
21. THE ARGUMENT PRINCIPLE

Lemma 21.1. Suppose that f : U ! C is a meromorphic and has a zero of order k or a pole of order k at
z0 2U . Then f 0(z)/ f (z) has a simple pole at z0 with residue k or °k respectively.

Proof. If f (z) has a zero of order k we have f (z) = (z ° z0)k g (z) where g (z) is holomorphic near z0 and
g (z0) 6= 0. It follows that

f 0(z)/ f (z) = k
z ° z0

+ g 0(z)/g (z),

and since g (z) 6= 0 near z0 it follows g 0(z)/g (z) is holomorphic near z0, so that the result follows. The case
where f has a pole at z0 is similar. ⇤
Remark 21.2. Note that if U is an open set on which one can define a holomorphic branch L of [Log(z)]
then g (z) = L( f (z)) has g 0(z) = f 0(z)/ f (z). Thus integrating f 0(z)/ f (z) along a path ∞ will measure the
change in argument around the origin of the path f (∞(t )). The residue theorem allows us to relate this to
the number of zeros and poles of f inside ∞, as the next theorem shows:

Theorem 21.3. (Argument principle): Suppose that U is an open set and f : U ! C is a meromorphic
function on U . If B(a,r ) µU and N is the number of zeros (counted with multiplicity) and P is the number
of poles (again counted with multiplicity) of f inside B(a,r ) and f has neither on @B(a,r ) then

N °P = 1
2ºi

Z

∞

f 0(z)
f (z)

d z,

where ∞(t ) = a + r e2ºi t is a path with image @B(a,r ). Moreover this is the winding number of the path
°= f ±∞ about the origin.

Proof. It is easy to check that I (∞, z) is 1 if |z ° a| ∑ 1 and is 0 otherwise. Since Lemma 21.1 shows that
f 0(z)/ f (z) has simple poles at the zeros and poles of f with residues the corresponding orders the result
immediately from Theorem 22.1.

For the last part, note that the winding number of °(t ) = f (∞(t )) about zero is just
Z

f ±∞
d w/w =

Z1

0

1
f (∞(t ))

f 0(∞(t ))∞0(t )d t =
Z

∞

f 0(z)
f (z)

d z

⇤
Remark 21.4. The argument principle also holds, with the same proof, to any closed path ∞ on which f is
continuous and non-vanishing, provided it has winding number +1 around its inside. Thus for example
it applies to triangles, or paths built from an arc of a circle and the line segments joining the end-points
to the centre of the circle, provided they are correctly oriented.

The argument principle is very useful – we use it here to establish some important results.

Theorem 21.5. (Rouché’s theorem): Suppose that f and g are holomorphic functions on an open set U in
C and B̄(a,r ) ΩU . If | f (z)| > |g (z)| for all z 2 @B(a,r ) then f and f +g have the same change in argument
around ∞, and hence the same number of zeros in B(a,r ) (counted with multiplicities).

Proof. Let ∞(t ) = a + r e2ºi t be a parametrization of the boundary circle of B(a,r ). We need to show
that ( f + g )/ f = 1+ g / f has the same number of zeros as poles (Note that f (z) 6= 0 on @B(a,r ) since
| f (z)| > |g (z)|.) But by the argument principle, this number is the winding number of °(t ) = h(∞(t ))
about zero, where h(z) = 1+ g (z)/ f (z). Since, by assumption, for z 2 ∞§ we have |g (z)| < | f (z)| and so
|g (z)/ f (z)| < 1, the image of ° lies entirely in B(1,1) and thus in the half-plane {z : <(z) > 0}. Hence
picking a branch of Log defined on this half-plane, we see that the integral

Z

°

d z
z

= Log(h(∞(1))°Log(h(∞(0)) = 0
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as required.
⇤

Remark 21.6. Rouche’s theorem can be useful in counting the number of zeros of a function f – one
tries to find an approximation to f whose zeros are easier to count and then by Rouche’s theorem obtain
information about the zeros of f . Just as for the argument principle above, it also holds for closed paths
which having winding number about their inside.

Example 21.7. Suppose that P (z) = z4 +5z +2. Then on the circle |z| = 2, we have |z|4 = 16 > 5.2+2 ∏
|5z +2|, so that if g (z) = 5z +2 we see that P ° g = z4 and P have the same number of roots in B(0,2). It
follows by Rouche’s theorem that the four roots of P (z) all have modulus less than 2. On the other hand,
if we take |z| = 1, then |5z +2|∏ 5°2 = 3 > |z4| = 1, hence P (z) and 5z +2 have the same number of roots
in B(0,1). It follows P (z) has one root of modulus less than 1, and 3 of modulus between 1 and 2.

