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1. INTRODUCTION

In Prelims you studied Analysis, the rigorous theory of calculus for (real-
valued) functions of a single real variable. This term we will largely focus
on the study of functions of a complex variable, but we will begin by see-
ing how much of the theory developed last year can in fact can be made
to work, with relatively little extra effort, in a significantly more general
context.

Recall the trajectory of the Prelims Analysis course – initially it focused
on sequences and developed the notion of the limit of a sequence which
was crucial for essentially everything which followed1. Then it moved to
the study of continuity and differentiability, and finally it developed a the-
ory of integration. This term’s course will follow approximately the same
pattern, but the contexts we work in will vary a bit more. To begin with
we will focus on limits and continuity, and attempt to gain a better under-
standing of what is needed in order for make sense of these notions.

Example 1.1. Consider for example one of the key definitions of Prelims
analysis, that of the continuity of a function. Recall that if f : R → R is a
function, we say that f is continuous at a ∈ R if, for any ε > 0, we can find
a δ > 0 such that if |x − a| < δ then |f(x) − f(a)| < ε. Stated somewhat
more informally, this means that no matter how small an ε we are given,
we can ensure f(x) is within distance ε of f(a) provided we demand x is
sufficiently close to – that is, within distance δ of – the point a.

Now consider what it is about real numbers that we need in order for
this definition to make sense: Really we just need, for any pair of real num-
bers x1 and x2, a measure of the distance between them. (Note that we
needed this notion of distance in the above definition of continuity for both
the pairs (x, a) and (f(x), f(a)).) Thus we should be able to talk about con-
tinuous functions f : X → X on any set X provided it is equipped with
a notion of distance. Even more generally, provided we have prescribed a
notion of distance on two sets X and Y , we should be able to say what it
means for a function f : X → Y to be continuous. In order to make this
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1Although continuity is introduced via εs and δs, the notion can be expressed in terms

of convergent sequences. Similarly one can define the integral in terms of convergent
sequences.
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precise, we will therefore need to give a mathematically rigorous definition
of what a “notion of distance” on a set should be.

As a first step, consider as an example the case of Rn. The dot product
on vectors in Rn gives us a notion of distance between vectors in Rn: Recall
that if v = (v1, . . . , vn), w = (w1, . . . , wn) are vectors in Rn then we set

〈v, w〉 =
n∑
i=1

viwi,

and we define the length of a vector to be2 ‖v‖ = 〈v, v〉1/2. Recall that the
Cauchy-Schwarz inequality then says that |〈v, w〉| ≤ ‖v‖‖w‖. It has the
following important consequence for the length function:

Lemma 1.2. If x, y ∈ Rn then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Since ‖v‖ ≥ 0 for all v ∈ Rn the desired inequality is equivalent to

‖x+ y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2.
But since ‖x+ y‖2 = 〈x+ y, x + y〉 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, this inequality
is immediate from the Cauchy-Schwarz inequality. �

Once we have a notion of length for vectors, we also immediately have a
way of defining the distance between them – we simply take the length of
the vector v − w. Explicitly, this is:

‖v − w‖ =
( n∑
i=1

(vi − wi)2
)1/2

.

Now that we have defined the distance between any two vectors in Rn,
we can immediately make sense both of what it means for a function f : Rn →
R to be continuous3 as above and also what it means for a sequence to con-
verge.

Definition 1.3. If (vk)k∈N is a sequence of vectors in Rn (so vk = (vk1 , . . . , v
k
n))

we say (vk)k∈N converges to w ∈ Rn if for any ε > 0 there is an N > 0 such
that for all k ≥ N we have ‖vk − w‖ < ε.

If f : Rn → R and a ∈ Rn then we say that f is continuous at a if for any
ε > 0 there is a δ > 0 such that |f(a)− f(x)| < ε whenever ‖x− a‖ < δ. (As
usual, we say that f is continuous on Rn if it is continuous at every a ∈ Rn.)

Many of the results about convergence for sequences of real or complex
numbers which were established last year readily extend to sequences in
Rn, with almost identical proofs. As an example, just as for sequences of
real or complex numbers, we have the following:

2Sometimes the notation ‖v‖2 is used for this length function – we will see later there are
other natural choices for the length of a vector in Rn.

3More ambitiously, using the notions of distance we have for Rn and Rm you can readily
make sense of the notion of continuity for a function g : Rn → Rm.
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Lemma 1.4. Suppose that (vk)k≥1 is a sequence in Rn which converges tow ∈ Rn
and also to u ∈ Rn. Then w = u, that is, limits are unique.

Proof. We prove this by contradiction: suppose w 6= u. Then d = ‖w−u‖ >
0, so since (vk) converges to w we can find an N1 ∈ N such that for all
k ≥ N we have ‖w− vk‖ < d/2. Similarly, since (vk) converges to u we can
find an N2 such that for all k ≥ N2 we have ‖vk − u‖ < d/2. But then if
k ≥ max{N1, N2}we have

d = ‖w−u‖ = ‖(w−vk)+(vk−u)‖ ≤ ‖w−vk‖+‖vk−u‖ < d/2+d/2 = d,

where in the first inequality we use Lemma 1.2. Thus we have a contradic-
tion as required. �

2. METRIC SPACES

We now come to the definition of a metric space. To motivate it, let’s
consider what a notion of distance on a set X should mean: Given any two
points in X , we should have a non-negative real number – the distance
between them. Thus a distance on a set X should be a function d : X ×
X → R≥0, but we must also decide what properties such a function should
have in order to capture our intuition of distance. A couple of properties
suggest themselves immediately – the distance between two points x, y ∈
X should be symmetric, that is, the distance from x to y should4 be the same
as the distance from y to x, and the distance between two points should be
0 precisely when they are equal. Note that this latter property was one of
the crucial ingredients in the proof of the uniqueness of limits as we just
saw. The only other requirement we will make of a distance function is
known as the “triangle inequality”, a version of which we established in
Lemma 1.2 and which was also essential in the above uniqueness proof.
Thus altogether our requirements yield in the following definition:

Definition 2.1. Let X be a set and suppose that d : X × X → R. Then we
say that d is a distance function on X if it has the following properties: For
all x, y, z ∈ X :

(1) (Positivity): d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(2) (Symmetry): d(x, y) = d(y, x).
(3) (Triangle inequality): If x, y, z ∈ X then we have

d(x, z) ≤ d(x, y) + d(y, z).

Note that for the normal distance function in the plane R2, the third prop-
erty expresses the fact that the length of a side of a triangle is at most the
sum of the lengths of the other two sides (hence the name!). We will write a
metric space as a pair (X, d) of a set and a distance function d : X×X → R≥0

4In fact it’s possible to think of contexts where this assumption doesn’t hold – consider
e.g. swimming in a river – going upstream is harder work than going downstream, so if
your notion of distance took this into account it would fail to be symmetric.
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satisfying the axioms above. If the distance function is clear from context,
we may, for convenience, simply write X rather than (X, d).

Example 2.2. The vector space Rn equipped with the distance function
d2(v, w) = ‖v − w‖ = 〈v − w, v − w〉1/2 is a metric space: The first two
properties of the metric d2 are immediate from the definition, while the
triangle inequality follows from Lemma 1.2.

Example 2.3. In Prelims Linear Algebra, you met the notion of an inner
product space (V, 〈−,−〉) (over the real or complex numbers). For any two
vectors v, w ∈ V setting d(v, w) = ‖v − w‖, where ‖v‖ = 〈v, v〉1/2, gives
V a notion of distance. Since the Cauchy-Schwarz inequality holds in any
inner product space, Lemma 1.2 holds in any inner product space (the proof
is word for word the same), it follows that d is also a metric in this more
general setting.

Definition 2.4. If (X, dX) is a metric space and A ⊆ X then we set

diam(A) = sup{d(a1, a2) : a1, a2 ∈ X} ∈ R≥0 ∪ {∞},

(where we take diam(A) =∞ if the {d(a1, a2) : a1, a2 ∈ A} is not bounded
above. If diam(A) is finite then we say that A is a bounded subset of X .

To make good our earlier assertion, we now define the notions of conti-
nuity and convergence in a metric space.

Definition 2.5. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X →
Y is said to be continuous at a ∈ X if for any ε > 0 there is a δ > 0 such
that for any x ∈ X with dX(a, x) < δ we have dY (f(x), f(a)) < ε. We say f
is continuous if it is continuous at every a ∈ X .

If (xn)n≥1 is a sequence in X , and a ∈ X , then we say (xn)n≥1 converges
to a if, for any ε > 0 there is an N ∈ N such that for all n ≥ N we have
dX(xn, a) < ε.

In fact it is clear that the notion of uniform continuity also extends to
functions between metric spaces: A function f : X → Y is said to be uni-
formly continuous if, for any ε > 0, there exists a δ > 0 such that for all
x1, x2 ∈ X with dX(x1, x2) < δ we have dY (f(x1), f(x2)) < ε.

For later use, we also note that a function f : X → Y is said to be bounded
if its image f(X) is a bounded subset of Y in the sense of Definition 2.4,
that is, if

{dY (f(x), f(y)) : x, y ∈ X} ⊆ R

is a bounded subset of R. Note that, unlike continuity or uniform conti-
nuity, the condition that a function is bounded only requires that Y has a
metric (X need not).

Example 2.6. Consider the case of Rn again. The distance function d2 com-
ing from the dot product makes Rn into a metric space, as we have already
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seen. On the other hand it is not the only reasonable notion of distance one
can take. We can define for v, w ∈ Rn

d1(v, w) =
n∑
i=1

|vi − wi|;

d2(v, w) =
( n∑
i=1

(vi − wi)2
)1/2

d∞(v, w) = max
i∈{1,2,...,n}

|vi − wi|.

