
23. CONFORMAL TRANSFORMATIONS

Another important feature of the stereographic projection map is that it is conformal, meaning that it
preserves angles. The following definition helps us to formalize what this means:

Definition 23.1. If ∞ : [°1,1] ! C is a C 1 path which has ∞0(t ) 6= 0 for all t , then we say that the line
{∞(t )+ s∞0(t ) : s 2R} is the tangent line to ∞ at ∞(t ), and the vector ∞0(t ) is a tangent vector at ∞(t ) 2C.

Remark 23.2. Note that this definition gives us a notion of tangent vectors at points on subsets of Rn ,
since the notion of a C 1 path extends readily to paths in Rn (we just require all n component functions
are continuously differentiable). In particular, if S is the unit sphere in R

3 as above, a C 1 path on S

is simply a path ∞ : [a,b] ! R
3 whose image lies in S. It is easy to check that the tangent vectors at a

point p 2 S all lie in the plane perpendicular to p – simply differentiate the identity f (∞(t )) = 1 where
f (x, y, z) = x2 + y2 + z2 using the chain rule.

We can now state what we mean by a conformal map:

Definition 23.3. Let U be an open subset of C and suppose that T : U !C (or S) is continuously differ-
entiable in the real sense (so all its partial derivatives exist and are continuous). If ∞1,∞2 : [°1,1] !U are
two paths with z0 = ∞1(0) = ∞2(0) then ∞01(0) and ∞02(0) are two tangent vectors at z0, and we may consider
the angle between them (formally speaking this is the difference of their arguments). By our assumption
on T , the compositions T ±∞1 and T ±∞2 are C 1-paths through T (z0), thus we obtain a pair of tangent
vectors at T (z0). We say that T is conformal at z0 if for every pair of C 1 paths ∞1,∞2 through z0, the angle
between their tangent vectors at z0 is equal to the angle between the tangent vectors at T (z0) given by
the C 1 paths T ±∞1 and T ±∞2. We say that T is conformal on U if it is conformal at every z 2U .

One of the main reasons we focus on conformal maps here is because holomorphic functions give us
a way of producing many examples of them, as the following result shows.

Proposition 23.4. Let f : U ! C be a holomorphic map and let z0 2U be such that f 0(z0) 6= 0. Then f is
conformal at z0. In particular, if f : U ! C is has nonvanishing derivative on all of U , it is conformal on
all of U (and locally a biholomorphism).

Proof. We need to show that f preserves angles at z0. Let ∞1 and ∞2 be C 1-paths with ∞1(0) = ∞2(0) = z0.
Then we obtain paths ¥1,¥2 through f (z0) where ¥1(t ) = f (∞1(t )) and ¥2(t ) = f (∞2(t )). By the Chain Rule
(see Lemma 26.7) we see that ¥01(t ) = D fz0 (∞01(t )) and ¥02(t ) = D fz0 (∞02(t )), and moreover if f 0(z0) = Ω.eiµ,
then

D fz0 = Ω.
µ
cos(µ) sin(µ)
sin(µ) °cos(µ)

∂
,

(since the linear map given by multiplication by f 0(z0) is precisely scaling by Ω and rotating by µ). It
follows that if ¡1 and ¡2 are the arguments of ∞01(0) and ∞02(0), then the arguments of ¥01(0) and ¥02(0) are
¡1 +µ and ¡2 +µ respectively. It follows that the difference between the two pairs of arguments, that is,
the angles between the curves at z0 and f (z0), are the same.

For the final part, note that if f 0(z0) 6= 0 then by the definition of the degree of vanishing, the function
f (z) is locally biholomorphic (see the proof of the inverse function theorem). ⇤

Example 23.5. The function f (z) = z2 has f 0(z) nonzero everywhere except the origin. It follows f is
a conformal map from C

£ to itself. Note that the condition that f 0(z) is non-zero is necessary – if we
consider the function f (z) = z2 at z = 0, f 0(z) = 2z which vanishes precisely at z = 0, and it is easy to
check that at the origin f in fact doubles the angles between tangent vectors.