Theorem 21.8. (Open mapping theorem): Suppose that f : U !C is holomorphic and non-constant on a
domain U . Then for any open set V ΩU the set f (V ) is also open.

Proof. Suppose that w0 2 f (V ), say f (z0) = w0. Then g (z) = f (z) ° w0 has a zero at z0 which, since
f is nonconstant, is isolated. Thus we may find an r > 0 such that g (z) 6= 0 on B̄(z0,r )\{z0} Ω U and
in particular since @B(z0,r ) is compact, we have |g (z)| ∏ ± > 0 on @B(z0,r ). But then if |w ° w0| < ±
it follows |w ° w0| < |g (z)| on @B(z0,r ), hence by Rouche’s theorem, since g (z) has a zero in B(z0,r )
it follows h(z) = g (z)+ (w0 ° w) = f (z)° w does also, that is, f (z) takes the value w in B(z0,r ). Thus
B(w0,±) µ f (B(z0,r )) and hence f (U ) is open as required. ⇤
Remark 21.9. Note that the proof actually establishes a bit more than the statement of the theorem: if
w0 = f (z0) then the multiplicity d of the zero of the function f (z)°w0 at z0 is called the degree of f at z0.
The proof shows that locally the function f is d-to-1, counting multiplicities, that is, there are r,≤ 2 R>0
such that for every w 2 B(w0,≤) the equation f (z) = w has d solutions counted with multiplicity in the
disk B(z0,r ).

Theorem 21.10. (Inverse function theorem): Suppose that f : U !C is injective and holomorphic and that
f 0(z) 6= 0 for all z 2U . If g : f (U ) !U is the inverse of f , then g is holomorphic with g 0(w) = 1/ f 0(g (w)).

Proof. By the open mapping theorem, the function g is continuous, indeed if V is open in f (U ) then
g°1(V ) = f (V ) is open by that theorem. To see that g is holomorphic, fix w0 2 f (U ) and let z0 = g (w0).
Note that since g and f are continuous, if w ! w0 then f (w) ! z0. Writing z = f (w) we have

lim
w!w0

g (w)° g (w0)
w °w0

= lim
z!z0

z ° z0

f (z)° f (z0)
= 1/ f 0(z0)

as required. ⇤
Remark 21.11. Note that the non-trivial part of the proof of the above theorem is the fact that g is con-
tinuous! In fact the condition that f 0(z) 6= 0 follows from the fact that f is bijective – this can be seen
using the degree of f : if f 0(z0) = 0 and f is nonconstant, we must have f (z)° f (z0) = (z ° z0)k g (z) where
g (z0) 6= 0 and k ∏ 1. Since we can chose a holomorphic branch of g 1/k near z0 it follows that f (z) is locally
k-to-1 near z0, which contradicts the injectivity of f . For details see the Appendices. Notice that this is
in contrast with the case of a single real variable, as the example f (x) = x3 shows. Once again, complex
analysis is “nicer” than real analysis!

22. THE RESIDUE THEOREM

We can now prove one of the most useful theorems of the course – it is extremely powerful as a method
for computing integrals, as you will see this course and many others.
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Theorem 22.1. (Residue theorem): Suppose that U is an open set in C and ∞ is a path whose inside is
contained in U , so that for all z ›U we have I (∞, z) = 0. Then if S ΩU is a finite set such that S \∞§ = ;
and f is a holomorphic function on U \S we have

1
2ºi

Z

∞
f (z)d z =

X

a2S
I (∞, a)Resa( f )

Proof. For each a 2 S let Pa( f )(z) = P°1
n=°1 cn(a)(z ° a)n be the principal part of f at a, a holomorphic

function on C\{a}. Then by definition of Pa( f ), the difference f °Pa( f ) is holomorphic at a 2 S, and thus
g (z) = f (z)°P

a2S Pa( f ) is holomorphic on all of U . But then by Theorem 20.11 we see that
R
∞ g (z)d z = 0,

so that Z

∞
f (z)d z =

X

a2S

Z

∞
Pa( f )(z)d z

But by the proof of Theorem 20.17, the series Pa( f ) converges uniformly on ∞§ so that
Z

∞
Pa( f )d z =

Z

∞

°1X

n=°1
cn(a)(z °a)n =

1X

n=1

Z

∞

c°n(a)d z
(z °a)n

=
Z

∞

c°1(a)d z
z °a

= I (∞, a)Resa( f ),

since for n > 1 the function (z °a)°n has a primitive on C\{a}. The result follows. ⇤
Remark 22.2. In practice, in applications of the residue theorem, the winding numbers I (∞, a) will be
simple to compute in terms of the argument of (z °a) – in fact most often they will be 0 or ±1 as we will
usually apply the theorem to integrals around simple closed curves.