Each of these functions clearly satisfies the positivity and symmetry prop-
erties of a metric. We have already checked the triangle inequality for d2,
while for d1 and d∞ it follows readily from the triangle inequality for R.

Example 2.7. Suppose that (X, d) is a metric space and let Y be a subset of
X . Then the restriction of d to Y × Y gives Y a metric so that (Y, d|Y×Y ) is
a metric space. We call Y equipped with this metric a subspace5 of X .

Example 2.8. The discrete metric on a set X is defined as follows:

d(x, y) =

{
1, if x 6= y
0, if x = y

The axioms for a distance function are easy to check.

Example 2.9. A slightly more interesting example is the Hamming distance
on words: if A is a finite set which we think of as an “alphabet”, then a
word of length n in just an element of An, that is, a sequence of n ele-
ments in the alphabet. The Hamming distance between two such words
a = (a1, . . . , an),b = (b1, . . . , bn) is

dH(a,b) = |{i ∈ {1, 2, . . . , n} : ai 6= bi}.
An important special case of this is the space of binary sequences of

length n, that is, where the alphabet A is just {0, 1}. In this case one can
view set of words of length n in this alphabet as a subset of Rn, and more-
over you can check that the Hamming distance function is the same as the
subspace metric induced by the d1 metric on Rn given above.

Example 2.10. If (X, d) is a metric space, then we can consider the spaceXN

of all sequences in X . That is, the elements of XN are sequences (xn)n≥1 in
X . While there is no obvious metric on the whole space of sequences, if we
take XN

b to be the space of bounded sequences, that is, sequences such that
the set {d∞(xn, xm) : n,m ∈ N} ⊂ R is bounded, then the function6

d∞((xn)n≥1, (yn)n≥1) = sup
n∈N

d(xn, yn),

5This is completely standard terminology, though it’s a little unfortunate if X is a vector
space, where we use the word subspace to mean linear subspace also. Context (usually)
makes it clear which meaning is intended, and I’ll try and be as clear about this as possible!

6The fact that the sequences are bounded ensure the right-hand side is finite.
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is a metric on XN
b . It clearly satisfies positivity and symmetry, and the tri-

angle inequality follows from the inequality

d(xn, zn) ≤ d(xn, yn) + d(yn, zn) ≤ d∞((xn), (yn)) + d∞((yn), (zn)),

by taking the supremum of the left-hand side over n ∈ N.

Example 2.11. If (X, dX) and (Y, dY ) are metric spaces, then it is natural
to try to make X × Y into a metric space. In fact this can be done in a
number of ways – we will return to this issue later. One method is to set
dX×Y = max{dX , dY }, that is if x1, x2 ∈ X and y1, y2 ∈ Y then we set

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

It is straight-forward to check that this is indeed a metric on X × Y . It is
also easy to see that if f : Z → X × Y is a function from a metric space
Z to X × Y , so that we may write f(z) = (fX(z), fY (z)) with fX(z) ∈ X
and fY (z) ∈ Y , then f is continuous if and only if fX and fY are both
continuous. Problem set 1 asks you to check this is also true when you use
the metric on X × Y given by

d′X×Y ((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2.

Example 2.12. If (X, dX) and (Y, dY ) are metric spaces, then we can also
consider the set B(X,Y ) of bounded functions from X to Y . This set has a
natural metric given by

d(f, g) = sup
x∈X

dY (f(x), g(x)).

Indeed one can check that d(f, g) is finite for any f, g ∈ B(X,Y ), so that
since dY is non-negatively valued, so is d. This space has a natural subspace
consisting of the continuous bounded function Cb(X,Y ).

Example 2.13. Consider the set P(Rn) of lines in Rn (that is, one-dimensional
subspace of Rn, or lines through the origin). A natural way to define a dis-
tance on this set is to take, for lines L1, L2, the distance between L1 and L2

to be

d(L1, L2) =

√
1− |〈v, w〉|

2

‖v‖2‖w‖2
,

where v and w are any non-zero vectors in L1 and L2 respectively. It is easy
to see this is independent of the choice of vectors v and w. The Cauchy-
Schwarz inequality ensures that d is well-defined, and moreover the crite-
rion for equality in that inequality ensures positivity. The symmetry prop-
erty is evident, while the triangle inequality is left as an exercise.

It is useful to think of the case when n = 2 here, that is, the case of lines
through the origin in the plane R2. The distance between two such lines
given by the above formula is then sin(θ) where θ is the angle between the
two lines.
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The next exercise is the natural generalization of the result you saw last
year which showed that continuity could be expressed in terms of conver-
gent sequences. It show it one uses exactly the same argument, just phrased
in the language of metric spaces.

Exercise 2.14. Let f : X → Y be a function. Show that f is continuous at
a ∈ X if and only if for every sequence (xk)k≥0 converging to a we have
f(xk)→ f(a) as k →∞.

Solution: Suppose that f is continuous at a. Then given ε > 0 there is a
δ > 0 such that for all x ∈ X with d(x, a) < δ we have d(f(x), f(a)) < ε.
Now if (xk)k≥0 is a sequence tending to a then there is an N > 0 such
that d(a, xk) < δ for all k ≥ N . But then for all k ≥ N we see that
d(f(a), f(xk)) < ε, so that f(xk)→ f(a) as k →∞ as required.

For the converse, we use the contrapositive, hence we suppose that f is
not continuous at a. Then there is an ε > 0 such that for all δ > 0 there is
some x ∈ X with d(x, a) < δ and d(f(x), f(a)) ≥ ε. Chose for each k ∈ Z>0

a point xk ∈ X with d(xk, a) < 1/k but d(f(xk), f(a)) ≥ ε. Then d(xk, a) <
1/k → 0 as k → ∞ so that xk → a as k → ∞, but since d(f(xk), f(a))) ≥ ε
for all k clearly (f(xk))k≥0 does not tend to f(a).

We now review some of the algebra of limits-type results from last year
in our more general context:

Definition 2.15. If X is a metric space we write C(X) = {f : X → R :
f is continuous} for the set of continuous real-valued functions onX . (Here
the real line is viewed as a metric space equipped with the metric coming
from the absolute value).

Lemma 2.16. The set C(X) is a vector space. Moreover if f, g ∈ C(X) then so is
f.g.

Proof. C(X) is a subset of the vector space of all real-valued functions on
X , so we just need to check it is closed under addition and multiplication
(since we can view scalars as constant functions, the latter clearly being
continuous).

To see that C(X) is closed under multiplication, suppose that f, g ∈ C(X)
and a ∈ X . To see that f.g is continuous at a, note that if ε > 0 is given,
then since both f and g are continuous at a, we may find a δ1 such that
|f(x)− f(a)| < min{1, ε/2(|g(a)|+ 1)} for all x ∈ X with d(x, a) < δ1 and a
δ2 > 0 such that |g(x)−g(a)| < ε/2(|f(a)|+1) for all x ∈ X with d(x, a) < δ2.
Setting δ = min{δ1, δ2} it follows that for all x ∈ X with d(x, a) < δ we have

|f(x)g(x)− f(a)g(a)| = |f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)|
≤ |f(x)||g(x)− g(a)|+ |f(x)− f(a)||g(a)|
≤ (|f(a)|+ 1)|g(x)− g(a)|+ |f(x)− f(a)||g(a)|
< ε/2 + ε/2 = ε
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where in the third line we use the fact that |f(x)| < |f(a)|+ 1 for all x ∈ X
such that d(x, a) < δ1. Since awas arbitrary, this shows that f.g lies in C(X).
Checking that C(X) is closed under addition is similar but easier, and we
leave it as an exercise for the reader to check the details. �

Exercise 2.17. One can also check that if f : X → R is continuous at a and
f(a) 6= 0 then 1/f is continuous at a. Again this is proved just as in the
single-variable case. Problem set 1 asks you to provide the details for this.

3. NORMED VECTOR SPACES.

If we start with a vector space V , for example the set of solutions to a
homogeneous linear differential equation, then it is natural to consider met-
rics which interact with the linear structures – addition and scalar multiplication–
of the space.

Two natural conditions to consider are the following: for any vectors
x, y, z ∈ Rn and any scalar λ we have

(1) d(x+ z, y + z) = d(x, y),
(2) d(λx, λy) = |λ|d(x, y).

The first of these is known as translation invariance and the second is a kind
of homogeneity.

A vector space V with a distance function compatible with the vector
space structure in the above sense is then clearly determined by the func-
tion from V to the non-negative real numbers given by v 7→ d(v, 0). The
following definition and Lemma formalize this discussion.

Definition 3.1. Let V be a (real or complex) vector space. A norm on V is a
function ‖.‖ : V → R which satisfies the following properties:

(1) (Positivity): ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.
(2) (Homogeneity): if x ∈ V and λ is a scalar then

‖λ.x‖ = |λ|‖x‖.

(3) (Triangle inequality): If x, y ∈ V then ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Note that in the second property |λ| denotes the absolute value of λ if V is
a real vector space, and the modulus of λ if V is a complex vector space.

Remark 3.2. If there is the potential for ambiguity, we will write the norm on
a vector space V as ‖.‖V , but usually this is clear from the context, and so
just as for metric spaces we will write ‖.‖ for the norm on all vector spaces
we consider.

Lemma 3.3. If V is a vector space with a norm ‖.‖ then the function d : V ×V →
R≥0 given by d(x, y) = ‖x − y‖ is a metric which is compatible with the vector
space structure in that:

(1) For all x, y ∈ V we have

d(λ.x, λ.y) = |λ|d(x, y).
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(2) d(x+ z, y + z) = d(x, y).
Conversely, if d is a metric satisfying the above conditions then ‖v‖ = d(v, 0) is a
norm on V .