Lemma 23.6. The sterographic projection map S : C!S is conformal.
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Proof. Let z0 be a point inC, and suppose that ∞1(t ) = z0+ t v1 and ∞2(t ) = z0+ t v2 are two paths52 having
tangents v1 and v2 at z0 = ∞1(0) = ∞2(0). Then the lines L1 and L2 they describe, together with the point N ,
determine planes H1 and H2 in R3, and moreover the image of the lines under stereographic projection
is the intersection of these planes with S. Since the intersection of S with any plane is either empty or a
circle, it follows that the paths ∞1 and ∞2 get sent to two circles C1 and C2 passing through P = S(z0) and
N . Now by symmetry, these circles meet at the same angle at N as they do at P . Now the tangent lines of
C1 and C2 at N are just the intersections of H1 and H2 with the plane tangent to S at N . But this means
the angle between them will be the same as that between the intersection of H1 and H2 with the complex
plane, since it is parallel to the tangent plane of S at N . Thus the angles between C1 and C2 at P and L1
and L2 at z0 coincide as required. ⇤

Although it follows easily from what we have already done, it is worth high-lighting the following:

Lemma 23.7. Mobius transformations are conformal.

Proof. As we have already shown, any holomorphic map is conformal wherever its derivative is nonzero.
Since a Mobius transformation f is invertible everywhere with holomorphic inverse, its derivative must
be nonzero everywhere and we are done.

One can also give a more explicit proof: If f (z) = az+b
cz+d then it is easy to check that

f 0(z) = ad °bc
(cz +d)2 6= 0,

for all z 6=°d/c, thus f is conformal at each z 2 C\{°d/c}. Checking at z =1,°d/c is similar: indeed at
1= [1 : 0] we use the map i1 : C!P

1 given by w 7! [1 : w] to obtain f1(w) = a+bw
c+d w and f 0

1(w) = bc°ad
(c+d w)2 ,

which is certainly nonzero at w = 0 (and i1(0) =1). ⇤

Since a Mobius map is given by the four entries of a 2£ 2 matrix, up to simultaneus rescaling, the
following result is perhaps not too surprising.

Proposition 23.8. If z1, z2, z3 and w1, w2, w3 are triples of pairwise distinct complex numbers, then there
is a unique Mobius transformation f such that f (zi ) = wi for each i = 1,2,3.

Proof. It is enough to show that, given any triple (z1, z2, z3) of complex numbers, we can find a Mobius
transformations which takes z1, z2, z3 to 0,1,1 respectively. Indeed if f1 is such a transformation, and f2
takes 0,1,1 to w1, w2, w3 respectively, then clearly f2 ± f °1

1 is a Mobius transformation which takes zi to
wi for each i .

Now consider

f (z) = (z ° z1)(z2 ° z3)
(z ° z3)(z2 ° z1)

It is easy to check that f (z1) = 0, f (z2) = 1, f (z3) = 1, and clearly f is a Mobius transformation as re-
quired. If any of z1, z2 or z3 is 1, then one can find a similar transformation (for example by letting
zi !1 in the above formula). Indeed if z1 =1 then we set f (z) = z2°z3

z°z3
; if z2 =1, we take f (z) = z°z1

z°z3
;

and finally if z3 =1 take f (z) = z°z1
z2°z1

.
To see the f is unique, suppose f1 and f2 both took z1, z2, z3 to w1, w2, w3. Then taking Mobius

transformations g ,h sending z1, z2, z3 and w1, w2, w3 to 0,1,1 the transformations h f1g°1 and h f2g°1

both take (0,1,1) to (0,1,1). But suppose T (z) = az+b
cz+d is any Mobius transformation with T (0) = 0,

T (1) = 1 and T (1) = 1. Since T fixes 1 it follows c = 0. Since T (0) = 0 it follows that b/d = 0 hence
b = 0, thus T (z) = a/d .z, and since T (1) = 1 it follows a/d = 1 and hence T (z) = z. Thus we see that
h f1g°1 = h f2g°1 = id are all the identity, and so f1 = f2 as required. ⇤

