One famous application of the Integral formula is known as Liouville’s theorem, which will give an
easy proof of the Fundamental Theorem of Algebra®?. We say that a function f: C — C is entire if it is
complex differentiable on the whole complex plane.

Theorem 18.13. Let f: C — C be an entire function. If f is bounded then it is constant.

Proof. Suppose that |f(z)| < M for all z € C. Let yr(t) = Re*”** be the circular path centred at the origin
with radius R. The for R > |w| the integral formula shows
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Thus letting R — oo we see that | f(w) — f(0)| = 0, so that f is constant an required.
O

k

Theorem 18.14. Suppose that p(z) = ¥.}_, axz" is a non-constant polynomial where ay. € C and ap # 0.

Then there is a zy € C for which p(zy) = 0.

Proof. By rescaling p we may assume that a, = 1. If p(z) # 0 for all z € C it follows that f(z) = 1/p(z) is
an entire function (since p is clearly entire). We claim that f is bounded. Indeed since it is continuous
it is bounded on any disc B(0, R), so it suffices to show that |f(2)| — 0 as z — oo, that is, to show that
|p(2)| — oo as z — oco. But we have
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Since ﬁ — 0 as |z| — oo for any m = 1 it follows that for sufficiently large |z|, say |z| = R, we will have

1 —Z’]:;é Iz‘la"k*l’“ = 1/2. Thus for |z| = R we have |p(z)| = %Izl”. Since |z|" clearly tends to infinity as | z| does

it follows | p(z)| — oo as required. O

Remark 18.15. The crucial point of the above proof is that one term of the polynomial - the leading
term in this case- dominates the behaviour of the polynomial for large values of z. All proofs of the
fundamental theorem hinge on essentially this point. Note that p(z) = 0 if and only if p(z) = (z—zp)g(2)
for a polynomial g(z), thus by induction on degree we see that the theorem implies that a polynomial
over C factors into a product of degree one polynomials.

Corollary 18.16. (Riemann’s removable singularity theorem): Suppose that U is an open subset of C and
zo € U. If f: U\{zo} — C is holomorphic and bounded near zy, then f extends to a holomorphic function
onallofU.

Proof. Define h(z) by
(z—20)%f(2), z#0;

0, zZ=20

h(z) = {

44Which, when it comes down to it, isn't really a theorem in algebra. The most “algebraic” proof of that I know uses Galois
theory, which you can learn about in Part B.
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The clearly h(z) is holomorphic on U\{zp}, using the fact that f and standard rules for complex differen-
tiablility. On the other hand, at z = z; we see directly that
h(z) — h(zo)
zZ—20
as z — zp since f is bounded near zy by assumption. It follows that £ is in fact holomorphic everywhere
in U. But then if we chose r > 0 is such that B(zy, ) = U, then by Corollary 18.11 h(z) is equal to its Taylor
series centred at zp, thus

=(z-20)f(2) =0

(e8]
hz) =Y ap(z—zp)~.
k=0
But since we have h(zg) = h'(zg) = 0 we see ag = a; =0, and so Zzozo Apio(z— 20)¥ defines a holomorphic
function in B(zy, ). Since this clearly agrees with f(z) on B(zp, r)\{0}, we see that by redefining f(z¢) =
ay, we can extend f to a holomorphic function on all of U as required. (I

We end this section with a kind of converse to Cauchy’s theorem:

Theorem 18.17. (Morera’s theorem) Suppose that f: U — C is a continuous function on an open subset
U < C. Iffor any closed pathy: [a, b] — U we have fy f(2)dz =0, then f is holomorphic.

Proof. By Theorem 16.21 we know that f has a primitive F: U — C. But then F is holomorphic on U and
so infinitely differentiable on U, thus in particular f = F' is also holomorphic. (]

Remark 18.18. One can prove variants of the above theorem: If U is a star-like domain for example,
then our proof of Cauchy’s theorem for such domains shows that f: U — C has a primitive (and hence
will be differentiable itself) provided [; f(z)dz = 0 for every triangle in U. In fact the assumption that
Jr f(2)dz = 0 for all triangles whose interior lies in U suffices to imply f is holomorphic for any open
subset U: To show f is holomorphic on U, it suffices to show that f is holomorphic on B(a, r) for each
open disk B(a,r) c U. But this follows from the above as disks are star-like (in fact convex). It follows
that we can characterize the fact that f: U — C is holomorphic on U by an integral condition: f: U — C
is holomorphic if and only if for all triangles T which bound a solid triangle 9~ with 9~ c U, the integral

Jrf(@dz=0.