22.1. Residue Calculus. The Residue theorem gives us a very powerful technique for computing many
kinds of integrals. In this section we give a number of examples of its application.

Example 22.3. Consider the integral
R2º

0
d t

1+3cos2(t ) . If we let ∞ be the path t 7! ei t and let z = ei t then

cos(t ) =<(z) = 1
2 (z + z̄) = 1

2 (z +1/z). Thus we have

1
1+3cos2(t )

= 1
1+3/4(z +1/z)2 = 1

1+ 3
4 z2 + 3

2 +
3
4 z°2

= 4z2

3+10z2 +3z4 ,

Finally, since d z = i zd t it follows
Z2º

0

d t
1+3cos2(t )

=
Z

∞

°4i z
3+10z2 +3z4 d z.

Thus we have turned our real integral into a contour integral, and to evaluate the contour integral we just
need to calculate the residues of the meromorphic function g (z) = °4i z

3+10z2+3z4 at the poles it has inside
the unit circle. Now the poles of g (z) are the zeros of the polynomial p(z) = 3+10z2 +3z4, which are at
z2 2 {°3,°1/3}. Thus the poles inside the unit circle are at ±i /

p
3. In particular, since p has degree 4 and

has four roots, they must all be simple zeros, and so g has simple poles at these points. The residue at
a simple pole z0 can be calculated as the limit limz!z0 (z ° z0)g (z), thus we see (compare with Remark
19.14) that

Resz=±i /
p

3(g (z)) = lim
z!±i /

p
3

°4i z(z °±i /
p

3)
3+10z2 +3z4 = (±4/

p
3).

1

p 0(±i /
p

3)

= (±4/
p

3).
1

20(±i /
p

3)+12(±i /
p

3)3
= 1/4i .

It now follows from the Residue theorem that
Z2º

0

d t
1+3cos2(t )

= 2ºi
°
Resz=i /

p
3((g (z))+Resz=°i /

p
3(g (z))

¢
=º.
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Remark 22.4. Often we are interested in integrating along a path which is not closed or even finite, for
example, we might wish to understand the integral of a function on the positive real axis. The residue
theorem can still be a power tool in calculating these integrals, provided we complete the path to a closed
one in such a way that we can control the extra contribution to the integral along the part of the path we
add.

Example 22.5. If we have a function f which we wish to integrate over the whole real line (so we have to
treat it as an improper Riemann integral) then we may consider the contours °R given as the concatena-
tion of the paths ∞1 : [°R,R] !C and ∞2 : [0,1] !Cwhere

∞1(t ) =°R + t ; ∞2(t ) = Reiºt .

(so that °R = ∞2?∞1 traces out the boundary of a half-disk). In many cases one can show that
R
∞2

f (z)d z
tends to 0 as R !1, and by calculating the residues inside the contours °R deduce the integral of f on
(°1,1). To see this strategy in action, consider the integral

Z1

0

d x
1+x2 +x4 .

It is easy to check that this integral exists as an improper Riemann integral, and since the integrand is
even, it is equal to

1
2

lim
R!1

ZR

°R

d x
1+x2 +x4 d x.

If f (z) = 1/(1+ z2 + z4), then
R
°R

f (z)d z is equal to 2ºi times the sum of the residues inside the path °R .
The function f (z) = 1/(1+z2+z4) has poles at z2 =±e2ºi /3 and hence at {eºi /3,e2ºi /3,e4ºi /3,e5ºi /3}. They
are all simple poles and of these only {!,!2} are in the upper-half plane, where ! = eiº/3. Thus by the
residue theorem, for all R > 1 we have

Z

°R

f (z)d z = 2ºi
°
Res!( f (z))+Res!2 ( f (z))

¢
,

and we may calculate the residues using the limit formula as above (and the fact that it evaluates to the
reciprocal of the derivative of 1+ z2 + z4): Indeed since !3 = °1 we have Res!( f (z)) = 1

2!+4!3 = 1
2!°4 ,

while Res!2 ( f (z)) = 1
2!2+4!6 = 1

4+2!2 . Thus we obtain:
Z

°R

f (z)d z = 2ºi
° 1

2!°4
+ 1

2!2 +4
)

=ºi
° 1
!°2

+ 1
!2 +2

¢

=ºi
° !2 +!