52with domain [°1,1] say – or even the whole real line, except that it is non-compact.
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Example 23.9. The above lemma shows that we can use Mobius transformations as a source of confor-
mal maps. For example, suppose we wish to find a conformal transformation which takes the upper half
plane H= {z 2 C : =(z) > 0} to the unit disk B(0,1). The boundary of H is the real line, and we know Mo-
bius transformations take lines to lines or circles, and in the latter case this means the point 12 C1 is
sent to a finite complex number. Now any circle is uniquely determined by three points lying on it, and
we know Mobius transformations allow us to take any three points to any other three points. Thus if we
take f the Mobius map which sends 0 7! °i , and 1 7! 1, 1 7! i the real axis will be sent to the unit circle.
Now we have

f (z) = i z +1
z + i

(one can find f in a similar fashion to the proof of Proposition 23.8).
So far, we have found a Mobius transformation which takes the real line to the unit circle. Since C\R

has two connected components, the upper and lower half planes, H and iH, and similarly C\S1 has two
connected components, B(0,1) and C\B̄(0,1). Since a Mobius transformation is continuous, it maps
connected sets to connected sets, thus to check whether f (H) = B(0,1) it is enough to know which com-
ponent of C\S1 a single point in H is sent to. But f (i ) = 0 2 B(0,1), so we must have f (H) = B(0,1) as
required.

Note that if we had taken g (z) = (z+i )/(i z+1) for example, then g also mapsR to the unit circleS1, but
g (°i ) = 0, so53 g maps the lower half plane to B(0,1). If we had used this transformation, then it would
be easy to “correct” it to get what we wanted: In fact there are (at least) two simple things one could do:
First, one could note that the map R(z) = °z (a rotation by º) sends the upper half plane to the lower
half place, so that the composition g ±R is a Mobius transformation takingH to B(0,1). Alternatively, the
inversion j (z) = 1/z sends C\B̄(0,1) to B(0,1), so that j ± g also sendsH to B(0,1). Explicitly, we have

g ±R(z) = z ° i
i z °1

= °i (i z +1)
i (z + i )

=° f (z), j ± g (z) = i z +1
z + i

= f (z).

Note in particular that f is far from unique – indeed if f is any Mobius transformation which takes H to
B(0,1) then composing it with any Mobius transformation which preserves B(0,1) will give another such
map. Thus for example eiµ. f will be another such transformation.

Exercise 23.10. Every Mobius transformation gives a biholomorphic map from C1 to itself, but they
may not preserve the distance function dS on P1. What is the subgroup of Mob which are isometries of
P

1 with respect to the distance function dS?

Given two domains D1,D2 in the complex plane, one can ask if there is a conformal transformation
f : D1 ! D2. Since a conformal transformation is in particular a homeomorphism, this is clearly not
possible for completely arbitrary domains. However if we restrict to simply-connected domains (that
is, domains in which any path can be continuously deformed to any other path with the same end-
points), the following remarkable theorem shows that the answer to this question is yes! Since it will play
a distinguished role later, we will write D for the unit disc B(0,1).

Theorem 23.11. (Riemann’s mapping theorem): Let U be an open connected and simply-connected proper
subset of C. Then for any z0 2U there is a unique bijective conformal transformation f : U !D such that
f (z0) = 0, f 0(z0) > 0.

Remark 23.12. The proof of this theorem is beyond the scope of this course, but it is a beautiful and
fundamental result. The proof in fact only uses the fact that on a simply-connected domain any holo-
morphic function has a primitive, and hence it in fact shows that such domains are simply-connected in
the topological sense (since a conformal transformation is in particular a homeomorphism, and the disc

53A Mobius map is a continuous function on C1, and if we remove a circle from C1 the complement is a disjoint union
of two connected components, just the same as when we remove a line or a circle from the plane, thus the connectedness
argument works just as well when we include the point at infinity.
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in simply-connected). It relies crucially on Montel’s theorem on families of holomorphic functions, see
for example the text of Shakarchi and Stein54 for an exposition of the argument.

Note that it follows immediately from Liouville’s theorem that there can be no bijective conformal
transformation taking C to B(0,1), so the whole complex plane is indeed an exception. The uniqueness
statement of the theorem reduces to the question of understanding the conformal transformations of
the disk D to itself.