Proof. This follows immediately from the definitions. �

Example 3.4. As discussed above, if V = Rn then the metrics d1, d2, d∞ all
come from the norms. We denote these by ‖x‖1 =

∑m
i=1 |xi| and ‖x‖2 =

(
∑m

i=1 x
2
i )

1/2 and ‖x‖∞ = max1≤i≤m |xi|.

Since the most natural maps between vector spaces are linear maps, it is
natural to ask when a linear map between normed vector spaces is contin-
uous. The following lemma gives an answer to this question:

Lemma 3.5. Let f : V →W be a linear map between normed vector spaces. Then
f is continuous if and only if {‖f(x)‖ : ‖x‖ ≤ 1} is bounded.

Proof. If f is continuous, then it is continuous at 0 ∈ V and so there is
a δ > 0 such that for all v ∈ V with ‖v‖ < δ we have ‖f(v) − f(0)‖ =
‖f(v)‖ < ε. But then if ‖v‖ ≤ 1 we have δ

2‖f(v)‖ = ‖f( δ2 .v))‖ < ε, and
hence ‖f(v)‖ ≤ 2ε

δ .
For the converse, if we have ‖f(v)‖ < M for all v with ‖v‖ ≤ 1, then if

ε > 0 is given we may pick δ > 0 so that δ.M < ε and hence if ‖v − w‖ < δ
we have

‖f(v)− f(w)‖ = ‖f(v − w)‖ = δ‖f(δ−1(v − w))‖ ≤ δ.M < ε,

so that f is in fact uniformly continuous on V . �

Remark 3.6. The boundedness condition above can be rephrased as saying
there is a constant K > 0 such that ‖f(v)‖ ≤ K.‖v‖, since any non-zero
vector v can be rescaled to a vector of unit length, v/‖v‖.

An important source of (normed) vector spaces for us will be the space
of functions on a set X (usually a metric space). Indeed if X is any set,
the space of all real-valued functions on X is a vector space – addition and
scalar multiplication are defined “pointwise” just as for functions on the
real line. It is not obvious how to make this into a normed vector space, but
if we restrict to the subspace B(X) of bounded functions there is an reason-
ably natural choice of norm.

Definition 3.7. If X is any set we define

B(X) = {f : X → R : f(X) ⊂ R bounded},

to be the space of bounded functions on X , that is f ∈ B(X) if and only if
there is some K > 0 such that |f(x)| < K for all x ∈ X . For f ∈ B(X) we
set ‖f‖∞ = supx∈X |f(x)|.

Lemma 3.8. Let X be any set, then (B(X), ‖.‖∞) is a normed vector space.
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Proof. To see that B(X) is a vector space, note that if f, g ∈ B(X) then we
may find N1, N2 ∈ R>0 such that f(X) ⊆ [−N1, N1] and g(X) ⊆ [−N2, N2].
But then clearly (f + g)(X) ⊆ [−N1 − N2, N1 + N2] and if λ ∈ R then
(λ.f)(X) ⊆ [−|λ|N1, |λ|N1], so that λ.f ∈ B(X) and f + g ∈ B(X).

Next we check that ‖f‖∞ is a norm: it is clear from the definition that
‖f‖∞ ≥ 0 with equality if and only if f is identically zero. Compatibility
with scalar multiplication is also immediate, while for the triangle inequal-
ity note that if f, g ∈ B(X), then for all x ∈ X we have

|(f + g)(x)| = |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞.

Taking the supremum over x ∈ X then yields the result. �

We will write d∞ for the metric associated to the norm ‖.‖∞.
If X is itself a metric space, we also have the space C(X) of continuous

real-valued functions on X . While C(X) does not automatically have a
norm, the subspace Cb(X) = C(X) ∩ B(X) of bounded continuous functions
clearly inherits a norm from B(X).

Example 3.9. One can check that if X = [a, b] then if (fn)n≥1 is a sequence
in7 C([a, b]) = Cb([a, b]) then fn → f in (Cb(X), d∞) (where d∞ is the metric
given by the norm ‖.‖∞) if and only if fn tends to f uniformly.

Example 3.10. For certain spacesX , we can define other natural metrics on
the space of continuous functions: Let X = [a, b] ⊂ R be a closed interval.
Then we know that in fact all continuous functions on X are bounded, so
that ‖.‖∞ defines a norm on C([a, b]). We can also define analogues of the
norms ‖.‖1 and ‖.‖2 on Rn using the integral in place of summation: Let

‖f‖1 =

∫ b

a
|f(t)|dt,

‖f‖2 =
( ∫ b

a
f(t)2dt

)1/2
Lemma 3.11. Suppose that a < b so that the interval [a, b] has positive length.
Then the functions ‖.‖1 and ‖.‖2 are norms on C([a, b]).

Proof. The compatibility with scalars and the triangle inequality both fol-
low from standard properties of the integral. The interesting point to check
here is that both ‖.‖1 and ‖.‖2 satisfy postitivity – continuity8 is crucial for
this! Indeed if f = 0 clearly ‖f‖1 = ‖f‖2 = 0. On the other hand if f 6= 0
then there is some x0 ∈ [a, b] such that f(x0) 6= 0, and so |f(x0)| > 0. Since
f is continuous at x0, there is a δ > 0 such that |f(x) − f(x0)| < |f(x0)|/2

7The result from Prelims Analysis showing any continuous function on a closed
bounded interval is bounded implies the equality C([a, b]) = Cb([a, b]).

8So in particular, ‖.‖1 and ‖.‖2 are not norms on the space of Riemann integrable func-
tions on [a, b].
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for all x ∈ [a, b] with |x − x0| < δ. But the it follows that for x ∈ [a, b] with
|x− x0| < δ we have |f(x)| ≥ |f(x0)| − |f(x)− f(x0)| > |f(x0)|/2. Now set

s(x) =

{
|f(x0)|/2, if x ∈ [a, b] ∩ (x0 − δ, x0 + δ)

0, otherwise

Since the interval [a, b]∩(x0−δ, x0 +δ) has length at least d = min{δ, (b−a)}
we see that

∫ b
a s(x)dx ≥ d.|f(x0)|/2 > 0. Since s(x) ≤ |f(x)| for all x ∈ [a, b]

it follows from the positivity of the integral that 0 < d|f(x0)|/2 ≤ ‖f‖1.
Similarly we see that ‖f‖2 ≥ f

√
d|f(x0)|/2, so that both ‖.‖1 and ‖.‖2 satisfy

the positivity property. �

There are very similar metrics on certain sequence spaces:

Example 3.12. Let

`1 = {(xn)n≥1 :
∑
n≥1

|xn| <∞}

`2 = {(xn)n≥1 :
∑
n≥1

x2
n <∞}

`∞ = {(xn)n≥1 : sup
n∈N
|xn| <∞}.

The sets `1, `2, `∞ are all real vector spaces, and moreover the functions
‖(xn)‖1 =

∑
n≥1 |xn|, ‖(xn)‖2 =

(∑
n≥1 x

2
n

)1/2, ‖(xn)‖∞ = supn∈N |xn| de-
fine norms on `1, `2 and `∞ respectively. Note that `2 is in fact an inner
product space where

〈(xn), (yn)〉 =
∑
n≥1

xnyn,

(the fact that the right-hand side converges if (xn) and (yn) are in `2 follows
from the Cauchy-Schwarz inequality). The problem sets investigate the
example of `2 in some detail.

4. METRICS AND CONVERGENCE

Recall that if (X, d) is a metric space, then a sequence (xn) inX converges
to a point a ∈ X if for any ε > 0 there is an N ∈ N such that for all n ≥ N
we have d(xn, a) < ε. In the case of Rm, although d1, d2, d∞ are all different
distance functions, they in fact give the same notion of convergence. To see
this we need the following:

Lemma 4.1. Let x, y ∈ Rm. Then we have

d2(x, y) ≤ d1(x, y) ≤
√
md2(x, y); d∞(x, y) ≤ d2(x, y) ≤

√
md∞(x, y).

Proof. It is enough to check the corresponding inequalities for the norms
‖x‖i (where i ∈ {1, 2,∞}) that is, we may assume y = 0. For the first
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inequality, note that

‖x‖21 = (
m∑
i=1

|xi|)2 =
m∑
i=1

x2
i +

∑
1≤i<j≤m

2|xixj | ≥
m∑
i=1

x2
i = ‖x‖22,

so that ‖x‖2 ≤ ‖x‖1. On the other hand, if x = (x1, . . . , xm), set a =
(|x1|, |x2|, . . . , |xm|) and 1 = (1, 1, . . . , 1). Then by the Cauchy-Schwarz in-
equality we have

‖x‖1 = 〈1, a〉 ≤
√
m.‖a‖2 =

√
m.‖x‖2

The second pair of inequalities is simpler. Note that clearly

max
1≤i≤m

|xi| = max
1≤i≤m

(x2
i )

1/2 ≤ (
m∑
i=1

x2
i )

1/2,

yielding one inequality. On the other hand, since for each i we have |xi| ≤
‖x‖∞ by definition, clearly

‖x‖22 =
m∑
i=1

|xi|2 ≤ m‖x‖2∞,

giving ‖x‖2/
√
m ≤ ‖x‖∞ as required. �

Lemma 4.2. If (xn) ⊂ Rm is a sequence then (xn) converges to a ∈ Rm with
respect to the metric d2, if and only if it does with respect to the metric d1, if and
only if it does so with respect to the metric d∞. Thus the three metrics all yield the
same notion of convergence.