2(!°!2)°5

¢
=°

p
3º/(°3) =º/

p
3,

(where we used the fact that !2 +!= i
p

3 and !°!2 = 1). Now clearly
Z

°R

f (z)d z =
ZR

°R

d t
1+ t 2 + t 4 +

Z

∞2

f (z)d z,

and by the estimation lemma we have

|
Z

∞2

f (z)d z|∑ sup
z2∞§2

| f (z)|.`(∞2) ∑ ºR
R4 °R2 °1

! 0,

as R !1, it follows that

º/
p

3 = lim
R!1

Z

°R

f (z)d z =
Z1

°1

d t
1+ t 2 + t 4 .
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22.2. Jordan’s Lemma and applications. The following lemma is a real-variable fact which is funda-
mental to something known as convexity. Note that if x, y are vectors in any vector space then the set
{t x + (1° t )y : t 2 [0,1]} describes the line segment between x and y .

Lemma 22.6. Let g : R!R be a twice differentiable function. Then if [a,b] is an interval on which g 00(x) <
0, the function g is convex on [a,b], that is, for x < y 2 [a,b] we have

g (t x + (1° t )y) ∏ t g (x)+ (1° t )g (y), t 2 [0,1].

Thus informally speaking, chords between points on the graph of g lie below the graph itself.

Proof. Given x, y 2 [a,b] and t 2 [0,1] let ª= t x+(1°t )y , a point in the interval between x and y . Now the
slope of the chord between (x, g (x)) and (ª, g (ª)) is, by the Mean Value Theorem, equal to g 0(s1) where
s1 lies between x and ª, while the slope of the chord between (ª, g (ª)) and (y, g (y)) is equal to g 0(s2)
for s2 between ª and y . If g (ª) < t g (x)+ (1° t )g (y) it follows that g 0(s1) < 0 and g 0(s2) > 0. Thus by
the mean value theorem for g 0(x) applied to the points s1 and s2 it follows there is an s 2 (s1, s2) with
g 00(s) = (g 0(s2)° g 0(s1))/(s2 ° s1) > 0, contradicting the assumption that g 00(x) is negative on (a,b). ⇤

The following lemma is an easy application of this convexity result.

Lemma 22.7. (Jordan’s Lemma): Let f : H ! C1 be a meromorphic function on the upper-half plane
H= {z 2C : =(z) > 0}. Suppose that f (z) ! 0 as z !1 inH. Then if ∞R (t ) = Rei t for t 2 [0,º] we have

Z

∞R

f (z)eiÆz d z ! 0

as R !1 for all Æ 2R>0.

Proof. Suppose that ≤ > 0 is given. Then by assumption we may find an S such that for |z| > S we have
| f (z)| < ≤. Thus if R > S and z = ∞R (t ), it follows that

| f (z)eiÆz | =∑ ≤e°ÆR sin(t ).

But now applying Lemma 22.6 to the function g (t ) = sin(t ) with x = 0 and y =º/2 we see that sin(t ) ∏ 2
º t

for t 2 [0,º/2]. Similarly we have sin(º° t ) ∏ 2(º° t )/º for t 2 [º/2,º]. Thus we have

| f (z)eiÆz |∑
Ω

≤.e°2ÆRt/º, t 2 [0,º/2]
≤.e°2ÆR(º°t )/º t 2 [º/2,º]

But then it follows that

|
Z

∞R

f (z)eiÆz d z|∑ 2
Zº/2

0
≤R.e°2ÆRt/ºd t = ≤.º

1°e°ÆR

Æ
< ≤.º/Æ,

Thus since º/Æ> 0 is independent of R, it follows that
R
∞R

f (z)eiÆz d z ! 0 as R !1 as required. ⇤

Remark 22.8. If ¥R is an arc of a semicircle in the upper half plane, say ¥R (t ) = Rei t for 0 ∑ t ∑ 2º/3, then
the same proof shows that

R
¥R

f (z)eiÆz d z tends to zero as R tends to infinity. This is sometimes useful

when integrating around the boudary of a sector of disk (that is a set of the form {r eiµ : 0 ∑ r ∑ R,µ 2
[µ1,µ2]}).

It is also useful to note that if Æ< 0 then the integral of f (z)eiÆz around a semicircle in the lower half
plane tends to zero as the radius of the semicircle tends to infinity provided | f (z)|! 0 as |z|!1 in the
lower half plane. This follows immediately from the above applied to f (°z).

Example 22.9. Consider the integral
R1
°1

sin(x)
x d x. This is an improper integral of an even function, thus

it exists if and only if the limit of
RR
°R

sin(x)
x d x exists as R !1. To compute this consider the integral along

the closed curve ¥R given by the concatenation ¥R = ∫R ?∞R , where ∫R : [°R,R] ! R given by ∫R (t ) = t
and ∞R (t ) = Rei t (where t 2 [0,º]). Now if we let f (z) = ei z°1

z , then f has a removable singularity at z = 0
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(as is easily seen by considering the power series expansion of ei z ) and so is an entire function. Thus we
have

R
¥R

f (z)d z = 0 for all R > 0. Thus we have

0 =
Z

¥R

f (z)d z =
ZR

°R
f (t )d t +

Z

∞R

ei z

z
d z °

Z

∞R

d z
z

.