Of course knowing that a conformal transformation between two domains D1 and D2 exists still leaves
the challenge of constructing one. As we will see in the next section on harmonic maps, this is an impor-
tant question. In simple cases one can often do so by hand, as we now show.

In addition to Mobius transformations, it is often useful to use the exponential function and branches
of the multifunction [zÆ] (away from the origin) when constructing conformal maps. We give an example
of the kind of constructions one can do:

Example 23.13. Let D1 = B(0,1) and D2 = {z 2C : |z| < 1,=(z) > 0}. Since these domains are both convex,
they are simply-connected, so Riemann’s mapping theorem ensure that there is a conformal map send-
ing D2 to D1. To construct such a map, note that the domain is defined by the two curves ∞(0,1) and the
real axis. It can be convenient to map the two points of intersection of these curves, ±1 to 0 and 1. We
can readily do this with a Mobius transformation:

f (z) = z °1
z +1

,

Now since f is a Mobius transformation, it follows that f1(R) and f1(∞(0,1)) are lines (since they contain
1) passing through the origin. Indeed f (R) = R, and since f had inverse f °1 = z+1

z°1 it follows that the
image of ∞(0,1) is {w 2C : |w°1| = |w+1|}, that is, the imaginary axis. Since f (i /2) = (°3+4i )/5 it follows
by connectedness that f (D1) is the second quadrant Q = {w 2C : <(z) < 0,=(z) > 0}.

Now the squaring map s : C! C given by z 7! z2 maps Q bijectively to the half-plane H = {w 2 C :
=(w) < 0}, and is conformal except at z = 0 (which is on the boundary, not in the interior, of Q). We may
then use a Mobius map to take this half-plane to the unit disc: indeed in Example 23.9 we have already
seen that the Mobius transformation g (z) = z+i

i z+1 takes the lower-half plane to the upper-half plane.
Putting everything together, we see that F = g ± s ± f is a conformal transformation taking D1 to D2 as

required. Calculating explicitly we find that

F (z) = i
µ

z2 +2i z +1
z2 °2i z +1

∂

Remark 23.14. Note that there are couple of general principles one should keep in mind when construct-
ing conformal transformations between two domains D1 and D2. Often if the boundary of D1 has dis-
tinguished points (such as ±1 in the above example) it is convenient to move these to “standard” points
such as 0 and 1, which one can do with a Mobius transformation. The fact that Mobius transformations
are three-transitive and takes lines and circles to lines and circles and moreover act transitively on such
means that we can always use Mobius transformations to match up those parts of the boundary of D1
and D2 given by line segments or arcs of circles. However these will not be sufficient in general: indeed in
the above example, the fact that the boundary of D1 is a union of a semicircle and a line segment, while
that of D2 is just a circle implies there is no Mobius transformation taking D1 to D2, as it would have to
take @D1 to @D2, which would mean that its inverse would not take the unit circle to either a line or a
circle. Branches of fractional power maps [zÆ] are often useful as they allow us to change the angle at the
points of intersection of arcs of the boundary (being conformal on the interior of the domain but not on
its boundary).

54Complex Analysis, Princeton Lecture in Analysis II, E. M. Stein & R. Shakarchi. P.U.P.
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23.1. Conformal transformations and the Laplace equation. In this section we will use the term con-
formal map or conformal transformation somewhat abusively to mean a holomorphic function whose
derivative is nowhere vanishing on its domain of definition. (We have seen already that this implies the
function is conformal in the sense of the previous section.) If there is a bijective conformal transforma-
tion between two domains U and V we say they are conformally equivalent.

Recall that a function v : R2 ! R is said to be harmonic if it is twice differentiable and @2
x v + @2

y v =
0. Often one seeks to find solutions to this equation on a domain U Ω R2 where we specify the values
of v on the boundary @U of U . This problem is known as the Dirichlet problem, and makes sense in
any dimension (using the appropriate Laplacian). In dimension 2, complex analysis and in particular
conformal maps are a powerful tool by which one can study this problem, as the following lemma show.