Proof. Suppose (xn) converges to a with respect to the metric d2. Then for
any ε > 0 there is an N ∈ N such that d2(xn, a) < ε/

√
m for all n ≥ N . It

follows from the previous Lemma that for n ≥ N we have

d1(xn, a) ≤
√
m.d2(xn, a) <

√
m.(ε/

√
m) = ε,

and so (xn) converges to a with respect to d1 also. Similarly we see that
convergence with respect to d1 implies convergence with respect to d2 using
‖x‖2 ≤ ‖x‖1. In the same fashion, the inequalities d∞(x, y) ≤ d2(x, y) ≤√
md∞(x, y) yield the equivalence of the notions of convergence for d2 and

d∞. �

Remark 4.3. (Non-examinable): If X is any set and d1, d2 are two metrics on X ,
we say they are equivalent if there are positive constants K,L such that

d1(x, y) ≤ Kd2(x, y); d2(x, y) ≤ Ld1(x, y).

The proof of the previous Lemma extends to show that if two metrics are equivalent,
then a sequence converges with respect to one metric if and only if it does with
respect to the other.
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5. OPEN AND CLOSED SETS

In this section we will define two special classes of subsets of a metric
space – the open and closed subsets. To motivate their definition, recall that
we have two ways of characterizing continuity in a metric space: the “ε-δ”
definition, and the description in terms of convergent sequences. Examin-
ing the former will lead us to the notion of an open set, while examining the
latter will lead us to the notion of a limit point and hence that of a closed
set.

The definitions of continuity and convergence can be made somewhat
more geometric if we introduce the notion of a ball in a metric space:

Definition 5.1. Let (X, d) is a metric space. If x0 ∈ X and ε > 0 then we
define the open ball of radius ε to be the set

B(x0, ε) = {x ∈ X : d(x, x0) < ε}.
Similarly we defined the closed ball of radius ε about x0 to be the set

B̄(x0, ε) = {x ∈ X : d(x, x0) ≤ ε}.
The term “ball” comes from the case where X = R3 equipped with the
usual Euclidean notion of distance. When X = R an open/closed ball is
just an open/closed interval.

Recall that if f : X → Y is a function between any two sets, then given
any subset Z ⊆ Y we let9 f−1(Z) = {x ∈ X : f(x) ∈ Z}. The set f−1(Z) is
called the pre-image of Z under the function f .

Lemma 5.2. Let (X, d) and (Y, d) be metric spaces. Then f : X → Y is continu-
ous at a ∈ X if and only if, for any open ballB(f(a), ε) centred at f(a) there is an
open ball B(a, δ) centred at a such that f(B(a, δ)) ⊆ B(f(a), ε), or equivalently
B(a, δ) ⊆ f−1(B(f(a), ε)).

Proof. This follows directly from the definitions. (Check this!) �

We have seen in the last section that different metrics on a set X can
give the same notions of continuity. The next definition is motivated by
this – it turns out that we can attach to a metric a certain class of subsets
of X known as open sets and knowing these open sets suffices to determine
which functions on X are continuous. Informally, a subset U ⊆ X is open
if, for any point y ∈ U , every point sufficiently close to y in X is also in U .
Thus, if y ∈ U , it has some “wiggle room” – we may move slightly away
from y while still remaining in U . The rigorous definition is as follows:

Definition 5.3. If (X, d) is a metric space then we say a subsetU ⊂ X is open
(or open in X) if for each y ∈ U there is some δ > 0 such that B(y, δ) ⊆ U .
More generally, if Z ⊆ X and z ∈ Z then we say Z is a neighbourhood of z if

9The notion is not meant to suggest that f is invertible, though when it is, the preimage
of any point in Y is a single point in X , so the notation is in this sense consistent. Note that
formally, f−1 as defined here is a function from the power set of Y to the power set of X .
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there is a δ > 0 such that B(z, δ) ⊆ Z. Thus a subset U ⊆ X is open exactly
when it is a neighbourhood of all of its elements.

The collection T = {U ⊂ X : U open in X} of open sets in a metric space
(X, d) is called the topology of X .

We first note an easy lemma, which can be viewed as a consistency check
on our terminology.

Lemma 5.4. Let (X, d) be a metric space. If a ∈ X and ε > 0 then B(a, ε) is an
open set.

Proof. We need to show thatB(a, ε) is a neighbourhood of each of its points.
If x ∈ B(a, ε) then by definition r = ε−d(a, x) > 0. We claim that B(x, r) ⊆
B(a, ε). Indeed by the triangle inequality we have for z ∈ B(x, r)

d(z, a) ≤ d(z, x) + d(x, a) < r + d(x, a) = ε,

as required. �

Remark 5.5. While reading the above proof, please draw a picture of the
case where X = R2 with the standard metric d2.

Next let us observe some basic properties of open sets.

Lemma 5.6. Let (X, d) be metric space and let T be the associated topology onX .
Then we have

(1) The subsets X and ∅ are open.
(2) For any indexing set I and {Ui; i ∈ I} a collection of open sets, the set⋃

i∈I Ui is an open set.
(3) If I is finite and {Ui : i ∈ I} are open sets then

⋂
i∈I Ui is open in X .

Proof. The first claim is trivial. For the second claim, if x ∈
⋃
i∈ Ui then

there is some i ∈ I with x ∈ Ui. Since Ui is open, there is an ε > 0 such that

B(x, ε) ⊂ Ui ⊆
⋃
i∈I

Ui,

so that
⋃
i∈I Ui is a neighbourhood of each of its points as required. Apply-

ing this to the case I = ∅ shows that ∅ ⊆ X is open (or simply note that the
empty set satisfies the condition to be an open set vacuously).

For the final claim, if I is finite and x ∈
⋂
i∈I Ui, then for each i there is

an εi > 0 such that B(x, εi) ⊆ Ui. But then since I is finite, ε = min({εi : i ∈
I} ∪ {1}) > 0, and

B(x, ε) ⊆
⋂
i∈I

B(x, εi) ⊆
⋂
i∈I

Ui,

so that
⋂
i∈I Ui is an open subset as required. Applying this to the case

I = ∅ shows that X is open (or simply note that if U = X and x ∈ X then
B(x, ε) ⊆ X for any positive ε so that X is open). �



METRIC SPACES AND COMPLEX ANALYSIS. 15

Remark 5.7. Apart from being trivial, the first part of the above lemma is
also redundant in that it follows from the second and third: If I is an in-
dexing set, then a collection {Ui : i ∈ I} of subsets of X is just a function
u : I → P(X) where P(X) denotes the power set of X , where by conven-
tion10 we write Ui ⊆ X for u(i). Then union

⋃
i∈I Ui of the collection of

subsets {Ui : i ∈ I} is then {x ∈ X : ∃i ∈ I, x ∈ Ui}, while the intersection
of the collection {Ui : i ∈ I} is just {x ∈ X : ∀i ∈ I, x ∈ Ui}. Using this, one
readily sees that if I = ∅ then the intersection of the collection is X and the
union is the empty set ∅.

Exercise 5.8. Using Lemma 4.1, show that the topologies Ti on Rn given by
the norms di (i = 1, 2,∞) coincide.

Example 5.9. A subset U of R is open if for any x ∈ U there is an open
interval centred at x contained in U . Thus we can readily see that the finite-
ness condition for intersections is necessary: if Ui = (−1/i, 1) for i ∈ N then
each Ui is open but

⋂
i∈N Ui = [0, 1) and [0, 1) is not open because it is not a

neighbourhood of 0.

One important consequence of the fact that arbitrary unions of open sets
are open is the following:

Definition 5.10. Let (X, d) be a metric space and let S ⊆ X . The interior of
S is defined to be

int(S) =
⋃
U⊆S
U open

U.

Since the union of open subsets is always open, int(S) is an open subset
of X and it is the largest open subset of X which is contained in S in the
sense that any open subset of X which is contained in S is in fact contained
in int(S). If x ∈ int(S) we say that x is an interior point of S. One can
also phrase this in terms of neighborhoods: the interior of S is the set of all
points in S for which S is a neighbourhood.

Example 5.11. If S = [a, b] is a closed interval in R then its interior is just
the open interval (a, b). If we take S = Q ⊂ R then int(Q) = ∅.

We now show that the topology given by a metric is sufficient to charac-
terize continuity.

Proposition 5.12. LetX and Y be metric spaces and let f : X → Y be a function.
If a ∈ X then f is continuous at a if and only if for every neighbourhood N ⊆
Y of f(a), the preimage f−1(N) is a neighbourhood of a ∈ X . Moreover, f is
continuous on all of X if and only if for each open subset U of Y , its preimage
f−1(U) is open in X .

10This is similar to how a sequence in a space X is actually a function a : N→ X , but we
usually write an rather than a(n).
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Proof. First suppose that f is continuous at a, and letN be a neighhourhood
of f(a). Then we may find an ε > 0 such that B(f(a), ε) ⊆ N . Since f
is continuous at a, there is a δ > 0 such that B(x, δ) ⊆ f−1(B(f(a), ε)) ⊆
f−1(U). It follows f−1(N) is a neighbourhood of a as required. Conversely,
if ε > 0 is given, then certainly B(f(a), ε) is a neighbourhood of f(a), so
that f−1(B(f(a), ε)) is a neighbourhood of a, hence there is a δ > 0 such
that B(a, δ) ⊆ f−1(B(f(a), ε)), and thus f is continuous at a as required.

Now if f is continuous on all of X , since a set is open if and only if it is a
neighbourhood of each of its points, it follows from the above that f−1(U)
is an open subset of X for any open subset U of Y . For the converse, note
that if a ∈ X is any point of X and ε > 0 is given then the open ball
B(f(a), ε) is an open subset of Y , hence f−1(B(f(a), ε)) is open in X , and
in particular is a neighbourhood of a ∈ X . But then there is a δ > 0 such
that B(a, δ) ⊆ f−1(B(f(a), ε)), hence f is continuous at a as required.

�

Example 5.13. Notice that this Proposition gives us a way of producing
many examples of open sets: if f : Rn → R is any continuous function
and a, b ∈ R are real numbers with a < b then {v ∈ Rn : a < f(x) < b} =
f−1((a, b)) is open in Rn. Thus for example {(x, y) ∈ R2 : 1 < 2x2+3xy < 2}
is an open subset of the plane.