This characterization of the property of being holomorphic has some important consequences. We
first need a definition:

Definition 18.19. Let U be an open subset of C. If (f},) is a sequence of functions defined on U, we
say fn — f uniformly on compacts if for every compact subset K of U, the sequence (fyx) converges
uniformly to fix. Note that in this case f is continuous if the f,, are: Indeed to see that f is continuous
at a € U, note that since U is open, there is some r > 0 with B(a,r) € U. But then K = B(a,r/2) € U and
fn— f uniformly on K, whence f is continuous on K, and so certainly it is continuous at a.

Example 18.20. Convergence of power series f(z) = .92, anz" is a basic example of convergence on
compacts: if R is the radius of convergences of f(z) the partial sums s,(z) of the power series B(0, R)
converge uniformly on compacts in B(0, R). The convergence is not necessarily uniform on B(0, R), as
the example f(z) = Y, z" shows. Nevertheless, since B(0, R) = U,<g B(0, ) is the union of its compact
subsets, many of the good properties of the polynomial functions s, (z) are inherited by the power series
because the convergence is uniform on compact subsets.

Proposition 18.21. Suppose that U is a domain and the sequence of holomorphic functions f,: U — C
converges to f: U — C uniformly on compacts in U. Then f is holomorphic.

Proof. Note by the above that f is continuous on U. Since the property of being holomorphic is local,

it suffices to show for each w € U that there is a ball B(w, r) € U within which f is holomorphic. Since

U is open, for any such w we may certainly find r > 0 such that B(w,r) < U. Then as B(w, r) is convex,
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Cauchy’s theorem for a star-like domain shows that for every closed path y: [a, b] — B(w, r) whose image
lies in B(w, r) we have fY fu(z)dz=0forall neN.
But y* =y([a, b)) is a compact subset of U, hence f;, — f uniformly on y*. It follows that

()sz,ﬂz)dz—»ff(z)dz,
Y Y

so that the integral of f around any closed path in B(w,r) is zero. But then Theorem 16.21 shows that
f has a primitive F on B(w,r). But we have seen that any holomorphic function is in fact infinitely
differentiable, so it follows that F, and hence f is infinitely differentiable on B(w, r) as required.

]

Often functions on the complex plane are defined in terms of integrals. It is thus useful to have a
criterion by which one can check if such a function is holomorphic. The following theorem gives such a
criterion.

Theorem 18.22. Let U be an open subset of C and suppose that F: U x [a, b] is a function satisfying

(1) The function z— F(z,s) is holomorphic in z for each s € [a, b].
(2) F iscontinuouson U x [a, b]

Then the function f: U — C defined by

b
f(z):f F(z,8)ds
a
is holomorphic.

Proof. Changing variables we may assume that [a, b] = [0, 1] (explicitly, one replaces s by (s— a)/(b— a)).
By Theorem 18.21 it is enough to show that we may find a sequence of holomorphic functions f;,(z)
which converge of f(z) uniformly on compact subsets of U. To find such a sequence, recall from Prelims
Analysis that the Riemann integral of a continuous function is equal to the limit of its Riemann sums
as the mesh of the partition used for the sum tends to zero. Using the partition x; = i/nfor0<i<n
evaluating at the right-most end-point of each interval, we see that

n
fn(2) = 1 Y Fl(z,iln),
nis
is a Riemann sum for the integral fol F(z,s)ds, hence as n — oo we have f,,(z) — f(z) foreach ze U, i.e.
the sequence (f;;) converges pointwise to f on all of U. To complete the proof of the theorem it thus
suffices to check that f;, — f as n — co uniformly on compact subsets of U. But if K < U is compact, then
since F is clearly continuous on the compact set K x [0, 1], it is uniformly continuous there, hence, given
any € > 0, there is a 6 > 0 such that |F(z,s) — F(z,#)| <eforall z € B(a,p) and s, t € [0,1] with |s—t| < 5.
But then if n > 6! we have for all ze K

