ∞ : [a,b] ! B(w,r ) whose image
lies in B(w,r ) we have

R
∞ fn(z)d z = 0 for all n 2N.

But ∞§ = ∞([a,b]) is a compact subset of U , hence fn ! f uniformly on ∞§. It follows that

0 =
Z

∞
fn(z)d z !

Z

∞
f (z)d z,

so that the integral of f around any closed path in B(w,r ) is zero. But then Theorem 16.21 shows that
f has a primitive F on B(w,r ). But we have seen that any holomorphic function is in fact infinitely
differentiable, so it follows that F , and hence f is infinitely differentiable on B(w,r ) as required.

⇤
Often functions on the complex plane are defined in terms of integrals. It is thus useful to have a

criterion by which one can check if such a function is holomorphic. The following theorem gives such a
criterion.

Theorem 18.22. Let U be an open subset of C and suppose that F : U £ [a,b] is a function satisfying

(1) The function z 7! F (z, s) is holomorphic in z for each s 2 [a,b].
(2) F is continuous on U £ [a,b]

Then the function f : U !C defined by

f (z) =
Zb

a
F (z, s)d s

is holomorphic.

Proof. Changing variables we may assume that [a,b] = [0,1] (explicitly, one replaces s by (s °a)/(b °a)).
By Theorem 18.21 it is enough to show that we may find a sequence of holomorphic functions fn(z)
which converge of f (z) uniformly on compact subsets of U . To find such a sequence, recall from Prelims
Analysis that the Riemann integral of a continuous function is equal to the limit of its Riemann sums
as the mesh of the partition used for the sum tends to zero. Using the partition xi = i /n for 0 ∑ i ∑ n
evaluating at the right-most end-point of each interval, we see that

fn(z) = 1
n

nX

i=1
F (z, i /n),

is a Riemann sum for the integral
R1

0 F (z, s)d s, hence as n !1 we have fn(z) ! f (z) for each z 2U , i.e.
the sequence ( fn) converges pointwise to f on all of U . To complete the proof of the theorem it thus
suffices to check that fn ! f as n !1 uniformly on compact subsets of U . But if K µU is compact, then
since F is clearly continuous on the compact set K £ [0,1], it is uniformly continuous there, hence, given
any ≤ > 0, there is a ± > 0 such that |F (z, s)°F (z, t )| < ≤ for all z 2 B̄(a,Ω) and s, t 2 [0,1] with |s ° t | < ±.
But then if n > ±°1 we have for all z 2 K

| f (z)° fn(z)| = |
Z1

0
F (z, s)d z ° 1

n

nX

i=1
F (z, i /n)|

=
ØØØØØ

nX

i=1

Zi /n

(i°1)/n

°
F (z, s)°F (z, i /n)

¢
d s

ØØØØØ

∑
nX

i=1

Zi /n

(i°1)/n
|F (z, s)°F (z, i /n)|d s

<
nX

i=1
≤/n = ≤.

Thus fn(z) tends to f (z) uniformly on K as required. ⇤
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Example 18.23. If f is any continuous function on [0,1], then the previous theorem shows that the func-
tion f (z) =

R1
0 ei sz f (s)d s is holomorphic in z, since clearly F (z, s) = ei sz f (z) is continuous as a function

on C£ [0,1] and, for fixed s 2 [0,1], F is holomorphic as a function of z. Integrals of this nature (though
perhaps over the whole real line or the positive real axis) arise frequently in many parts of mathematics,
as you can learn more about in the optional course on Integral Transforms.