Exercise 5.14. Use the characterization of continuity in terms of open sets
to show that the composition of continuous functions is continuous11.

Remark 5.15. The previous Proposition 5.12 shows, perhaps surprisingly,
that we actually need somewhat less than a metric on a setX to understand
what continuity means: we only need the topology induced by the metric
on the set X . In particular any two metrics which give the same topology
give the same notion of continuity. This motivates the following, perhaps
rather abstract-seeming, definition.

Definition 5.16. If X is a set, a topology on X is a collection of subsets T
of X , known as the open subsets which satisfy the conclusion of Lemma 5.6.
That is,

(1) If {Ui : i ∈ I} are in T then
⋃
i∈I Ui is in T . In particular ∅ is an open

subset.
(2) If I is finite and {Ui : i ∈ I} are in T , then

⋂
i∈I Ui is in T . In

particular X is an open subset of X .
A topological space is a pair (X, TX) consisting of a set X and a choice of
topology TX on X .

Motivated by Proposition 5.12, if f : X → Y is a function between two
topological spaces (X, TX) and (Y, TY ) we say that f is continuous if for
every open subset U ∈ TY we have f−1(U) ∈ TX , that is, f−1(U) is an open
subset of X .

11This is easy, the point is just to check you see how easy it is!
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Remark 5.17. There are a variety of ways of stating the axioms for a topol-
ogy. They are often phrased by stating separately that X and ∅ are open.
For example the Topology course choses the axioms:

(1) The sets X and ∅ are open.
(2) If U and V are open, then U ∩ V is open.
(3) If I is any indexing set and {Ui : i ∈ I} are a collection of open sets

in X then
⋃
i∈I Ui is open.

In this articulation of the axioms, the the condition that ∅ is open is redun-
dant12, while the condition that

⋂
i∈I Ui is open for finite indexing sets I

follows from axioms 1) and 2) using induction.

The properties of a metric space which we can express in terms of open
sets can equally be expressed in terms of their complements, which are
known as closed sets. It is useful to have both formulations (as we will show,
the formulation of continuity in terms of closed sets is closer to that given
by convergence of sequences rather than the ε-δ definition).

Definition 5.18. If (X, d) is a metric space, then a subset F ⊆ X is said to
be a closed subset of X if its complement F c = X\F is an open subset.

Remark 5.19. It is important to note that the property of being closed is not
the property of not being open! In a metric space, it is possible for a subset
to be open, closed, both or neither: In R the set R is open and closed, the
set (0, 1) is open and not closed, the set [0, 1] is closed and not open while
the set (0, 1] is neither.

The following lemma follows easily from Lemma 5.6 by using DeMor-
gan’s Laws.

Lemma 5.20. Let (X, d) be a metric space and let {Fi : i ∈ I} be a collection of
closed subsets.

(1) The intersection
⋂
i∈I Fi is a closed subset. In particular X is a closed

subset of X .
(2) If I is finite then

⋃
i∈I Fi is closed. In particular the empty set ∅ is a closed

subset of X .
Moreover, if f : X → Y is a function between two metric spaces X and Y then f
is continuous if and only if f−1(G) is closed for every closed subset G ⊆ Y .

Proof. The properties of closed sets follow immediately from DeMorgan’s
law, while the characteriszation of continuity follows from the fact that if
G ⊂ Y is any subset of Y we have f−1(Gc) = (f−1(G))c, that is,X\f−1(G) =
f−1(Y \G). �

12This is not necessarily a terrible thing, for example in giving the axioms for a group,
one can require the existence of a two-sided identity and of two-sided inverses, or just the
existence of a left-identity and left-inverses. Although the two-sided version is contains
redundant stipulations it is nevertheless the most commonly used one.
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Lemma 5.21. If (X, d) is a metric space then any closed ball B̄(a, r) for r ≥ 0 is
a closed set. In particular, singleton sets are closed.

Proof. We must show thatX\B̄(a, r) is open. If y ∈ X\B̄(a, r) then d(a, y) >
r, so that ε = d(a, y)− r > 0. But then if z ∈ B(y, ε) we have

d(a, z) ≥ d(a, y)− d(z, y) > d(a, y)− ε = r,

so that z /∈ B̄(a, r). It follows that B(y, ε) ⊆ X\B̄(a, r) and so X\B̄(a, r) is
open as required. �

The relation between closed sets and convergent sequences mentioned
at the beginning of this section arises through the notion of a limit point
which we now define.

Definition 5.22. If (X, d) is a metric space andZ ⊆ X is any subset, then we
say a point a ∈ X is a limit point if for any ε > 0 we have

(
B(a, ε)\{a}

)
∩Z 6=

∅. If a ∈ Z and a is not a limit point of Z we say that a is an isolated point
of Z. The set of limit points of Z is denoted Z ′. Notice that if Z1 ⊆ Z2 are
subsets of X then it follows immediately from the definition that Z ′1 ⊆ Z ′2.

Example 5.23. If Z = (0, 1] ∪ {2} ⊂ R then 0 is a limit point of Z which
does not lie in Z, while 2 is an isolated point of Z because B(2, 1/2) ∩ Z =
(1.5, 2.5) ∩ Z = {2}.

If (xn) is a sequence in (X, d) which converges to ` ∈ X then {xn : n ∈ N}
is either empty or equal to {`}. (See the problem set.)

The term “limit point” is motivated by the following easy result:

Lemma 5.24. If S is a subset of a metric space (X, d) then x ∈ S′ if and only if
there is a sequence in S\{x} converging to x.

Proof. If x is a limit point then for each n ∈ N we may pick zn ∈ B(x, 1/n)∩
(S\{x}). Then clearly zn → x as n → ∞ as required. Conversely if (zn) is
a sequence in S\{x} converging to x and δ > 0 is given, there is an N ∈ N
such that zn ∈ B(x, δ) for all n ≥ N . It follows that B(x, δ) ∩ (S\{x}) is
nonempty as required. �

The fact that a subset of a metric space is closed can be characterized in
terms of limit points (and hence in terms of convergent seqeunces):

The fact that any intersection of closed subsets is closed has an important
consequence – given any subset S of a metric space (X, d) there is a unique
smallest closed set which contains S.

Definition 5.25. Let (X, d) be a metric space and let S ⊆ X . Then the set

S̄ =
⋂
G⊇S

G closed

G,

is the closure of S. It is closed because it is the intersection of closed subsets
of X and is the smallest closed set containing S in the sense that if G is any
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closed set containing S then G contains S̄. If S ⊆ Y ⊆ X we say that S is
dense in Y if Y ⊆ S̄. (Thus every point of Y lies in S or is a limit point of S.)

Example 5.26. The rationals Q are a dense subset of R, as is the set { a2n :
a ∈ Z, n ∈ N}.

Definition 5.27. The notions of closure and interior also allow us to define
the boundary ∂S of a subset S of a metric space to be S̄\int(S).

Proposition 5.28. Let (X, d) be a metric space and let S ⊆ X . Then

S ∪ S′ = S̄.

In particular, a subset S is closed if and only if S′ ⊆ S, i.e. if and only if S contains
all of its limit points.

Proof. Let Y = S∪S′. Since S ⊆ S̄, certainly S′ ⊆ (S̄)′, and as S̄ is closed, by
Lemma ??, (S̄)′ ⊆ S̄. Hence Y ⊆ S̄. To see the opposite inclusion, suppose
that a /∈ Y . Then there is a δ > 0 such that B(a, δ) ∩ S = ∅. It follows that
S ⊆ B(a, δ)c and thus sinceB(a, δ)c is closed, S̄ ⊆ B(a, δ)c, and so certainly
a /∈ S̄. It follows S̄ ⊆ Y and hence S̄ = Y are required.

�

Remark 5.29. If Z ⊆ X is an arbitrary subset you can check that (Z ′)′ ⊆ Z ′,
that is, the limit points of Z ′ are limit points of Z. It then follows from
Proposition 5.28 that Z ′ is closed, since it contains its limit points.

Exercise 5.30. Show that if S ⊆ X and a ∈ X , then a ∈ S̄ if and only if there
is a sequence (xn) in S with xn → a.

Solution: First suppose that (xn) is a sequence in S and xn → y as n →
∞. Let M = {n ∈ N : xn 6= y}. If M is infinite then the corresponding
subsequence (xn)n∈M lies in S\{y} and clearly converges to y, so that y ∈ S′
by Lemma 5.24. If M is finite, then xn = y for infinitely many n so certainly
y ∈ S. Conversely, if y ∈ S̄ then by Proposition 5.28, either y ∈ S or y ∈ S′.
If y ∈ S we may take the constant sequence xn = y while if yn ∈ S′\S then
we are again done by Lemma 5.24.

Example 5.31. In general, it need not be the case that B̄(a, r) is the closure
of B(a, r). Since we have seen that B̄(a, r) is closed, it is always true that
B(a, r) ⊆ B̄(a, r) but the containment can be proper. As a (perhaps silly-
seeming) example take any setX with at least two elements equipped with
the discrete metric. Then if x ∈ X we have {x} = B(x, 1) is an open set
consisting of the single point {x}. Since singletons are always closed we
see that B(x, 1) = B(x, 1) = {x}. On the other hand B̄(x, 1) = X the entire
set, which is strictly larger than {x} by assumption.

Remark 5.32. Combining the above characterization of closed sets in terms
of limit points and the characterization of continuity in terms of closed sets
we can give yet another description of continuity for a function f : X → Y
between metric spaces: If Z ⊂ Y is a subset of Y which contains all its
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limit points then so does f−1(Z). Yet another characterization can be given
using the notion of the closure of a set, namely that a function f : X → Y

is continuous if and only if for any subset Z ⊆ X we have f(Z) ⊆ f(Z). It
is easy to relate this to the definition of continuity in terms of convergent
sequences.