1 127
If(Z)—fn(Z)|=|f0 F(z,S)dz—;ZF(z,i/n)l
i=1

n o riln
Z[ (F(z,5)—F(z,iln))ds
i1Ji-vin

iln
< Zf |F(z,5)—F(z,i/n)|ds

(i-1)/n

Thus f},(z) tends to f(z) uniformly on K as required. O
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Example 18.23. If f is any continuous function on [0, 1], then the previous theorem shows that the func-
tion f(z) = fol "% f(s)ds is holomorphic in z, since clearly F(z, s) = '*? f(z) is continuous as a function
on C x [0,1] and, for fixed s € [0, 1], F is holomorphic as a function of z. Integrals of this nature (though
perhaps over the whole real line or the positive real axis) arise frequently in many parts of mathematics,
as you can learn more about in the optional course on Integral Transforms.

Remark 18.24. Another way to prove the theorem is to use Morera’s theorem directly: if y: [0,1] = Cisa
closed path in B(a, r), then we have

1
ff(z)dz=f[f F(z,5)ds)dz
Y vy JO
1
2[ (fF(z,s)dz)ds:O,
0 Jy

where in the first line we interchanged the order of integration, and in the second we used the fact that
F(z,s) is holomorphic in z and Cauchy’s theorem for a disk. To make this completely rigorous however,
one has to justify the interchange of the orders of integration. Next term’s course on Integration proves
a very general result of this form known as Fubini’s theorem, but for continous functions on compact
subets of R” one can give more elementary arguments by showing any such function is a uniform limit
oflinear combinations of indicator functions of "boxes" — the higher dimensional analogues of step func-
tions — and the elementary fact that the interchange of the order of integration for indicator functions of
boxes holds trivially.

19. THE IDENTITY THEOREM, ISOLATED ZEROS AND SINGULARITIES

The fact that any complex differentiable function is in fact analytic has some very surprising conse-
quences — the most striking of which is perhaps captured by the “Identity theorem”. This says thatif f, g
are two holomorphic functions defined on a domain U and welet S = {z € U : f(z) = g(z)} be thelocus on
which they are equal, then if S has a limit point in U it must actually be all of U. Thus for example if there
isadisk B(a,r) € U on which f and g agree (not matter how small r is), then in fact they are equal on all
of U! The key to the proof of the Identity theorem is the following result on the zeros of a holomorphic
function:

Proposition 19.1. Let U be an open set and suppose that g: U — C is holomorphicon U. Let S = {z €
U:g(z) =0} Ifzo € S then either zy is isolated in S (so that g is non-zero in some disk about zy except
at zg itself) or g = 0 on a neighbourhood of zy. In the former case there is a unique integer k > 0 and
holomorphic function g, such that g(z) = (z — z9)* g1(z) where g1 (zo) # 0.

Proof. Pick any zq € U with g(z9) = 0. Since g is analytic at z, if we pick r > 0 such that B(z, r) € U, then
we may write

g2 =Y cklz—2z0)",
k=0

for all z € B(zy,r) < U, where the coeficients cy are given as in Theorem 18.11. Now if ¢; = 0 for all £, it
follows that g(z) = 0 for all z € B(0, r). Otherwise, we set k = min{n € N: ¢, # 0} (where since g(zg) =0 we
have ¢y = 0 so that k = 1). Then if we let g,(2) = (z— zo)*kg(z), clearly g;(z) is holomorphic on U\{z},
but since in B(zy, r) we have we have g;(z) = Z‘;fzo Crin(z — 29)", it follows if we set g1(zp) = ci # 0 then
g1 becomes a holomorphic function on all of U. Since g; is continuous at zy and g (zp) # 0, there is
an € > 0 such that g;(z) # 0 for all z € B(zp,€). But (z - 20)* vanishes only at zy, hence it follows that
g2)=(z— Zo)kgl (z) is non-zero on B(a,€)\{zp}, so that z; is isolated.

Finally, to see that k is unique, suppose that g(z) = (z — zo)kgl (2) =(z— zo)lgz(z) say with gj(zg) and
g2(zp) both nonzero. If k < [ then g(z)/(z - zo)k =(z— zo)l’kgg(z) for all z # zg, hence as z — zy we have
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g(2)/(z— z9)* — 0, which contradicts the assumption that g;(z) # 0. By symmetry we also cannot have
k> 1so k=1 asrequired. (I

Remark 19.2. The integer k in the previous proposition is called the multiplicity of the zero of g at z = z
(or sometimes the order of vanishing).