Remark 18.24. Another way to prove the theorem is to use Morera’s theorem directly: if ∞ : [0,1] !C is a
closed path in B(a,r ), then we have

Z

∞
f (z)d z =

Z

∞

°Z1

0
F (z, s)d s

¢
d z

=
Z1

0

°Z

∞
F (z, s)d z

¢
d s = 0,

where in the first line we interchanged the order of integration, and in the second we used the fact that
F (z, s) is holomorphic in z and Cauchy’s theorem for a disk. To make this completely rigorous however,
one has to justify the interchange of the orders of integration. Next term’s course on Integration proves
a very general result of this form known as Fubini’s theorem, but for continous functions on compact
subets of Rn one can give more elementary arguments by showing any such function is a uniform limit
of linear combinations of indicator functions of "boxes" – the higher dimensional analogues of step func-
tions – and the elementary fact that the interchange of the order of integration for indicator functions of
boxes holds trivially.

19. THE IDENTITY THEOREM, ISOLATED ZEROS AND SINGULARITIES

The fact that any complex differentiable function is in fact analytic has some very surprising conse-
quences – the most striking of which is perhaps captured by the “Identity theorem”. This says that if f , g
are two holomorphic functions defined on a domain U and we let S = {z 2U : f (z) = g (z)} be the locus on
which they are equal, then if S has a limit point in U it must actually be all of U . Thus for example if there
is a disk B(a,r ) µU on which f and g agree (not matter how small r is), then in fact they are equal on all
of U ! The key to the proof of the Identity theorem is the following result on the zeros of a holomorphic
function:

Proposition 19.1. Let U be an open set and suppose that g : U ! C is holomorphic on U . Let S = {z 2
U : g (z) = 0}. If z0 2 S then either z0 is isolated in S (so that g is non-zero in some disk about z0 except
at z0 itself) or g = 0 on a neighbourhood of z0. In the former case there is a unique integer k > 0 and
holomorphic function g1 such that g (z) = (z ° z0)k g1(z) where g1(z0) 6= 0.

Proof. Pick any z0 2U with g (z0) = 0. Since g is analytic at z0, if we pick r > 0 such that B̄(z0,r ) µU , then
we may write

g (z) =
1X

k=0
ck (z ° z0)k ,

for all z 2 B(z0,r ) µU , where the coeficients ck are given as in Theorem 18.11. Now if ck = 0 for all k, it
follows that g (z) = 0 for all z 2 B(0,r ). Otherwise, we set k = min{n 2N : cn 6= 0} (where since g (z0) = 0 we
have c0 = 0 so that k ∏ 1). Then if we let g1(z) = (z ° z0)°k g (z), clearly g1(z) is holomorphic on U \{z0},
but since in B(z0,r ) we have we have g1(z) = P1

n=0 ck+n(z ° z0)n , it follows if we set g1(z0) = ck 6= 0 then
g1 becomes a holomorphic function on all of U . Since g1 is continuous at z0 and g1(z0) 6= 0, there is
an ≤ > 0 such that g1(z) 6= 0 for all z 2 B(z0,≤). But (z ° z0)k vanishes only at z0, hence it follows that
g (z) = (z ° z0)k g1(z) is non-zero on B(a,≤)\{z0}, so that z0 is isolated.

Finally, to see that k is unique, suppose that g (z) = (z ° z0)k g1(z) = (z ° z0)l g2(z) say with g1(z0) and
g2(z0) both nonzero. If k < l then g (z)/(z ° z0)k = (z ° z0)l°k g2(z) for all z 6= z0, hence as z ! z0 we have
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g (z)/(z ° z0)k ! 0, which contradicts the assumption that g1(z) 6= 0. By symmetry we also cannot have
k > l so k = l as required. ⇤
Remark 19.2. The integer k in the previous proposition is called the multiplicity of the zero of g at z = z0
(or sometimes the order of vanishing).

Theorem 19.3. (Identity theorem): Let U be a domain and suppose that f1, f1 are holomorphic functions
defined on U . Then if S = {z 2 U : f1(z) = f2(z)} has a limit point in U , we must have S = U , that is
f1(z) = f2(z) for all z 2U .