6. SUBSPACES OF METRIC SPACES

If (X, d) is a metric space, then as we noted before, any subset Y ⊆ X is
automatically also a metric space since the distance function d : X × X →
R≥0 restricts to a distance function on Y . The set Y thus has a topology
given by this metric. In this section we show that this topology is easy to
describe in terms of the topology on X . The key to this description is the
simple observation that the open balls in Y are just the intersection of the
open balls in X with Y . For clarity, for y ∈ Y ⊆ X we will write

BY (y, r) = {z ∈ Y : d(z, y) < r}
for the open ball about y of radius r in Y and

BX(y, r) = {x ∈ X : d(x, y) < r}
for the open ball of radius r about y in X . Thus BY (y, r) = Y ∩BX(y, r).

Lemma 6.1. If (X, d) is a metric space and Y ⊆ X then a subset U ⊆ Y is an
open subset of Y if and only if there is an open subset V ofX such that U = V ∩Y .
Similarly a subset Z ⊆ Y is a closed subset of Y if and only if there is a closed
subset F of X such that Z = F ∩ Y .

Proof. If U = Y ∩ V where V is open in X and y ∈ U then there is a δ > 0
such that BX(y, δ) ⊆ V . But then BY (y, δ) = BX(y, δ) ∩ Y ⊆ V ∩ Y = U
and so U is a neighhourbood of each of its points as required. On the other
hand, if U is an open subset of Y then for each y ∈ U we may pick an open
ball BY (y, δy) ⊆ U . It follows that U =

⋃
y∈U BY (y, δy). But then if we set

V =
⋃
y∈U BX(y, δy) it is immediate that V is open in X and V ∩ Y = U as

required.
The corresponding result for closed sets follows readily: F is closed in Y

if and only if Y \F is open in Y which by the above happens if and only if it
equals Y ∩ V for some open set in X . But this is equivalent to F = Y ∩ V c,
the intersection of Y with the closed set V c. �

Remark 6.2. The lemma shows that the topology onX determines the topol-
ogy on the subspace Y ⊆ X directly. It is easy to see that if (X, T ) is an
abstract topological space and Y ⊆ X then the collection TY = {U ∩ Y :
U ∈ T } is a topology on Y which is called the subspace topology.

Remark 6.3. It is important here to note that the property of being open or
closed is a relative one – it depends on which metric space you are working
in. Thus for example if (X, d) is a metric space and Y ⊆ X then Y is always
open viewed as a subset of itself (since the whole space is always an open
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subset) but it of course need not be an open subset of X! For example, [0, 1]
is not open in R but it is an open subset of itself.

Example 6.4. Let’s consider a more interesting example: Let X = R and let
Y = [0, 1] ∪ [2, 3]. As a subset of Y the set [0, 1] is both open and closed. To
see that it is open, note that if x ∈ [0, 1] then

BY (x, 1/2) = BR(x, 1/2) ∩ Y = (x− 1

2
, x+

1

2
) ∩ ([0, 1] ∪ [2, 3])

= (x− 1

2
, x+

1

2
) ∩ [0, 1] ⊂ [0, 1],

Similarly we see thatBY (x, 1/2) ⊆ [2, 3] if x ∈ [2, 3] so that [2, 3] is also open
in Y . It follows [0, 1] is both open and closed in Y (as is [2, 3]).

7. HOMEOMORPHISMS AND ISOMETRIES

If (X, d) and (Y, d) are metric spaces it is natural to ask when we wish to
consider X and Y equivalent. There is more than one way to answer this
question – the first, perhaps most obvious one, is the following:

Definition 7.1. A function f : X → Y between metric spaces (X, dX) and
(Y, dY ) is said to be an isometry if

dY (f(x), f(y)) = dX(x, y) ∀x, y ∈ X

An isometry is automatically injective. If there is a surjective (and hence
bijective) isometry between two metric spaces X and Y we say that X and
Y are isometric.

Example 7.2. Let X = R2 (equipped with the Euclidean metric13 d2). The
collection of all bijective isometries fromX to itself forms a group, the isom-
etry group of the plane. Clearly the translations tv : R2 → R2 are isometries,
where v ∈ R2 and tv(x) = x+ v. Similarly, if A ∈Mat2(R) is an orthogonal
matrix, so that AtA = I , then x 7→ Ax is an isometry: since d2(Ax,Ay) =
‖A(x)−A(y)‖ = ‖A(x− y)‖ it is enough to check that ‖Ax‖ = ‖x‖, but this
is clear since ‖Ax‖2 = (Ax).(Ax) = xAtAx = xtIx = ‖x‖.

In fact these two kinds of isometries generate the full group of isometries.
If T : R2 → R2 is any isometry, let v = T (0). Then T1 = t−v ◦ T is an
isometry which fixes the origin. Thus it remains to show that any isometry
which fixes the origin is in fact linear. But you showed in Prelims Geometry
that any such isometry of Rn must preserve the inner product (because
it preserves the norm and you can express the inner product in terms of
the norm). It follows such an isometry takes an orthonormal basis to an
orthonormal basis, from which linearity readily follows. (Note that this
argument works just as well in Rn.)

13Unless it is explicitly stated otherwise, we will always take Rn to be a metric space
equipped with the d2 metric.
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Example 7.3. Let Sn = {x ∈ Rn+1 : ‖x‖2 = 1} be the n-sphere (so S1 is a
circle and S2 is the usual sphere). ClearlyOn+1(R) acts by isometries on Sn.
In fact you can show that Isom(Sn) = On+1(R). To prove this one needs to
show that any isometry of Sn extends to an isometry of Rn+1 which fixes
the origin.

We have already seen that on Rn the metrics d1, d2, d∞, although differ-
ent, induce the same notion of convergence and continuity14 . The notion
of isometry is thus in some sense too rigid a notion of equivalence if these
are the notions we are primarily interested in. A weaker, but often more
useful, notion of equivalence is the following:

Definition 7.4. Let f : X → Y be a continuous function between metric
spaces X and Y . We say that f is a homeomorphism if there is a continuous
function g : Y → X such that f ◦ g = idY and g ◦ f = idX . If there is
a homeomorphism between two metric spaces X and Y we say they are
homeomorphic.

Remark 7.5. Note that the definition implies that f is bijective as a map of
sets but it is not true in general15 that a continuous bijection is necessarily
a homeomorphism. To see this, consider the spaces X = [0, 1) ∪ [2, 3] and
Y = [0, 2]. Then the function f : X → Y given by

f(x) =

{
x, if x ∈ [0, 1)

x− 1, if x ∈ [2, 3]

is a bijection and is clearly continuous. Its inverse g : Y → X is however
not continuous at 1 – the one-sided limits of g as x tends to 1 from above
and below are 1 and 2 respectively.

Example 7.6. The closed disk B̄(0, 1) of radius 1 in R2 is homoemorphic to
the square [−1, 1] × [−1, 1]. The easiest way to see this is inscribe the disk
in the square and stretch the disk radially out to the square. One can write
explicit formulas for this in the four quarters of the disk given by the lines
x± y = 0 to check this does indeed give a homeomorphism.

The open interval (−1, 1) is homeomorphic to R: an explicit homeomor-
phism is given by f(x) = x/(1− |x|), which has inverse g(x) = x/(1 + |x|).
It follows (using translation and scaling maps) that any open interval is
homeomorphic to R. Similarly, the function h(x) = 1/x shows that (0, 1)
and (1,∞) are homeomorphic, and from this one can see that the spaces R,
(a, b), (−∞, a) and (a,∞) are all homeomorphic for any a, b ∈ R with a < b.

14There is actually a slightly subtle point here – to know that (Rn, d1) and (Rn, d2) are
not isometric we would need to show that there is no bijective map α : Rn → Rn such that
d2(α(x), α(y)) = d1(x, y) for all x, y ∈ Rn.

15This is unlike the examples you have seen in algebra – the inverse of a bijective linear
map is automatically linear, and the inverse of a bijective group homomorphism is automat-
ically a homomorphism. Similarly, the inverse of a bijective isometry is also an isometry.
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8. COMPLETENESS

One of the important notions in Prelims analysis was that of a Cauchy
sequence. This is a notion, like convergence, which makes sense in any
metric space.

Definition 8.1. Let (X, d) be a metric space. A sequence (xn) in X is said
to be a Cauchy sequence if, for any ε > 0, there is an N ∈ N such that
d(xn, xm) < ε for all n,m ≥ N .

The following lemma establishes basic properties of Cauchy sequences
in an arbitrary metric space which you saw before for real sequences.

Lemma 8.2. Let (X, d) be a metric space.
(1) If (xn) is a convergent sequence then it is Cauchy.
(2) Any Cauchy sequence is bounded.

Proof. Suppose that xn → ` as n → ∞ and ε > 0 is given. Then there is an
N ∈ N such that d(xn, `) < ε/2 for all n ≥ N . It follows that if n,m ≥ N we
have

d(xn, xm) ≤ d(xn, `) + d(`, xm) < ε/2 + ε/2 = ε,

so that (xn) is a Cauchy sequence as required.
If (xn) is a Cauchy sequence, then taking ε = 1 in the definition, we see

that there is an N ∈ N such that d(xn, xm) < 1 for all n,m ≥ N . It follows
that if we set

M = max{1, d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN )}
then for all n ∈ N we have xn ∈ B(xN ,M) so that (xn) is bounded as
required. �

Part (1) of the lemma motivates the following definition:

Definition 8.3. A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges.

Example 8.4. One of the main results in Analysis I was that R is complete,
and it is easy to deduce from this that Rn is complete also (since a sequence
in Rn converges if and only if each of its coordinates converge).