Theorem 19.3. (Identity theorem): Let U be a domain and suppose that fi, fi are holomorphic functions
defined on U. Then if S = {z € U : fi(z) = f2(2)} has a limit point in U, we must have S = U, that is
fi(2) = fo(z) forallze U.

Proof. Let g = fi — f», so that S = g~1({0}). We must show that if S has a limit point then S = U. Since g
is clearly holomorphic in U, by Proposition 19.1 we see that if zy € S then either zj is an isolated point
of S or it lies in an open ball contained in S. It follows that S = VU T where T = {z € S : zis isolated}
and V = int(S) is open. But since g is continuous, S = g‘l({O}) is closed in U, thus V U T is closed, and
s0 Cly (V), the closure®® of V in U, lies in V U T. However, by definition, no limit point of V can liein T
so that Cly (V) = V, and thus V is open and closed in U. Since U is connected, it follows that V = ¢ or
V = U. In the former case, all the zeros of g are isolated so that S’ = T’ = @ and S has no limit points. In
the latter case, V = S = U as required.

]

Remark 19.4. The requirement in the theorem that S have a limit point lying in U is essential: If we take
U =C\{0} and f; = exp(1/z) —1 and f, = 0, then the set S is just the points where f; vanishes on U.
Now the zeros of f; have a limit point at 0 ¢ U since f(1/(2nin)) = 0 for all n € N, but certainly f; is not
identically zero on U!

We now wish to study singularities of holomorphic functions. The key result here is Riemann’s remov-
able singularity theorem, Corollary 18.16.

Definition 19.5. If U is an open set in C and z( € U, we say that a function f: U\{zo} — C has an isolated
singularity at zy if it is holomorphic on B(zg, r)\{zy} for some r > 0.

Suppose that zj is an isolated singularity of f. If f is bounded near z; we say that f has a removable
singularity at zy, since by Corollary 18.16 it can be extended to a holomorphic function at zp. If f is not
bounded near z;, but the function 1/ f(z) has a removable singularity at zy, that is, 1/ f(z) extends to a
holomorphic function on all of B(zy, r), then we say that f has a pole at zy. By Proposition 19.1 we may
write (1/f)(z) = (z — z9)" g(z) where g(zp) # 0 and m € Zo. (Note that the extension of 1/ f to zp must
vanish there, as otherwise f would be bounded near zj.) We say that m is the order of the pole of f at z.
In this case we have f(z) = (z— zg)~™.(1/g) near zy, where 1/g is holomorphic near z; since g(zg) # 0. If
m =1 we say that f has a simple pole at z,.

Finally, if f has an isolated singularity at zp which is not removable nor a pole, we say that z; is an
essential singularity.

Lemma 19.6. Let f be a holomorphic function with a pole of order m at zy. Then there is an r > 0 such
that for all z € B(zy, r)\{zo} we have

f@= ) culz—20)"

n=z—-m
Proof. As we have already seen, we may write f(z) = (z— z9)~™h(z) where m is the order of the pole of f
at zg and h(z) is holomorphic and non-vanishing at zy. The claim follows since, near zy, i(z) is equal to
its Taylor series at zp, and multiplying this by (z — z9) =" gives a series of the required form for f(z). O

Definition 19.7. The series Y ,,=_,, cn(z—zo)" is called the Laurent series for f at zyo. We will show later
that if f has an isolated essential singularity it still has a Laurent series expansion, but the series is then
involves infinitely many positive and negative powers of (z — zp).

451 yse the notation Cly(V), as opposed to V, to emphasize that I mean the closure of V in U, not in C, that is, Cly (V) is
equal to the union of V with the limits points of V which lie in U.
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A function on an open set U which has only isolated singularities all of which are poles is called a
meromorphic function on U. (Thus, strictly speaking, it is a function only defined on the complement of
the poles in U.)

Lemma 19.8. Suppose that f has an isolated singularity at a point zy. Then zy is a pole if and only if
| f(2)] = o0 asz— z.

Proof. If zy is a pole of f then 1/f(z) = (z— zo)kg(z) where g(zp) # 0 and k > 0. But then for z # z
we have f(z) = (z—29) ¥(1/g(2)), and since g(zo) # 0, 1/g(2) is bounded away from 0 near z, while
|(z— zo)‘kl — 00 as z — 2o, s0 | f(z)] — oo as z — zg as required.