Proof. Let g = f1 ° f2, so that S = g°1({0}). We must show that if S has a limit point then S =U . Since g
is clearly holomorphic in U , by Proposition 19.1 we see that if z0 2 S then either z0 is an isolated point
of S or it lies in an open ball contained in S. It follows that S = V [T where T = {z 2 S : z is isolated}
and V = int(S) is open. But since g is continuous, S = g°1({0}) is closed in U , thus V [T is closed, and
so ClU (V ), the closure45 of V in U , lies in V [T . However, by definition, no limit point of V can lie in T
so that ClU (V ) = V , and thus V is open and closed in U . Since U is connected, it follows that V = ; or
V =U . In the former case, all the zeros of g are isolated so that S0 = T 0 =; and S has no limit points. In
the latter case, V = S =U as required.

⇤
Remark 19.4. The requirement in the theorem that S have a limit point lying in U is essential: If we take
U = C\{0} and f1 = exp(1/z)° 1 and f2 = 0, then the set S is just the points where f1 vanishes on U .
Now the zeros of f1 have a limit point at 0 ›U since f (1/(2ºi n)) = 0 for all n 2N, but certainly f1 is not
identically zero on U !

We now wish to study singularities of holomorphic functions. The key result here is Riemann’s remov-
able singularity theorem, Corollary 18.16.

Definition 19.5. If U is an open set in C and z0 2U , we say that a function f : U \{z0} !C has an isolated
singularity at z0 if it is holomorphic on B(z0,r )\{z0} for some r > 0.

Suppose that z0 is an isolated singularity of f . If f is bounded near z0 we say that f has a removable
singularity at z0, since by Corollary 18.16 it can be extended to a holomorphic function at z0. If f is not
bounded near z0, but the function 1/ f (z) has a removable singularity at z0, that is, 1/ f (z) extends to a
holomorphic function on all of B(z0,r ), then we say that f has a pole at z0. By Proposition 19.1 we may
write (1/ f )(z) = (z ° z0)m g (z) where g (z0) 6= 0 and m 2 Z>0. (Note that the extension of 1/ f to z0 must
vanish there, as otherwise f would be bounded near z0.) We say that m is the order of the pole of f at z0.
In this case we have f (z) = (z ° z0)°m .(1/g ) near z0, where 1/g is holomorphic near z0 since g (z0) 6= 0. If
m = 1 we say that f has a simple pole at z0.

Finally, if f has an isolated singularity at z0 which is not removable nor a pole, we say that z0 is an
essential singularity.

Lemma 19.6. Let f be a holomorphic function with a pole of order m at z0. Then there is an r > 0 such
that for all z 2 B(z0,r )\{z0} we have

f (z) =
X

n∏°m
cn(z ° z0)n

Proof. As we have already seen, we may write f (z) = (z ° z0)°mh(z) where m is the order of the pole of f
at z0 and h(z) is holomorphic and non-vanishing at z0. The claim follows since, near z0, h(z) is equal to
its Taylor series at z0, and multiplying this by (z ° z0)°m gives a series of the required form for f (z). ⇤
Definition 19.7. The series

P
n∏°m cn(z ° z0)n is called the Laurent series for f at z0. We will show later

that if f has an isolated essential singularity it still has a Laurent series expansion, but the series is then
involves infinitely many positive and negative powers of (z ° z0).

45I use the notation ClU (V ), as opposed to V̄ , to emphasize that I mean the closure of V in U , not in C, that is, ClU (V ) is
equal to the union of V with the limits points of V which lie in U .
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A function on an open set U which has only isolated singularities all of which are poles is called a
meromorphic function on U . (Thus, strictly speaking, it is a function only defined on the complement of
the poles in U .)

Lemma 19.8. Suppose that f has an isolated singularity at a point z0. Then z0 is a pole if and only if
| f (z)|!1 as z ! z0.