Now Jordan’s lemma ensures that the second term on the right tends to zero as R !1, while the third
term integrates to

Rº
0

i Rei t

Rei t d t = iº. It follows that
RR
°R f (t )d t tends to iº as R ! 1. and hence taking

imaginary parts we conclude the improper integral
R1
°1

sin(x)
x d x is equal to º.

Remark 22.10. The function f (z) = ei z°1
z might not have been the first meromorphic function one could

have thought of when presented with the previous improper integral. A more natural candidate might
have been g (z) = ei z

z . There is an obvious problem with this choice however, which is that it has a pole
on the contour we wish to integrate around. In the case where the pole is simple (as it is for ei z /z) there
is standard procedure for modifying the contour: one indents it by a small circular arc around the pole.
Explicitly, we replace the ∫R with ∫°R ?∞≤?∫

+
R where ∫±R (t ) = t and t 2 [°R,°≤] for ∫°R , and t 2 [≤,R] for ∫+R

(and as above ∞≤(t ) = ≤ei (º°t ) for t 2 [0,º]). Since sin(x)
x is bounded at x = 0 the sum

Z°≤

°R

sin(x)
x

d x +
ZR

≤

sin(x)
x

d x !
ZR

°R

sin(x)
x

d x,

as ≤! 0, while the integral along ∞≤ can be computed explicitly: by the Taylor expansion of ei z we see that
Resz=0

ei z

z = 1, so that ei z °1/z is bounded near 0. It follows that as ≤! 0 we have
R
∞≤

(ei z /z °1/z)d z ! 0.

On the other hand
R
∞≤

d z/z =
R0
°º(°≤i ei (º°t ))/(ei (º°t )d t =°iº, so that we see

Z

∞≤

ei z

z
d z !°iº

as ≤! 0.
Combining all of this we conclude that if °≤ = ∫°R ?∞≤?∫

+
R ?∞R then

0 =
Z

°≤
f (z)d z =

Z°≤

°R

ei x

x
d x +

Z

∞≤

ei z

z
d z +

ZR

≤

ei x

x
d x +

Z

∞R

ei z

z
d z.

= 2i
ZR

≤

sin(x)
x

+
Z

∞≤

ei z

z
+

Z

∞R

ei z

z
d z

! 2i
ZR

0

sin(x)
x

d x ° iº+
Z

∞R

ei z

z
d z.

as ≤! 0. Then letting R !1, it follows from Jordans Lemma that the third term tends to zero so we see
that Z1

°1

sin(x)
x

d x = 2
Z1

0

sin(x)
x

d x =º

as required.

We record a general version of the calculation we made for the contribution of the indentation to a
contour in the following Lemma.

Lemma 22.11. Let f : U !C be a meromorphic function with a simple pole at a 2U and let ∞≤ : [Æ,Ø] !C

be the path ∞≤(t ) = a +≤ei t , then

lim
≤!0

Z

∞≤
f (z)d z = Resa( f ).(Ø°Æ)i .
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Proof. Since f has a simple pole at a, we may write

f (z) = c
z °a

+ g (z)

where g (z) is holomorphic near z and c = Resa( f ) (indeed c/(z°a) is just the principal part of f at a). But
now as g is holomorphic at a, it is continuous at a, and so bounded. Let M ,r > 0 be such that |g (z)| < M
for all z 2 B(a,r ). Then if 0 < ≤< r we have

|
Z

∞≤
g (z)d z|∑ `(∞≤)M = (Ø°Æ)≤.M ,

which clearly tends to zero as ≤! 0. On the other hand, we have
Z

∞≤

c
z °a

d z =
ZØ

Æ

c

≤ei t
i≤ei t d t =

ZØ

Æ
(i c)d t = i c(Ø°Æ).

Since
R
∞≤

f (z)d z =
R
∞≤

c/(z °a)d z +
R
∞≤

g (z)d z the result follows. ⇤

22.3. On the computation of residues and principal parts. The previous examples will hopefully have
convinced you of the power of the residue theorem. Of course for it to be useful one needs to be able to
calculate the residues of functions with isolated singularities. In practice the integral formulas we have
obtained for the residue are often not the best way to do this. In this section we discuss a more direct
approach which is often useful when one wishes to calculate the residue of a function which is given as
the ratio of two holomorphic functions.