Lemma 23.15. Suppose that U ΩC is a simply-connected open subset of C and v : U ! R is twice contin-
uously differentiable and harmonic. Then there is a holomorphic function f : U ! C such that <( f ) = v.
In particular, any such function v is analytic.

Proof. (Sketch): Consider the function g (z) = @x v ° i@y v . Then since v is twice continuously differen-
tiable, the partial derivatives of g are continuous and

@2
x v =°@2

y v ; @y@x v = @x@y v,

so that g satisfies the Cauchy-Riemann equations. It follows from Theorem 14.9 that g is holomorphic.
Now since U is simply-connected, it follows that g has a primitive G : U ! C. But then it follows that if
G = a(z)+ i b(z) we have @zG = @x a ° i@y a = g (z) = @x v ° i@y v , hence the partial derivatives of a and v
agree on all of U . But then if z0, z 2U and ∞ is a path between then, the chain rule55 shows that

<
µZ

∞
(@x v ° i@y v)d z

∂
=<

µZ1

0
(@x (v(∞(t ))° i@y v(∞(t )))∞0(t )d t

∂

=
Z1

0

d
d t

(v(∞(t )))d t = v(z)° v(z0),

Similarly, we see that the same path integral is also equal to a(z)° a(z0). It follows that a(z) = v(z)+
(a(z0)° v(z0)), thus if we set f (z) =G(z)° (G(z0)° v(z0)) we obtain a holomorphic function on U whose
real part is equal to v as required.

Since we know that any holomorphic function is analytic, it follows that v is analytic (and in particular,
infinitely differentiable). ⇤

The previous Lemma shows that, at least locally (in a disk say) harmonic functions and holomorphic
functions are in correspondence – given a holomorphic function f we obtain a harmonic function by
taking its real part, while if u is harmonic the previous lemma shows we can associate to it a holomorphic
function f whose real part equals u (and in fact examining the proof, we see that f is actually unique up
to a purely imaginary constant). Thus if we are seeking a harmonic function on an open set U whose
values are a given function g on @U , then it suffices to find a holomorphic function f on U such that
<( f ) = g on the boundary @U .

Now if H : U ! V was a bijective conformal transformation which extends to a homeomorphism
H̄ : Ū ! V̄ which thus takes @U homeomorphically to @V , then if f : V ! C is holomorphic, so is f ±H .
Thus in particular <( f ± H) is a harmonic function on U . It follows that we can use conformal trans-
formations to transport solutions of Laplace’s equation from one domain to another: if we can use a
conformal transformation H to take a domain U to a domain V where we already have a supply of holo-
morphic functions satisfying various boundary conditions, the conformal transformation H gives us a

55This uses the chain rule for a composition g ± f of real-differentiable functions f : R! R
2 and g : R2 ! R, applied to the

real and imaginary parts of the integrand. This follows in exactly the same way as the proof of Lemma 26.7. See the remark after
the proof of that lemma.
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corresponding set of holomorphic (and hence harmonic) functions on U . We state this a bit more for-
mally as follow:

Lemma 23.16. If U and V are domains and G : U !V is a conformal transformation, then if u : V !R is
a harmonic function on V , the composition u ±G is harmonic on U .

Proof. To see that u ±G is harmonic we need only check this in a disk B(z0,r ) µU about any point z0 2
U . If w0 = G(z0), the continuity of G ensures we can find ±,≤ > 0 such that G(B(z0,±)) µ B(w0,≤) µ
V . But now since B(w0,≤) is simply-connected we know by Lemma 23.15 we can find a holomorphic
function f (z) with u =<( f ). But then on B(z0,±) we have u ±G =<( f ±G), and by the chain rule f ±G is
holomorphic, so that its real part is harmonic as required. ⇤

Remark 23.17. You can also give a more direct computational proof of the above Lemma. Note also that
we only need G to be holomorphic – the fact that it is a conformal equivalence is not necessary. On the
other hand if we are trying to produce harmonic functions with prescribed boundary values, then we will
need to use carefully chosen conformal transformations.