Proof. If z0 is a pole of f then 1/ f (z) = (z ° z0)k g (z) where g (z0) 6= 0 and k > 0. But then for z 6= z0

we have f (z) = (z ° z0)°k (1/g (z)), and since g (z0) 6= 0, 1/g (z) is bounded away from 0 near z0, while
|(z ° z0)°k |!1 as z ! z0, so | f (z)|!1 as z ! z0 as required.

On the other hand, if | f (z)|!1 as z ! z0, then 1/ f (z) ! 0 as z ! z0, so that 1/ f (z) has a removable
singularity and f has a pole at z0. ⇤
Remark 19.9. The previous Lemma can be rephrased to say that f has a pole at z0 precisely when f
extends to a continuous function f : U ! C1 with f (z0) =1. Moreover, you can check from Definition
13.6 that in this case, the extension is actually holomorphic. Thus the Riemann sphere allows us to put
holomorphic and meromorphic functions on the same footing.

The case where f has an essential singularity is more complicated. We prove that near an isolated
singularity the values of a holomorphic function are dense:

Theorem 19.10. (Casorati-Weierstrass): Let U be an open subset ofC and let a 2U . Suppose that f : U \{a} !
C is a holomorphic function with an isolated essential singularity at a. Then for all Ω > 0 with B(a,Ω) µU ,
the set f (B(a,Ω)\{a}) is dense in C, that is, the closure of f (B(a,Ω)\{a}) is all of C.

Proof. Suppose, for the sake of a contradiction, that there is someΩ > 0 such that z0 2C is not a limit point
of f (B(a,Ω)\{a}). Then the function g (z) = 1/( f (z)° z0) is bounded and non-vanishing on B(a,Ω)\{a},
and hence by Riemann’s removable singularity theorem, it extends to a holomorphic function on all of
B(a,Ω). But then f (z) = z0 +1/g (z) has at most a pole at a which is a contradiction. ⇤
Remark 19.11. In fact much more is true: Picard showed that if f has an isolated essential singularity at
z0 then in any open disk about z0 the function f takes every complex value infinitely often with at most
one exception. The example of the function f (z) = exp(1/z), which has an essential singularity at z = 0
shows that this result is best possible, since f (z) 6= 0 for all z 6= 0.

19.1. Principal parts.

Definition 19.12. Recall that by Lemma 19.6 if a function f has a pole of order k at z0 then near z0 we
may write

f (z) =
X

n∏°k
cn(z ° z0)n .

The function
P°1

n=°k cn(z ° z0)n is called the principal part of f at z0, and we will denote it by Pz0 ( f ). It
is a rational function which is holomorphic on C\{z0}. Note that f °Pz0 ( f ) is holomorphic at z0 (and
also holomorphic wherever f is). The residue of f at z0 is defined to be the coefficient c°1 and denoted
Resz0 ( f ).

The reason for introducing these definitions is the following: Suppose that f : U !C1 is a meromor-
phic function with poles at a finite set S µU . Then for each z0 2 S we have the principal part Pz0 ( f ) of f
at z0, a rational function which is holomorphic everywhere on C\{z0}. The difference

g (z) = f (z)°
X

z02S
Pz0 ( f ),

is holomorphic on all of U (away from S the is clear because each term is, at z0 2 S the terms Ps( f ) for
s 2 S\{z0} are all holomorphic, while f (z)°Pz0 ( f ) is holomorphic at z0 by the definition of Pz0 ( f )). Thus
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if U is starlike and ∞ : [0,1] !U is any closed path in U with ∞§ \S =;, we have
Z

∞
f (z)d z =

Z

∞
g (z)d z +

X

z02S

Z

∞
Pz0 ( f )d z =

X

z02S

Z

∞
Pz0 ( f )d z.

