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Michaelmas Term 2019

Problem Sheet 7

1. Show that the polynomial p(z) = 28 + 323 + 7z + 5 has two zeros in the first quadrant.
Hint: Calculate the change in argument of p(vgr(t)) around a quarter-circle contour yg of radius R. For
paths which are not closed, it may be useful to consider the quantity A(y, f) = R((2mi)~* fy 1'(2)/f(z)dz),

for a function f not vanishing on -y.

2. Prove, for a > 0, that
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where T, is the square in C with vertices +(n + 1/2)(1 £ ) show that
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(You may assume that there exists C' such that |cscmw| < C on T, for all n and all w.)

3. Show that

4. By considering the integral

5. Write down a definition of a branch of log(z + 4) which is holomorphic in the cut-plane
C\{z:Rez=0,Imz < —1}.
By integrating log(z +i)/(2% + 1) around a suitable closed path, evaluate
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and, by taking real parts, show that
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6. Show that
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where p, g > 0.

7. Let a € C with —1 < Rea < 1. By considering a rectangular contour with corners at R, R + i,

—R +im, —R, show that
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and hence evaluate, for real n,