This strategy for studying harmonic functions might appear over-optimistic, in that the domains one
can obtain from a simple open set like B(0,1) or the upper-half plane H might consist of only a small
subset of the open sets one might be interested in. However, the Riemann mapping theorem (Theorem
23.11) show that every domain which is simply connected, other than the whole complex plane itself, is
in fact conformally equivalent to B(0,1). Thus a solution to the Dirichlet problem for the disk at least
in principal comes close56 to solving the same problem for any simply-connected domain! For conve-
nience, we will write D for the open disk B(0,1) of radius 1 centred at 0.

In the course so far, the main examples of conformal transformations we have are the following:

(1) The exponential function is conformal everywhere, since it is its own derivative and it is every-
where nonzero.

(2) Mobius transformations understood as maps on the extended complex plane are everywhere
conformal.

(3) Fractional exponents: In cut planes the functions z 7! zÆ forÆ 2C are conformal (the cut removes
the origin, where the derivative may vanish).

Let us see how to use these transformations to obtain solutions of the Laplace equation. First notice
that Cauchy’s integral formula suggests a way to produce solutions to Laplace’s equation in the disk:
Suppose that u is a harmonic function defined on B(0,r ) for some r > 1. Then by Lemma 23.15 we
know there is a holomorphic function f : B(0,r ) ! C such that u =<( f ). By Cauchy’s integral formula,
if ∞ is a parametrization of the positively oriented unit circle, then for all w 2 B(0,1) we have f (w) =

1
2ºi

R
∞ f (z)/(z °w)d z, and so

u(z) =<
° 1

2ºi

Z

∞

f (z)d z
z °w

¢
.

Since the integrand uses only the values of f on the boundary circle, we have almost recovered the func-
tion u from its values on the boundary. (Almost, because we appear to need the values of it harmonic
conjugate). The next lemma resolves this:

Lemma 23.18. If u is harmonic on B(0,r ) for r > 1 then for all w 2 B(0,1) we have

u(w) = 1
2º

Z2º

0
f (eiµ)

1° |w |2

|eiµ°w |2
dµ = 1

2º

Z2º

0
u(eiµ)<

°eiµ+w

eiµ°w

¢
dµ.

56The issue is whether the conformal equivalence behaves well enough at the boundaries.
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Proof. (Sketch.) Take, as before, f (z) holomorphic with<( f ) = u on B(0,r ). Then letting∞be a parametriza-
tion of the positively oriented unit circle we have

f (w) = 1
2ºi

Z

∞

f (z)d z
z °w

° 1
2ºi

Z

∞

f (z)d z
z ° w̄°1

where the first term is f (w) by the integral formula and the second term is zero because f (z)/(z ° w̄°1)
is holomorphic inside all of B(0,1). Gathering the terms, this becomes

f (w) = 1
2º

Z

∞
f (z)

1° |w |2
|z °w |2

d z
i z

= 1
2º

Z2º

0
f (eiµ)

1° |w |2

|eiµ°w |2
dµ.

The advantage of this last form is that the real and imaginary parts are now easy to extract, and we see
that

u(z) =
Z2º

0
u(eiµ)

1° |w |2

|eiµ°w |2
dµ.

Finally for the second integral expression note that if |z| = 1 then

z +w
z °w

= (z +w)(z̄ ° w̄)
|z °w |2 = 1° |w |2 + (z̄w ° zw̄)

|z °w |2 .

from which one readily sees the real part agrees with the corresponding factor in our first expression. ⇤
Now the idea to solve the Dirichlet problem for the disk B(0,1) is to turn this previous result on its head:

Notice that it tells us the values of u inside the disk B(0,1) in terms of the values of u on the boundary.
Thus if we are given the boundary values, say a (periodic) function G(eiµ) we might reasonably hope that
the integral

g (w) = 1
2º

Z2º

0
G(eiµ)

1° |w |2

|eiµ°w |2
dµ,

would define a harmonic function with the required boundary values. Indeed it follows from the proof
of the lemma that the integral is the real part of the integral

1
2ºi

Z

∞
G(z)

1
z °w

d z,

which we know from Proposition 17.7 is holomorphic in w , thus g (w) is certainly harmonic. It turns out
that if w ! w0 2 @B(0,1) then provided G is continuous at w0 then g (w) ! G(w0), hence g is in fact a
harmonic function with the required boundary value.
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