The most important term in the principal part Pz0 ( f ) is the term c°1/(z°z0). This is because every other
term has a primitive on C\{z0}, hence by the Fundamental Theorem of Calculus it is the only part which
contributes to the integral of Pz0 ( f ) around the closed path ∞. Combining these observations we see that

Z

∞
f (z)d z =

X

z02S
Resz0 ( f )

Z

∞

d z
z ° z0

= 2ºi
X

z02S
Resz0 ( f ).I (∞, z0),

where I (∞, z0) denotes the winding number of ∞ about the pole z0. This is the residue theorem for mero-
morphic functions on a starlike domain. We will shortly generalize it.

Lemma 19.13. Suppose that f has a pole of order m at z0, then

Resz0 ( f ) = lim
z!z0

1
(m °1)!

d m°1

d zm°1 ((z ° z0)m f (z))

Proof. Since f has a pole of order m at z0 we have f (z) =P
n∏°m cn(z ° z0)n for z sufficiently close to z0.

Thus
(z ° z0)m f (z) = c°m + c°m+1(z ° z0)+ . . .+ c°1(z ° z0)m°1 + . . .

and the result follows from the formula for the derivatives of a power series. ⇤
Remark 19.14. The last lemma is perhaps most useful in the case where the pole is simple, since in that
case no derivatives need to be computed. In fact there is a special case which is worth emphasizing:
Suppose that f = g /h is a ratio of two holomorphic functions defined on a domain U µ C, where h is
non-constant. Then f is meromorphic with poles at the zeros46 of h. In particular, if h has a simple zero
at z0 and g is non-vanishing there, then f correspondingly has a simple pole at z0. Since the zero of h is
simple at z0, we must have h0(z0) 6= 0, and hence by the previous result

Resz0 ( f ) = lim
z!z0

g (z)(z ° z0)
h(z)

= lim
z!z0

g (z). lim
z!z0

z ° z0

h(z)°h(z0)
= g (z0)/h0(z0)

where the last equality holds by standard Algebra of Limits results.

20. HOMOTOPIES, SIMPLY-CONNECTED DOMAINS AND CAUCHY’S THEOREM

A crucial point in our proof of Cauchy’s theorem for a triangle was that the interior of the triangle
was entirely contained in the open set on which our holomorphic function f was defined. In general
however, given a closed curve, it is not always easy to say what we mean by the “interior” of the curve. In
fact there is a famous theorem, known as the Jordan Curve Theorem, which resolves this problem, but
to prove it would take us too far afield. Instead we will take a slightly different strategy: in fact we will
take two different approaches: the first using the notion of homotopy and the second using the winding
number. For the homotopy approach, rather than focusing only on closed curves and their “interiors”
we consider arbitrary curves and study what it means to deform one to another.

Definition 20.1. Suppose that U is an open set in C and a,b 2 U . If ¥ : [0,1] ! U and ∞ : [0,1] ! U are
paths in U such that ∞(0) = ¥(0) = a and ∞(1) = ¥(1) = b, then we say that ∞ and ¥ are homotopic in U if
there is a continuous function h : [0,1]£ [0,1] !U such that

h(0, s) = a, h(1, s) = b

h(t ,0) = ∞(t ), h(t ,1) = ¥(t ).

46Strictly speaking, the poles of f form a subset of the zeros of h, since if g also vanishes at a point z0, then f may have a
removable singularity at z0.
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One should think of h as a family of paths in U indexed by the second variable s which continuously
deform ∞ into ¥.

A special case of the above definition is when a = b and ∞ and ¥ are closed paths. In this case there is
a constant path ca : [0,1] !U going from a to b = a which is simply given by ca(t ) = a for all t 2 [0,1]. We
say a closed path starting and ending at a point a 2U is null homotopic if it is homotopic to the constant
path ca . One can show that the relation “∞ is homotopic to ¥” is an equivalence relation, so that any path
∞ between a and b belongs to a unique equivalence class, known as its homotopy class.

Definition 20.2. Suppose that U is a domain in C. We say that U is simply connected if for every a,b 2U ,
any two paths from a to b are homotopic in U .