On the other hand, consider the metric space (0, 1]: The sequence (1/n)
converges in R (to 0) so the sequence is Cauchy in R and hence also in (0, 1],
however it does not converge in (0, 1].

The previous example suggests a connection between completeness and
closed sets. One precise statement of this form is the following:

Lemma 8.5. Let (X, d) be a complete metric space and let Y ⊆ X . Then Y is
complete if and only if Y is a closed subset of X .

Proof. Note that if (xn) is a Cauchy sequence in Y then it is certainly a
Cauchy sequence in X . Since X is complete, (xn) converges in X , say
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xn → a as n → ∞. Thus (xn) converges in Y precisely when a ∈ Y . It fol-
lows that Y is complete if and only if it contains the limits of all sequences
(xn) in Y which converge inX . But Lemma 5.30 shows that the set of limits
of all sequences in Y is exactly Ȳ , hence Y is complete if and only if Ȳ ⊆ Y ,
that is, if and only if Y is closed.

�

Another useful consequence of completeness is that it guarantees certain
intersections of closed sets are non-empty:

Lemma 8.6. Let (X, d) be a complete metric space and suppose that D1 ⊇ D2 ⊇
. . . form a nested sequence of non-empty closed sets in X with the property that
diam(Dk)→ 0 as k →∞. Then there is a unique point w ∈ X such that w ∈ Dk

for all k ≥ 1.

Proof. For each k pick zk ∈ Dk. Then since the Dk are nested, zk ∈ Dl for
all k ≥ l, and hence the assumption on the diameters ensures that (zk) is a
Cauchy sequence. Let w ∈ X be its limit. Since Dk is closed and contains
the subsequence (zn+k)n≥0 it followsw ∈ Dk for each k ≥ 1. To see thatw is
unique, suppose thatw′ ∈ Dk for all k. Then d(w,w′) ≤ diam(Dk) and since
diam(Dk)→ 0 as k →∞ it follows d(w,w′) = 0 and hence w = w′. �

Remark 8.7. Notice that the property of a metric space being complete is not
preserved by homeomorphism – we have seen that (0, 1) is homeomorphic
to R but the former is not complete, while the latter is. This is because a
homeomorphism does not have to take Cauchy sequences to Cauchy se-
quences.

Example 8.8. Let Y = {z ∈ C : |z| = 1}\{1}. Then Y is homeomorphic
to (0, 1) via the map t 7→ e2πit, but their respective closures Ȳ and [0, 1]
however are not homeomorphic. (We will seem a rigorous proof of this
later using the notion of connectedness.) The metric spaces Y and (0, 1)
contain information about their closures in R2 which is lost when we only
consider the topologies the metrics give: the space Y has Cauchy sequences
which don’t converge in Y , but these all converge to 1 ∈ C, whereas in (0, 1)
there are two kinds of Cauchy sequences which do not converge in (0, 1)
– the ones converging to 0 and the ones converging to 1. The point here
is that given two Cauchy sequences we can detect if they converge to the
same limit without knowing what that the limit actually is: (xn) and (yn)
converge to the same limit if for all ε > 0 there is an N ∈ N such that
d(xn, yn) < ε for all n ≥ N . Using this idea one can define what is called
the completion of a metric space (X, d): this is a complete metric space (Y, d)

such which X embeds isometrically into as a dense16 subset. For example,
the real numbers R are the completion of Q.

Many naturally arising metric spaces are complete. We now give a im-
portant family of such: recall that ifX is any set, the spaceB(X) of bounded

16that is, Y is the closure of X .
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real-valued functions on X is normed vector space where if f ∈ B(X) we
define its norm to be ‖f‖∞ = supx∈X |f(x)|.

Theorem 8.9. LetX be a set. The normed vector space (B(X), ‖.‖∞) is complete.

Proof. Let (fn)n≥1 be a Cauchy sequence in B(X). Then we have for each
x ∈ X

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0,

as n,m → ∞. It follows that the sequence (fn(x)) is a Cauchy sequence of
real numbers and hence since R is complete it converges to a real number.
Thus we may define a function f : X → R by setting f(x) = limn→∞ fn(x).

We claim fn → f in B(X). Note that this requires us to show both that
f ∈ B(X) and fn → f with respect to the norm ‖.‖∞. To check these both
hold, fix ε > 0. Since (fn) is Cauchy, we may find an N ∈ N such that
‖fn− fm‖∞ < ε for all n,m ≥ N . Thus we have for all x ∈ X and n,m ≥ N

|fn(x)− fm(x)| ≤ ‖fn − fm‖ < ε.

But now letting n→∞we see that for anym ≥ N we have |f(x)−fm(x)| ≤
ε for all x ∈ X . But then for any such m we certainly have f − fm ∈ B(X)

so that17 f = fm+ (f − fm) ∈ B(X), and since ‖f − fm‖∞ ≤ ε for all m ≥ N
it follows fm → f as m→∞ as required.

�

As we already observed, if X is also a metric space then we can also
consider the space of bounded continuous functions Cb(X) on X . This is
a normed subspace of B(X), and the following theorem is a generalization
of the result you saw last year showing that a uniform limit of continuous
functions is continuous (the proof is essentially the same also).

Theorem 8.10. Let (X, d) be a metric space. The space Cb(X) is a complete
normed vector space.

Proof. Since we have shown in Theorem 8.9 thatB(X) is complete, by Lemma
8.5 we must show that Cb(X) is a closed subset of B(X). Let (fn) be a
Cauchy sequence of bounded continuous functions on X . By Theorem 8.9
this sequence converges to a bounded function f : X → R. We must show
that f is continuous. Suppose that a ∈ X and let ε > 0. Then since fn → f
there is an N ∈ N such that ‖f − fn‖∞ < ε/3 for all n ≥ N . Moreover,
if we fix n ≥ N then since fn is continuous, there is a δ > 0 such that
|fn(x)− fn(a)| < ε/3 for all x ∈ B(a, δ). But then for x ∈ B(a, δ) we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|
< ε/3 + ε/3 + ε/3 = ε.

It follows that f is continuous at a, and since a was arbitrary, f is a contin-
uous function as required.

�

17Recall from Lemma 3.8 that B(X) is a vector space!
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Remark 8.11. If X and Y are metric spaces, as we saw in Example 2.12, one
can also consider the space B(X,Y ) of bounded functions from X to Y ,
that is, functions f : X → Y such that f(X) is a bounded subset of Y , along
with its subspace Cb(X,Y ) of bounded continuous functions. These are
no longer normed vector spaces, but they are both complete metric spaces
provided Y is, as you are asked to show in the second problem sheet.

Lemma 8.12. (“WeierstrassM -test”): LetX be a metric space. Suppose that (fn)
is a sequence in Cb(X) and (Mn)n≥0 is a sequence of non-negative real numbers
such that ‖fn‖∞ ≤ Mn for all n ∈ Z≥0 and

∑
n≥0Mn exists. Then the series∑

n≥0 fn converges in Cb(X).

Proof. Let Sn =
∑N

k=0 fk be the sequence of partial sums. Since we know
Cb(X) is complete, it suffices to prove that the sequence (Sn)m≥0 is Cauchy.
But if n ≤ m then we have

‖Sm − Sn‖ ≤
m∑

k=n+1

‖fk‖ ≤
m∑

k=n+1

Mk,

and since
∑

k≥0Mk converges, the sum
∑m

k=n+1Mk tends to zero asm,n→
∞ as required. �

Finally, we conclude this section with a theorem which is extremely use-
ful, and is a natural generalization of a result you saw last year in construc-
tive mathematics. We first need some terminology:

Definition 8.13. Let (X, d) and (Y, d) be metric spaces and suppose that
f : X → Y . We say that f is a Lipschitz map (or is Lipschitz continuous) if
there is a constant K ≥ 0 such that

d(f(x), f(y)) ≤ Kd(x, y).

If Y = X and K ∈ [0, 1) then we say that f is a contraction mapping (or sim-
ply a contraction). Any Lipschitz map is continuous, and in fact uniformly
continuous, as is easy to check.

The reason for the restriction of the term contraction to maps from a
space to itself is the following theorem. The result is a broad generaliza-
tion of a result you saw before in the Constructive Mathematics course in
Prelims, which you will also see put to good use in the Differential Equa-
tions course this term.

Theorem 8.14. Let (X, d) be a nonempty complete metric space and suppose that
f : X → X is a contraction. Then f has a unique fixed point, that is, there is a
unique z ∈ X such that f(z) = z.

Proof. If y1, y2 ∈ X are such that f(y1) = y1 and f(y2) = y2 we have
d(y1, y2) = d(f(y1), f(y2)) ≤ Kd(y1, y2) so that (1 −K)d(y1, y2) ≤ 0. Since
K ∈ [0, 1) and the function d is nonnegative this is possible only if d(y1, y2) =
0 and hence y1 = y2. It follows that f has at most one fixed point.
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To see that f has a fixed point, fix a ∈ X and consider the sequence de-
fined by x0 = a and xn = f(xn−1) for n ≥ 1. We claim that (xn) converges
and that its limit z is the unique fixed point of f . Indeed if xn → z as n→∞
then since f is continuous we have

f(z) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = z.

Thus z is indeed a fixed point. Thus it remains to show that (xn) is conver-
gent. Since (X, d) is complete, we need only show that (xn) is Cauchy. To
see this this note first that for n ≥ 1 we have d(xn, xn−1) ≤ Kn−1d(f(a), a)
(by induction). But then if n ≥ m by the triangle inequality we have

d(xn, xm) ≤
n−m∑
k=1

d(xm+k, xm+k−1) ≤ d(a, f(a))Km
n−m∑
k=1

Kk−1

≤ d(a, f(a))

1−K
Km,

which clearly tends to 0 as n,m→∞. It follows (xn) is a Cauchy sequence
as required. �

Remark 8.15. This theorem is important not just for the statement, but be-
cause the proof shows us how to find the fixed point! (Or rather, at least
how to approximate it). The sequence (xn) in the proof converges to the
fixed point, and in fact does so quickly – if we start with an initial guess a,
and z is the actual fixed point, then d(xn, z) ≤ Kn.d(a, z).