More precisely, suppose that we have a function F : U ! C given to us as a ratio f /g of two holomor-
phic functions f , g on U where g is non-constant. The singularities of the function F are therefore poles
which are located precisely at the (isolated) zeros of the function g , so that F is meromorphic. For con-
venience, we assume that we have translated the plane so as to ensure the pole of F we are interested in
is at a = 0. Let g (z) =P

n∏0 cn zn be the power series for g , which will converge to g (z) on any B(0,r ) such
that B̄(0,r ) µU . Since g (0) = 0, and this zero is isolated, there is a k > 0 minimal with ck 6= 0, and hence

g (z) = ck zk (1+
X

n∏1
an zn),

where an = cn+k /ck . Now if we let h(z) =P1
n=1 an zn°1 then h(z) is holomorphic in B(0,r ) – since h(z) =

(g (z)° ck zk )/(ck zk+1) – and moreover

1
g (z)

= 1

ck zk

°
1+ zh(z)

¢°1,

Now as h is continuous, it is bounded on B̄(0,r ), say |h(z)| < M for all z 2 B̄(0,r ). But then we have, for
|z|∑ ±= min{r,1/(2M)},

1
g (z)

= 1

ck zk

° 1X

n=0
(°1)n znh(z)n¢

,

where by the Weierstrass M-test, the above series converges uniformly on B̄(0,±). Moreover, for any n,
the series

P
m∏n(°1)m zmh(z)m is a holomorphic function which vanishes to order at least n at z = 0,

so that 1
ck zk

P
n∏k (°1)n znh(z)n is holmorphic. It follows that the principal part of the Laurent series of

1/g (z) is equal to the principal part of the function

1

ck zk

kX

n=1
(°1)k°1zk h(z)k .

Since we know the power series for h(z), this allows us to compute the principal part of 1
g (z) as claimed.

Finally, the principal part P0(F ) of F = f /g at z = 0 is just the P0( f .P0(g )), the principal part of the func-
tion f (z).P0(g ), which again is straight-forward to compute if we know the power series expansion of
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f (z) at 0 (indeed we only need the first k terms of it). The best way to digest this analysis is by means of
examples. We consider one next, and will examine another in the next section on summation of series.

Example 22.12. Consider f (z) = 1/(z2 sinh(z)3). Now sinh(z) = (ez ° e°z )/2 vanishes on ºiZ, and these
zeros are all simple since d

d z (sinh(z)) = cosh(z) has cosh(nºi ) = (°1)n 6= 0. Thus f (z) has a pole or order 5
at zero, and poles of order 3 atºi n for each n 2Z\{0}. Let us calculate the principal part of f at z = 0 using
the above technique. We will write O(zk ) for the vector space of holomorphic functions which vanish to
order k at 0.

z2 sinh(z)3 = z2(z + z3

3!
+ z5

5!
+O(z7))3 = z5(1+ z2

3!
+ z4

5!
+O(z6))3

= z5(1+ 3z2

3!
+ 3z4

(3!)2 + 3z4

5!
+O(z6))

= z5(1+ z2

2
+ 13z4

120
+O(z6))

= z5
µ
1+ z

° z
2
+ 13z3

120
+O(z5)

¢∂

Thus, in the notation of the above discussion, h(z) = z
2 + 13z3

120 +O(z5), and so, as h vanishes to first order
at z = 0, in order to obtain the principal part we just need to consider the first two terms in the geometric
series (1+ zh(z))°1 =P1

n=0(°1)n znh(z)n :

1/z2 sinh(z)3 = z°5°1+ z(
z
2
+ 13z3

120
+O(z5))

¢°1

= z°5°1° z(
z
2
+ 13z3

120
)+ z2 z2

(2!)2 +O(z5)
¢

= z°5°1° z2

2
+ (

1
4
° 13

120
)z4 +O(z5)

¢

= 1
z5 ° 1

2z3 + 17
120z

+O(z).

Thus the principal part of f (z) at 0 is P0( f ) = 1
z5 ° 1

2z3 + 17
120z , and Res0( f ) = 17/120.

There are other variants on the above method which we could have used: For example, by the binomial
theorem for an arbitrary exponent we know that if |z| < 1 then (1+ z)°3 =P

n∏0
°°3

n

¢
zn = 1°3z +6z2 + . . ..

Arguing as above, it follows that for small enough z we have

sinh(z)°3 = z°3.(1+ z2

3!
+ z4

5!
+O(z6))°3

= z°3
µ
1+ (°3)

° z2

3!
+ z4

5!

¢
+6

° z2

3!
+ z4

5!

¢2 +O(z6)
∂

= z°3
µ
1° z2

2
+

°°3
5!