Lemma 20.3. Let U be a convex open set in C. Then U is simply connected. Moreover if U1 and U2 are
homeomorphic, then U1 is simply connected if and only if U2 is.

Proof. Suppose that ∞ : [0,1] !U and ¥ : [0,1] !U are paths starting and ending at a and b respectively
for some a,b 2U . Then for (s, t ) 2 [0,1]£ [0,1] let

h(t , s) = (1° s)∞(t )+ s¥(t )

It is clear that h is continuous and one readily checks that h gives the required homotopy. For the more-
over part, if f : U1 !U2 is a homeomorphism then it is clear that f induces a bijection between contin-
uous paths in U1 to those in U2 and also homotopies in U1 to those in U2, so the claim follows. ⇤
Remark 20.4. (Non-examinable) In fact, with a bit more work, one can show that any starlike domain D is
also simply-connected. The key is to show that a domain is simply-connected if all closed paths starting
and ending at a given point z0 2 D are null-homotopic. If D is star-like with respect to z0 2 D , then if
∞ : [0,1] ! D is a closed path with ∞(0) = ∞(1) = z0, it follows h(s, t ) = z0 + s(∞(t )° z0) gives a homotopy
between ∞ and the constant path cz0 .

Thus we see that we already know many examples of simply connected domains in the plane, such as
disks, ellipsoids, half-planes. The second part of the above lemma also allows us to produce non-convex
examples:

Example 20.5. Consider the domain

D¥,≤ = {z 2C : z = r eiµ : ¥< r < 1,0 < µ < 2º(1°≤)},

where 0 < ¥,≤< 1/10 say, then D¥,≤ is clearly not convex, but it is the image of the convex set (0,1)£(0,1°
≤) under the map (r,µ) 7! r e2ºiµ. Since this map has a continuous (and even differentiable) inverse,
it follows D¥,≤ is simply-connected. When ¥ and ≤ are small, the boundary of this set, oriented anti-
clockwise, is a version of what is called a key-hole contour.

We are now ready to state our extension of Cauchy’s theorem. The proof is given in the Appendices.

Theorem 20.6. Let U be a domain in C and a,b 2U . Suppose that ∞ and ¥ are paths from a to b which
are homotopic in U and f : U !C is a holomorphic function. Then

Z

∞
f (z)d z =

Z

¥
f (z)d z.

Remark 20.7. Notice that this theorem is really more general than the previous versions of Cauchy’s
theorem we have seen – in the case where a holomorphic function f : U ! C has a primitive the con-
clusion of the previous theorem is of course obvious from the Fundamental theorem of Calculus47, and
our previous formulations of Cauchy’s theorem were proved by producing a primitive for f on U . One
significance of the homotopy form of Cauchy’s theorem is that it applies to domains U even when there
is no primitive for f on U .

47Indeed the hypothesis that the paths ∞ and ¥ are homotopic is irrelevant when f has a primitive on U .
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Theorem 20.8. Suppose that U is a simply-connected domain, let a,b 2 U , and let f : U ! C be a holo-
morphic function on U . Then if ∞1,∞2 are paths from a to b we have

Z

∞1

f (z)d z =
Z

∞2

f (z)d z.

In particular, if ∞ is a closed oriented curve we have
R
∞ f (z)d z = 0, and hence any holomorphic function

on U has a primitive.

Proof. Since U is simply-connected, any two paths from from a to b are homotopic, so we can apply
Theorem 20.6. For the last part, in a simply-connected domain any closed path ∞ : [0,1] !U , with ∞(0) =
∞(1) = a say, is homotopic to the constant path ca(t ) = a, and hence

R
∞ f (z)d z =

R
ca

f (z)d z = 0. The final
assertion then follows from the Theorem 16.21. ⇤
Example 20.9. If U µC\{0} is simply-connected, the previous theorem shows that there is a holomorphic
branch of [Log(z)] defined on all of U (since any primitive for f (z) = 1/z will be such a branch).