On the other hand, if | f(z)| — co as z — z(, then 1/ f(z) — 0 as z — zy, so that 1/ f(z) has a removable
singularity and f has a pole at z. O

Remark 19.9. The previous Lemma can be rephrased to say that f has a pole at zy precisely when f
extends to a continuous function f: U — C,, with f(zp) = co. Moreover, you can check from Definition
13.6 that in this case, the extension is actually holomorphic. Thus the Riemann sphere allows us to put
holomorphic and meromorphic functions on the same footing.

The case where f has an essential singularity is more complicated. We prove that near an isolated
singularity the values of a holomorphic function are dense:

Theorem 19.10. (Casorati-Weierstrass): Let U be an open subset of C and leta € U. Suppose that f : U\{a} —
C is a holomorphic function with an isolated essential singularity at a. Then for all p > 0 with B(a,p) < U,
the set f(B(a, p)\{a}) is dense in C, that is, the closure of f (B(a, p)\{a}) is all of C.

Proof. Suppose, for the sake of a contradiction, that there is some p > 0 such that zy € C is not a limit point
of f(B(a,p)\{a}). Then the function g(z) = 1/(f(z) — z¢) is bounded and non-vanishing on B(a, p)\{a},
and hence by Riemann’s removable singularity theorem, it extends to a holomorphic function on all of
B(a, p). But then f(z) = zp + 1/g(z) has at most a pole at a which is a contradiction. ([

Remark 19.11. In fact much more is true: Picard showed that if f has an isolated essential singularity at
zp then in any open disk about zj the function f takes every complex value infinitely often with at most
one exception. The example of the function f(z) = exp(1/z), which has an essential singularity at z =0
shows that this result is best possible, since f(z) # 0 for all z # 0.

19.1. Principal parts.

Definition 19.12. Recall that by Lemma 19.6 if a function f has a pole of order k at z; then near z; we
may write
f@)= ) calz—2z0)".
n=-k

The function Z;i_  Cn(z—20)" is called the principal part of f at zg, and we will denote it by P, (f). It
is a rational function which is holomorphic on C\{zp}. Note that f — P, (f) is holomorphic at z, (and
also holomorphic wherever f is). The residue of f at z; is defined to be the coefficient c_; and denoted
Res, (f).

The reason for introducing these definitions is the following: Suppose that f: U — C, is a meromor-
phic function with poles at a finite set S € U. Then for each z, € S we have the principal part P, (f) of f
at zo, a rational function which is holomorphic everywhere on C\{z,}. The difference

g8(2)=f(2)— ) Ps(f),
20€S
is holomorphic on all of U (away from S the is clear because each term is, at zy € S the terms P(f) for

s € S\{zp} are all holomorphic, while f(z) — P, (f) is holomorphic at zy by the definition of P, (f)). Thus
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if U is starlike and y: [0,1] — U is any closed path in U with y* n S = @, we have
ff(z)dz:fg(z)dz+ P, (fdz=)_ | Ps(f)dz.
Y Y

20eSYY 20eSYY
The most important term in the principal part P, (f) is the term c_1/(z - zp). This is because every other
term has a primitive on C\{zp}, hence by the Fundamental Theorem of Calculus it is the only part which
contributes to the integral of P, (f) around the closed path y. Combining these observations we see that

ff(z)dz: Y Reszo(f)f 2 _oni Y Ress ().10r,20),
Y Y&~ %0

Z0€S ZpES

where I(y, zg) denotes the winding number of y about the pole z;. This is the residue theorem for mero-
morphic functions on a starlike domain. We will shortly generalize it.

Lemma 19.13. Suppose that f has a pole of order m at zy, then

1 dm—l
— 5 - _ m
ReSzo (f) = zlglgo (m-1! 21 ((z Zo) f(z))
Proof. Since f has a pole of order m at zg we have f(z) =Y ,,=_, cn(z— 2¢)" for z sufficiently close to z.
Thus
(2—20)" f(2) = C_m+ Comi1 (2= 20) +...+ c1(z—20)" ' +...

and the result follows from the formula for the derivatives of a power series. (]

Remark 19.14. The last lemma is perhaps most useful in the case where the pole is simple, since in that
case no derivatives need to be computed. In fact there is a special case which is worth emphasizing:
Suppose that f = g/h is a ratio of two holomorphic functions defined on a domain U < C, where £ is
non-constant. Then f is meromorphic with poles at the zeros*® of h. In particular, if h has a simple zero
at zg and g is non-vanishing there, then f correspondingly has a simple pole at zy. Since the zero of h is
simple at zy, we must have h'(zg) # 0, and hence by the previous result

.. 8@(z—z) . im 2%
Resn (=10 " T 2589 0 5 Thizy

where the last equality holds by standard Algebra of Limits results.