+ 6
(3!)2

¢
z4 +O(z6)

∂

= z°3
µ
1° z2

2
+ 17z4

120
+O(z6)

∂

yielding the same result for the principal part of 1/z2 sinh(z)3.

22.4. Summation of infinite series. Residue calculus can also be a useful tool in calculating infinite
sums, as we now show. For this we use the function f (z) = cot(ºz). Note that since sin(ºz) vanishes
precisely at the integers, f (z) is meromorphic with poles at each integer n 2 Z. Moreover, since f is
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periodic with period 1, in order to understand the poles of f it suffices to calculate the principal part of
f at z = 0. We can use the method of the previous section to do this:

We have sin(z) = z ° z3

3! +
z5

5! +O(z7), so that sin(z) vanishes with multiplicity 1 at z = 0 and we may
write sin(z) = z(1° zh(z)) where h(z) = z/3!° z3/5!+O(z5) is holomorphic at z = 0. Then

1
sin(z)

= 1
z

(1° zh(z))°1 = 1
z

°
1+

X

n∏1
znh(z)n¢

= 1
z
+h(z)+O(z2).

Multiplying by cos(z) we see that the principal part of cot(z) is the same as that of 1
z cos(z) which, using

the Taylor expansion of cos(z), is clearly 1
z again. By periodicity, it follows that cot(ºz) has a simple pole

with residue 1/º at each integer n 2Z.
We can also use this strategy50 to find further terms of the Laurent series of cot(z): Since our h(z)

actually vanishes at z = 0, the terms h(z)n zn vanish to order 2n. It follows that we obtain all the terms
of the Laurent series of cot(z) at 0 up to order 3, say, just by considering the first two terms of the series
1+P

n∏1 znh(z)n , that is, 1+ zh(z). Since cos(z) = 1° z2/2!+ z4/4!, it follows that cot(z) has a Laurent
series

cot(z) = (1° z2

2!
+O(z4)).

°1
z
+ (

z
3!

° z3

5!
+O(z5))

¢

= 1
z
° z

3
+O(z3)

The fact that f (z) has simple poles at each integer will allow us to sum infinite series with the help of the
following:

Lemma 22.13. Let f (z) = cot(ºz) and let °N denotes the square path with vertices (N +1/2)(±1±i ). There
is a constant C independent of N such that | f (z)|∑C for all z 2 °§N .

Proof. We need to consider the horizontal and vertical sides of the square separately. Note that cot(ºz) =
(eiºz +e°iºz )/(eiºz °e°iºz ). Thus on the horizontal sides of °N where z = x±(N +1/2)i and °(N +1/2) ∑
x ∑ (N +1/2) we have

|cot(ºz)| =
ØØØØ

eiº(x±(N+1/2)i ) +e°iº(x±(N+1/2)i )

eiº(x±(N+1/2)i °e°iº(x±(N+1/2)i )

ØØØØ

∑ eº(N+1/2) +e°º(N+1/2)

eº(N+1/2) °e°º(N+1/2)

= coth(º(N +1/2)).

Now since coth(x) is a decreasing function for x ∏ 0 it follows that on the horizontal sides of °N we have
|cot(ºz)|∑ coth(3º/2).

On the vertical sides we have z = ±(N + 1/2) + i y , where °N ° 1/2 ∑ y ∑ N + 1/2. Observing that
cot(z +Nº) = cot(z) for any integer N and that cot(z +º/2) =° tan(z), we find that if z =±(N +1/2)+ i y
for any y 2R then

|cot(ºz)| = |° tan(i y)| = |° tanh(y)|∑ 1.

Thus we may set C = max{1,coth(3º/2)}. ⇤

We now show how this can be used to sum an infinite series:

Example 22.14. Let g (z) = cot(ºz)/z2. By our discussion of the poles of cot(ºz) above it follows that g (z)
has simple poles with residues 1

ºn2 at each non-zero integer n and residue °º/3 at z = 0.

50See Appendix II for more details on the generalities and justification of this method.
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Consider now the integral of g (z) around the paths °N : By Lemma 22.13 we know |g (z)| ∑ C /|z|2 for
z 2 °§N , and for all N ∏ 1. Thus by the estimation lemma we see that

µZ

°N

g (z)d z
∂
∑C .(4N +2)/(N +1/2)2 ! 0,

as N !1. But by the residue theorem we know that
Z

°N

g (z)d z =°º/3+
X

n 6=0,
°N∑n∑N

1
ºn2 .

It therefore follows that
1X

n=1

1
n2 =º2/6

Remark 22.15. Notice that the contours °N and the function cot(ºz) clearly allows us to sum other infi-
nite series in a similar way – for example if we wished to calculate the sum of the infinite series

P
n∏1

1
n2+1

then we would consider the integrals of g (z) = cot(ºz)/(1+ z2) over the contours °N .