Remark 20.10. Recall that in Definition 18.6 we called a domain D in the complex plane primtive if
every holomorphic function f : D ! C on it had a primitive. Theorem 20.8 shows that any simply-
connected domain is primitive. In fact the converse is also true – any primitive domain is necessarily
simply-connected. Thus the term “primitive domain” is in fact another name for a simply-connected
domain.

The definition of winding number allows us to give another version of Cauchy’s integral formula
(sometimes called the winding number or homology form of Cauchy’s theorem).

Theorem 20.11. Let f : U ! C be a holomorphic function and let ∞ : [0,1] ! U be a closed path whose
inside lies entirely in U , that is I (∞, z) = 0 for all z ›U . Then we have, for all z 2U \∞§,

Z

∞
f (≥)d≥= 0;

Z

∞

f (≥)
≥° z

d≥= 2ºi I (∞, z) f (z).

Moreover, if U is simply-connected and ∞ : [a,b] !U is any closed path, then I (∞, z) = 0 for any z ›U , so
the above identities hold for all closed paths in such U .

Remark 20.12. The “moreover” statement in fact just uses the fact that a simply-connected domain is
primitive: if D is a domain and w › D , then the function 1/(z °w) is holomorphic on all of D , and hence
has a primitive on D . It follows I (∞, w) = 0 for any path ∞ with ∞§ µ D .

Remark 20.13. This version of Cauchy’s theorem has a natural extension: instead of integrating over a
single closed path, one can integrate over formal sums of closed paths, which are known as cycles: if a 2N
and ∞1, . . . ,∞k are closed paths and a1, . . . , ak are complex numbers (we will usually only consider the case
where they are integers) then we define the integral around the formal sum °=Pk

i=1 ai∞i of a function f
to be Z

°
f (z)d z =

kX

i=1
ai

Z

∞i

f (z)d z.

Since the winding number can be expressed as an integral, this also gives a natural defintion of the wind-
ing number for such °: explicitly I (°, z) = Pk

i=1 ai I (∞i , z). If we write °§ = ∞§1 [ . . .[∞§k then I (°, z) is
defined for all z › °§. The winding number version Cauchy’s theorem then holds (with the same proof)
for cycles in an open set U , where we define the inside of a cycle to be the set of z 2C for which I (°, z) 6= 0.

Note that if z is inside ° then it must be the case that z is inside some ∞i , but the converse is not
necessarily the case: it may be that z lies inside some of the ∞i but does not lie inside °. One natural
way in which cycles arise are as the boundaries of an open subsets of the plane: if ≠ is an domain in the
plane, then @≠, the boundary of ≠ is often a union of curves rather than a single curve48. For example if

48Of course in general the boundary of an open set need not be so nice as to be a union of curves at all.
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r < R then ≠= B(0,R)\B̄(0,r ) has a boundary which is a union of two concentric circles. If these circles
are oriented correctly, then the “inside” of the cycle ° which they form is precisely ≠ (see the discussion
of Laurent series below for more details). Thus the origin, although inside each of the circles ∞(0,r ) and
∞(0,R), is not inside °. The cycles version of Cauchy’s theorem is thus closest to Green’s theorem in
multivariable calculus.

As a first application of this new form of Cauchy’s theorem, we establish the Laurent expansion of a
function which is holomorphic in an annulus. This is a generalization of Taylor’s theorem, and we already
saw it in the special case of a function with a pole singularity.

Definition 20.14. Let 0 < r < R be real numbers and let z0 2C. An open annulus is a set

A = A(r,R, z0) = B(z0,R)\B̄(z0,r ) = {z 2C : r < |z ° z0| < R}.

If we write (for s > 0) ∞(z0, s) for the closed path t 7! z0 + se2ºi t then notice that the inside of the cycle
°r,R,z0 = ∞(z0,R)°∞(z0,r ) is precisely A, since for any s, I (∞(z0, s), z) is 1 precisely if z 2 B(z0, s) and 0
otherwise.