= g(z0)/ h' (z0)

20. HOMOTOPIES, SIMPLY-CONNECTED DOMAINS AND CAUCHY’S THEOREM

A crucial point in our proof of Cauchy’s theorem for a triangle was that the interior of the triangle
was entirely contained in the open set on which our holomorphic function f was defined. In general
however, given a closed curve, it is not always easy to say what we mean by the “interior” of the curve. In
fact there is a famous theorem, known as the Jordan Curve Theorem, which resolves this problem, but
to prove it would take us too far afield. Instead we will take a slightly different strategy: in fact we will
take two different approaches: the first using the notion of homotopy and the second using the winding
number. For the homotopy approach, rather than focusing only on closed curves and their “interiors”
we consider arbitrary curves and study what it means to deform one to another.

Definition 20.1. Suppose that U is an open setin C and a,b € U. If : [0,1] — U and y: [0,1] — U are
paths in U such that y(0) = n(0) = a and y(1) = n(1) = b, then we say that y and n are homotopicin U if
there is a continuous function A: [0,1] x [0,1] — U such that

h(0,s)=a, h(1,s)=Db

h(t,0)=y(®), h(t,1)=n(1).
4GStric‘[ly speaking, the poles of f form a subset of the zeros of £, since if g also vanishes at a point zp, then f may have a

removable singularity at zp.
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One should think of & as a family of paths in U indexed by the second variable s which continuously
deform y into .

A special case of the above definition is when a = b and y and 7 are closed paths. In this case there is
a constant path ¢, [0,1] — U going from a to b = a which is simply given by c,(f) = afor all £ € [0,1]. We
say a closed path starting and ending at a point a € U is null homotopic if it is homotopic to the constant
path c,. One can show that the relation “y is homotopic to n” is an equivalence relation, so that any path
Y between a and b belongs to a unique equivalence class, known as its homotopy class.

Definition 20.2. Suppose that U is a domain in C. We say that U is simply connected if for every a, b € U,
any two paths from a to b are homotopic in U.

Lemma 20.3. Let U be a convex open set in C. Then U is simply connected. Moreover if Uy and U, are
homeomorphic, then U is simply connected if and only if U is.

Proof. Suppose thaty: [0,1] — U and n: [0,1] — U are paths starting and ending at a and b respectively
for some a, b € U. Then for (s, t) € [0,1] x [0,1] let

h(t,s)=0—-9)y(t) +sn(?)

It is clear that h is continuous and one readily checks that £ gives the required homotopy. For the more-
over part, if f: U; — U, is a homeomorphism then it is clear that f induces a bijection between contin-
uous paths in U; to those in U, and also homotopies in U; to those in Uy, so the claim follows. O

Remark 20.4. (Non-examinable) In fact, with a bit more work, one can show that any starlike domain D is
also simply-connected. The key is to show that a domain is simply-connected if all closed paths starting
and ending at a given point zy € D are null-homotopic. If D is star-like with respect to zy € D, then if
v: [0,1] — D is a closed path with y(0) = y(1) = z, it follows h(s, t) = 29 + s(y(t) — z9) gives a homotopy
between y and the constant path c,.

Thus we see that we already know many examples of simply connected domains in the plane, such as
disks, ellipsoids, half-planes. The second part of the above lemma also allows us to produce non-convex
examples:

Example 20.5. Consider the domain
Dpe=1{zeC:z= rei61n< r<1,0<0<2n(l-e),

where 0 <7,€ < 1/10 say, then Dy ¢ is clearly not convex, but it is the image of the convex set (0,1) x (0,1~
€) under the map (r,60) — re?®  Since this map has a continuous (and even differentiable) inverse,
it follows D;, is simply-connected. When 7 and ¢ are small, the boundary of this set, oriented anti-
clockwise, is a version of what is called a key-hole contour.