Remark 22.16. (Non-examinable – for interest only!): Note that taking g (z) = (1/z2k )cot(ºz) for any pos-
itive integer k, the above strategy gives a method for computing

P1
n=1 1/n2k (check that you see why we

need to take even powers of n). The analysis for the case k = 1 goes through in general, we just need to
compute more and more of the Laurent series of cot(ºz) the larger we take k to be.

One can show that ≥(s) =P1
n=1 1/ns converges to a holomorphic function of s for any s 2Cwith <(s) >

1 (as usual, we define ns = exp(s. log(n)) where log is the ordinary real logarithm). As s ! 1 it can be
checked that ≥(s) !1, however it can be shown that ≥(s) extends to a meromorphic function on all of
C\{1}. The identity theorem shows that this extension is unique if it exists51. (This uniqueness is known
as the principle of “analytic continuation”.) The location of the zeros of the ≥-function is the famous
Riemann hypothesis: apart from the “trivial zeros” at negative even integers, they are conjectured to all
lie on the line <(z) = 1/2. Its values at special points however are also of interest: Euler was the first to
calculate ≥(2k) for positive integers k, but the values ≥(2k+1) (for k a positive integer) remain mysterious
– it was only shown in 1978 by Roger Apéry that ≥(3) is irrational for example. Our analysis above is
sufficient to determine ≥(2k) once one succeeds in computing explicitly the Laurent series for cot(ºz) or
equivalently the Taylor series of z cot(ºz) = i z +2i z/(e2i z °1). See Appendix IV for more details.

22.5. Keyhole contours. There are many ingenious paths which can be used to calculate integrals via
residue theory. One common contour is known (for obvious reasons) as a keyhole contour. It is con-
structed from two circular paths of radius ≤ and R, where we let R become arbitrarily large, and ≤ arbi-
trarily small, and we join the two circles by line segments with a narrow neck in between. Explicitly, if
0 < ≤< R are given, pick a ±> 0 small, and set ¥+(t ) = t +i±, ¥°(t ) = (R° t )°i±, where in each case t runs
over the closed intervals with endpoints such that the endpoints of ¥± lie on the circles of radius ≤ and
R about the origin. Let ∞R be the positively oriented path on the circle of radius R joining the endpoints
of ¥+ and ¥° on that circle (thus traversing the “long” arc of the circle between the two points) and sim-
ilarly let ∞≤ the path on the circle of radius ≤ which is negatively oriented and joins the endpoints of ∞±
on the circle of radius ≤. Then we set °R,≤ = ¥+?∞R ?¥°?∞≤ (see Figure 5). The keyhole contour can
sometimes be useful to evaluate real integrals where the integrand is multi-valued as a function on the
complex plane, as the next example shows:

Example 22.17. Consider the integral
R1

0
x1/2

1+x2 d x. Let f (z) = z1/2/(1+z2), where we use the branch of the
square root function which is continuous onC\R>0, that is, if z = r ei t with t 2 [0,2º) then z1/2 = r 1/2ei t/2.

51It is this uniqueness and the fact that one can readily compute that ≥(°1) = °1/12 that results in the rather outrageous
formula

P1
n=1 n =°1/12.

82



FIGURE 5. A keyhole contour.

We use the keyhole contour °R,≤. On the circle of radius R, we have | f (z)| ∑ R1/2/(R2 °1), so by the
estimation lemma, this contribution to the integral of f over °R,≤ tends to zero as R !1. Similarly, | f (z)|
is bounded by ≤1/2/(1°≤2) on the circle of radius ≤, thus again by the estimation lemma this contribution
to the integral of f over °R,≤ tends to zero as ≤! 0. Finally, the discontinuity of our branch of z1/2 on
R>0 ensures that the contributions of the two line segments of the contour do not cancel but rather both
tend to

R1
0

x1/2

1+x2 d x as ± and ≤ tend to zero.

To compute
R1

0
x1/2

1+x2 d x we evaluate the integral
R
°R,≤

f (z)d z using the residue theorem: The function

f (z) clearly has simple poles at z =±i , and their residues are 1
2 e°ºi /4 and 1

2 e5ºi /4 respectively. It follows
that Z

°R,≤

f (z)d z = 2ºi
µ

1
2

e°ºi /4 + 1
2

e5ºi /4
∂
=º

p
2.

Taking the limit as R !1 and ≤! 0 we see that 2
R1

0
x1/2

1+x2 d x =º
p

2, so that
Z1

0

x1/2d x
1+x2 = º

p
2

.
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