Theorem 20.15. Suppose that 0 < r < R and A = A(r,R, z0) is an annulus centred at z0. If f : U ! C is
holomorphic on an open set U which contains Ā, then there exist cn 2C such that

f (z) =
1X

n=°1
cn(z ° z0)n , 8z 2 A.

Moreover, the cn are unique and are given by the following formulae:

cn = 1
2ºi

Z

∞s

f (z)
(z ° z0)n+1 d z,

where s 2 [r,R] and for any s > 0 we set ∞s(t ) = z0 + se2ºi t .

Proof. By translation we may assume that z0 = 0. Since A is the inside of the cycle °r,R,z0 it follows from
the winding number form of Cauchy’s integral formula that for w 2 A we have

2ºi f (w) =
Z

∞R

f (z)
z °w

d z °
Z

∞r

f (z)
z °w

d z

But now the result follows in the same way as we showed holomorphic functions were analytic: if we fix
w , then, for |w | < |z| we have 1

z°w =P1
n=0 wn/zn+1, converging uniformly in z in |z| > |w |+≤ for any ≤> 0.

It follows that Z

∞R

f (z)
z °w

d z =
Z

∞R

1X

n=0

f (z)wn

zn+1 d z =
X

n∏0

µZ

∞R

f (z)
zn+1 d z

∂
wn .

for all w 2 A. Similarly since for |z| < |w | we have49 1
w°z = P

n∏0 zn/wn+1 = P°1
n=°1 wn/zn+1, again con-

verging uniformly on |z| when |z| < |w |°≤ for ≤> 0, we see that
Z

∞r

f (z)
w ° z

d z =
Z

∞r

°1X

n=°1
f (z)wn/zn+1d z =

°1X

n=°1

°Z

∞r

f (z)
zn+1 d z

¢
wn .

Thus taking (cn)n2Z as in the statement of the theorem, we see that

f (w) = 1
2ºi

Z

∞R

f (z)
z °w

d z ° 1
2ºi

Z

∞r

f (z)
z °w

d z =
X

n2Z
cn zn ,

as required. To see that the cn are unique, one checks using uniform convergence that if
P

n2Zdn zn is
any series expansion for f (z) on A, then the dn must be given by the integral formulae above.

49Note the sign change.
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Finally, to see that the cn can be computed using any circular contour ∞s , note that if r ∑ s1 < s2 ∑ R
then f /(z°z0)n+1 is holomorphic on the inside of °= ∞s2 °∞s1 , hence by the homology form of Cauchy’s
theorem 0 =

R
° f (z)/(z ° z0)n+1d z =

R
∞s2

f (z)/(z ° z0)n+1d z °
R
∞s1

f (z)/(z ° z0)n+1d z. ⇤

Remark 20.16. Note that the above proof shows that the integral
R
∞R

f (z)
z°w d z defines a holomorphic func-

tion of w in B(z0,R), while
R
∞r

f (z)
z°w d z defines a holomorphic function of w on C\B(z0,r ). Thus we have

actually expressed f (w) on A as the difference of two functions which are holomorphic on B(z0,R) and
C\B̄(z0,r ) respectively.

Definition 20.17. Let f : U \S !C be a function which is holomorphic on a domain U except at a discrete
set S µU . Then for any a 2 S the previous theorem shows that for r > 0 sufficiently small, we have

f (z) =
X

n2Z
cn(z °a)n , 8z 2 B(a,r )\{a}.

We define

Pa( f ) =
°1X

n=°1
cn(z °a)n ,

to be the principal part of f at a. This generalizes the previous definition we gave for the principal part of
a meromorphic function. Note that the proof of Theorem 20.15 shows that the series Pa( f ) is uniformly
convergent on C\B(a,r ) for all r > 0, and hence defines a holomorphic function on C\{a}.
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