We are now ready to state our extension of Cauchy’s theorem. The proof is given in the Appendices.

Theorem 20.6. Let U be a domain in C and a,b € U. Suppose thaty andn are paths from a to b which
are homotopicin U and f: U — C is a holomorphic function. Then

ff(z)dz:ff(z)dz.
Y n

Remark 20.7. Notice that this theorem is really more general than the previous versions of Cauchy’s
theorem we have seen - in the case where a holomorphic function f: U — C has a primitive the con-
clusion of the previous theorem is of course obvious from the Fundamental theorem of Calculus®’, and
our previous formulations of Cauchy’s theorem were proved by producing a primitive for f on U. One
significance of the homotopy form of Cauchy’s theorem is that it applies to domains U even when there
is no primitive for f on U.

47Indeed the hypothesis that the paths y and ) are homotopic is irrelevant when f has a primitive on U.
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Theorem 20.8. Suppose that U is a simply-connected domain, let a,b € U, and let f: U — C be a holo-
morphic function on U. Then ifyi,y2 are paths from a to b we have

fl@dz= f(@)dz.
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In particular, if y is a closed oriented curve we have fy f(@)dz =0, and hence any holomorphic function
on U has a primitive.

Proof. Since U is simply-connected, any two paths from from a to b are homotopic, so we can apply
Theorem 20.6. For the last part, in a simply-connected domain any closed path y: [0,1] — U, with y(0) =
Y(1) = a say, is homotopic to the constant path c,(¢) = a, and hence fy frdz= | ¢, f(@)dz=0. The final
assertion then follows from the Theorem 16.21. (]

Example 20.9. If U < C\{0} is simply-connected, the previous theorem shows that there is a holomorphic
branch of [Log(z)] defined on all of U (since any primitive for f(z) = 1/z will be such a branch).

Remark 20.10. Recall that in Definition 18.6 we called a domain D in the complex plane primtive if
every holomorphic function f: D — C on it had a primitive. Theorem 20.8 shows that any simply-
connected domain is primitive. In fact the converse is also true — any primitive domain is necessarily
simply-connected. Thus the term “primitive domain” is in fact another name for a simply-connected
domain.

The definition of winding number allows us to give another version of Cauchy’s integral formula
(sometimes called the winding number or homology form of Cauchy’s theorem).

Theorem 20.11. Let f: U — C be a holomorphic function and lety: [0,1] — U be a closed path whose
inside lies entirely in U, that is I(y,z) = 0 for all z ¢ U. Then we have, forall z€ U\y*,

(©) .
ff(()dKZO; id(=27rzl()f,z)f(z).
Y y¢-2
Moreover, if U is simply-connected and y: [a, bl — U is any closed path, then 1(y,z) =0 for any z ¢ U, so
the above identities hold for all closed paths in such U.

Remark 20.12. The “moreover” statement in fact just uses the fact that a simply-connected domain is
primitive: if D is a domain and w ¢ D, then the function 1/(z — w) is holomorphic on all of D, and hence
has a primitive on D. It follows I(y, w) = 0 for any path y with y* < D.

Remark 20.13. This version of Cauchy’s theorem has a natural extension: instead of integrating over a
single closed path, one can integrate over formal sums of closed paths, which are known as cycles: if a e N
and yj,...,Yk are closed paths and a, ..., a; are complex numbers (we will usually only consider the case
where they are integers) then we define the integral around the formal sum T = Zle a;y; of afunction f
to be

k
ff(z)dz:Za,- f(»)dz.
r i=1 Yi

Since the winding number can be expressed as an integral, this also gives a natural defintion of the wind-
ing number for such T': explicitly I(T, z) = Zle a;I(y;, 2). If we write I'* = yJ U...Uy; then I(T,z) is
defined for all z ¢ I'*. The winding number version Cauchy’s theorem then holds (with the same proof)
for cycles in an open set U, where we define the inside of a cycle to be the set of z € C for which I(T’, z) # 0.

Note that if z is inside T" then it must be the case that z is inside some vy;, but the converse is not
necessarily the case: it may be that z lies inside some of the y; but does not lie inside I. One natural
way in which cycles arise are as the boundaries of an open subsets of the plane: if Q is an domain in the

plane, then 00, the boundary of Q is often a union of curves rather than a single curve®. For example if

480f course in general the boundary of an open set need not be so nice as to be a union of curves at all.
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r < R then Q = B(0, R)\B(0, r) has a boundary which is a union of two concentric circles. If these circles
are oriented correctly, then the “inside” of the cycle I' which they form is precisely Q (see the discussion
of Laurent series below for more details). Thus the origin, although inside each of the circles y(0, r) and
y(0, R), is not inside I'. The cycles version of Cauchy’s theorem is thus closest to Green’s theorem in
multivariable calculus.

As a first application of this new form of Cauchy’s theorem, we establish the Laurent expansion of a
function which is holomorphic in an annulus. This is a generalization of Taylor’s theorem, and we already
saw it in the special case of a function with a pole singularity.

Definition 20.14. Let 0 < r < R be real numbers and let zy € C. An open annulusis a set
A= A(r,R, z9) = B(z9, R)\B(z9,1) = {z€C:1r <|z— 72| <R}.
If we write (for s > 0) y(zo, s) for the closed path ¢ — zy + se?™! then notice that the inside of the cycle

Iy Rz = v(20,R) —y(20,1) is precisely A, since for any s, I(y(zo, ), ) is 1 precisely if z € B(zp, s) and 0
otherwise.

Theorem 20.15. Suppose that0 < r < R and A = A(r,R, zy) is an annulus centred at zo. If f: U — C is
holomorphic on an open set U which contains A, then there exist c, € C such that

(e8]

f@= ) culz—20)", VzeA

n=—00

Moreover, the c;, are unique and are given by the following formulae:

1 f(2)

n=s=| T d%
2mi Jy, (z— zp)"!

where s € [r, R] and for any s > 0 we set y(t) = zg + se*™'!,

Proof. By translation we may assume that zo = 0. Since A is the inside of the cycle I';. g 4, it follows from

the winding number form of Cauchy’s integral formula that for w € A we have

_f(z) dz— _f(z) dz
v Z— W Y, Z— W

2nif(w) =

But now the result follows in the same way as we showed holomorphic functions were analytic: if we fix
w, then, for |w| < |z| we have Z_lw =390 w"| " converging uniformly in z in | z| > |w|+e€ for any e > 0.
It follows that

f(2 x flaw" f@ "

—dz=fy Y —gdz=) g e dz|w.

yr 2 W rRn=0 < n=0

for all w € A. Similarly since for |z| < |w| we have®® ﬁ =Y 02wt =¥ w™/z"*, again con-
verging uniformly on |z| when |z| < |w| — € for € > 0, we see that

Mdzzf _Z f@w"z"dz = _Z (f gfidz)w”
Y r

Y W=—2 rn=-1 n=-1

Thus taking (c,) ez as in the statement of the theorem, we see that

fw) = — R > 2",
278 Jyp 2— W 27i Jy, z2— W ez

as required. To see that the ¢, are unique, one checks using uniform convergence that if ),z d, 2" is
any series expansion for f(z) on A, then the d,, must be given by the integral formulae above.

4INote the sign change.
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Finally, to see that the ¢, can be computed using any circular contour y,, note thatif r < s; < s, <R
then f/(z—zg)"*! is holomorphic on the inside of T =y, — v, , hence by the homology form of Cauchy’s
theorem 0 = [} f(2)/(z— z9)""1dz = Jy, f@1(z— z0)"dz - Jy, f@)1(z— z0)"dz. O

Remark 20.16. Note that the above proof shows that the integral fyR f_(—zu)jdz defines a holomorphic func-

tion of w in B(zy, R), while f% flejj dz defines a holomorphic function of w on C\B(zy, r). Thus we have

actually expressed f(w) on A as the difference of two functions which are holomorphic on B(zy, R) and
C\B(zy, r) respectively.

Definition 20.17. Let f: U\S — C be a function which is holomorphic on a domain U except at a discrete
set S < U. Then for any a € S the previous theorem shows that for r > 0 sufficiently small, we have
f(@=) cu(z—a)", YzeB(a,r)\{ah.
nez

We define

—00

Py(f)=) calz—a)",

n=-1
to be the principal part of f at a. This generalizes the previous definition we gave for the principal part of
a meromorphic function. Note that the proof of Theorem 20.15 shows that the series P,(f) is uniformly
convergent on C\B(a, r) for all r > 0, and hence defines a holomorphic function on C\{a}.
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