Remark 8.16. It is worth checking to what extent the hypotheses of the the-
orem are necessary. One might think of a weaker notion of contraction, for
example: if f : X → X has the property that d(f(x), f(y)) < d(x, y) for all
x, y ∈ X then it is easy to see that f has at most one fixed point, but the
example f : [1,∞) → [1,∞) where f(x) = x + 1/x shows that such a map
need not have any fixed points.

The requirement thatX is complete is also clearly necessary: if f : (0, 1)→
(0, 1) is given by f(x) = x/2 clearly f is a contraction, but f has no fixed
points in (0, 1).

9. CONNECTED SETS

In this section we try to understand what makes a space “connected”.
There are in fact more than one approaches one can take to this question.
We will consider two, and show that for reasonably nice spaces the two
notions in fact coincide18.

The first definition we make tries to capture the fact that the space should
not “fall apart” into separate pieces. Since we can always write a space with
more than one element as a disjoint union of two subsets, we must take

18In particular, for the open subsets of the complex plane which are the sets we will be
most interested in for second part of the course, the two notions will coincide, but both
characterizations of connectedness will be useful.
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into account the metric, or at least the topology, of our space in making a
definition.

Example 9.1. Let X = [0, 1] and let A = [0, 1/2) and B = [1/2, 1]. Then
clearly X = A ∪ B so that X can be divided into two disjoint subsets.
However, the point 1/2 ∈ B has points in A arbitrarily close to it, which,
intuitively speaking, is why it is “glued” to A.

This suggests that we might say that a decomposition of metric space X
into two subsets A and B might legitimately show X to be disconnected if
no point of A was a limit point of B and vice versa. This is precisely the
content of our definition.

Definition 9.2. Suppose that (X, d) is a metric space. We say that X is
disconnected if we can write X = U ∪ V where U and V are nonempty
open subsets of X and U ∩ V = ∅. We say that X is connected if it is not
disconnected.

Note that if X = U ∪ V and U and V are both open and disjoint, then
U = V c is also closed, as is V . Thus U and V also contain all of their limit
points, so that no limit point of A lies in B and vice versa.

Remark 9.3. Note that if (X, d) is a metric space and A ⊆ X , then the condi-
tion that A is connected can be rewritten as follows: if U, V are open in X
and U ∩ V ∩A = ∅ then whenever A ⊆ U ∪ V , either A ⊆ U or A ⊆ V .

As the previous remark shows, there are a few ways of expressing the
above definition which are all readily seen to be equivalent. We record the
most common in the following lemma.

Lemma 9.4. Let (X, d) be a metric space. The following are equivalent.
(1) X is connected.
(2) If f : X → {0, 1} is a continuous function then f is constant.
(3) The only subsets of X which are both open and closed are X and ∅.

(Here the set {0, 1} is viewed as a metric space via its embedding in R, or equiva-
lently with the discrete metric.)

Proof. (1) ⇐⇒ (2): Let f : X → {0, 1} be a continuous function. Then
since the singleton sets {0} and {1} are both open in {0, 1} each of f−1(0)
and f−1(1) are open subsets of X which are clearly disjoint. It follows if
X is connected then one must be the empty set, and hence f is constant as
required. Conversely, if X is not connected then we may write X = A ∪ B
where A and B are nonempty disjoint open sets. But then the function
f : X → {0, 1} which is 1 on A and 0 on B is non-constant and by the
characterization of continuity in terms of open sets, f is clearly continuous.

(1) ⇐⇒ (3): If X is disconnected then we may write X = A ∪B where
A and B are disjoint nonempty open sets. But then Ac = B so that A is
closed (as is B = Ac) so that A and B proper sets of X which are both open
and closed. Conversely, if A is a proper subset of X which is closed and
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open then Ac is also a proper subset which is both closed and open so that
the decomposition X = A ∪Ac shows that X is disconnected. �

Example 9.5. If X = [0, 1] ∪ [2, 3] ⊂ R then we have seen that both [0, 1]
and [2, 3] are open in X , hence since X is their disjoint union, X is not
connected.

Lemma 9.6. Let (X, d) be a metric space.

i) Let {Ai : i ∈ I} be a collection of connected subsets of X such that⋂
i∈I Ai 6= ∅. Then

⋃
i∈I Ai is connected.

ii) If A ⊆ X is connected then if B is such that A ⊆ B ⊆ Ā, the set B is also
connected.

iii) If f : X → Y is continuous and A ⊆ X is connected then f(A) ⊆ Y is
connected.

Proof. For the first part, suppose that f :
⋃
i∈I Ai → {0, 1} is continuous.

We must show that f is constant. Pick x0 ∈
⋂
i∈I Ai. Then if x ∈

⋃
i∈I Ai

there is some i for which x ∈ Ai. But then the restriction of f to Ai is
constant since Ai is connected, so that f(x) = f(x0) as x, x0 ∈ Ai. But since
x was arbitrary, it follows that f is constant as required.

For the second part, consider B such that A ⊆ B ⊆ Ā, and suppose that
B ⊆ U ∪V where U and V are open inX and U ∩V ∩B = ∅. Then certainly
A ⊆ U ∪ V and A ∩ U ∩ V = ∅, so that A ⊆ U or A ⊆ V . By symmetry we
may assume A ⊆ U . But then A ⊆ V c since A ∩ U ∩ V = ∅ and since V c is
closed B ⊆ Ā ⊆ V c, and hence B ⊆ U , hence B is connected.

For the final part, note that since f is continuous, if f(A) ⊆ U ∪ V for
U and V open in Y with U ∩ V ∩ f(A) = ∅, then A ⊂ f−1(U) ∪ f−1(V ),
f−1(U) ∩ f−1(V ) ∩ A = ∅ and f−1(U), f−1(V ) are open in X . Since A is
connected it must lie entirely in one of f−1(U) or f−1(V ) and hence f(A)
must lie entirely in U or V as required. �

Remark 9.7. Notice that iii) in the previous Lemma implies that if X and
Y are homeomorphic, they if X is connected so is Y , and vice versa. Note
also that iii) allows us to generalize the characterization of connectedness
in terms of functions to the set {0, 1}. We say that a metric (or topologi-
cal) space is discrete if every point is an open set. It is easy to see that the
connected subsets of a discrete metric space are precisely the singleton sets,
thus any continuous function from a connected set to a discrete set must be
constant. This applies for example to sets such as N and Z, which will be
very useful for us later in the course.

Definition 9.8. Part i) of Lemma 9.6 has an important consequence: if
(X, d) is a metric space and x0 ∈ X , then the set of connected subsets of
X which contain x0 is closed under unions, that is, if {Ci : i ∈ I} is any col-
lection of connected subsets containing x0 then

⋃
i∈I Ci is again a connected
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subset containing x0. This means that

Cx0 =
⋃

C⊆X connected,
x0∈C

C,

is the largest19 connected subset of X which contains x0, in the sense that
any connected subset of X which contains x0 lies in Cx0 . It is called the
connected component of X containing x0. The space X is the disjoint union
of its connected components.

9.1. Connected sets in R.

Proposition 9.9. The real line R is connected.

Proof. Let U and V be open subsets of R such that R = U∪V and U∩V = ∅.
Suppose for the sake of a contradiction that both U and V are non-empty
so that we may pick x ∈ U and y ∈ V . By symmetry we may assume that
x < y (since U ∩ V = ∅ we cannot have x = y). Since [x, y] is bounded
and x ∈ U , if we let S = {z ∈ [x, y] : z ∈ U}, then c = sup(S) exists, and
certainly c ∈ [x, y]. If c ∈ U then c 6= y and as U is open there is some ε1 > 0
such that B(c, ε1) ⊆ U . Thus if we set δ = min{ε1/2, (y − c)/2} > 0 we
have c+ δ ∈ U ∩ [x, y] contradicting the fact that c is an upper bound for S.
Similarly if c ∈ V then there is an ε2 > 0 such that B(c, ε2) ⊆ V . But then
∅ = (c − ε2, c] ∩ U ⊇ (c − ε2, c] ∩ S, so that c − ε2 is an upper bound for S,
contradiction the fact that c is the least upper bound of S. It follows that
one of U or V is the empty set as required. �

Corollary 9.10. The real line R, every half-line (a,∞), (−∞, a), [a,∞) or (−∞, a]
and any interval are all connected subsets of R.

Proof. The previous proposition establishes that R is connected, and since
we say in Example 7.6 that every open interval (a, b) or open half-line
(a,∞), (−∞, a) is homeomorphic to R they are also connected. The re-
maining cases the follow from part ii) of Lemma 9.6. �

Exercise 9.11. Show that any interval or half-line is homeomorphic to one
of [0, 1], [0, 1) or (0, 1).

Lemma 9.12. Suppose that A ⊂ R is a connected set. Then A is either R, an
interval, or a half-line. Thus these are precisely the connected subsets of R.

Proof. Suppose that x, y ∈ A and x < y. We claim that [x, y] ⊆ A. Indeed if
this is not the case then there is some c with x < c < y and c /∈ A. But then
A =

(
A ∩ (−∞, c)

)
∪ ((A ∩ (c,∞)

)
so that A is not connected.

19This is the analogous to the definition of the interior of a subset S of X , which is the
largest open subset of X contained in S.
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If we let sup(A) = +∞ if A is not bounded above and inf(A) = −∞ if A
is not bounded below, then by the approximation property it follows that

(inf(A), sup(A)) =
⋃

x,y∈A
x≤y

[x, y] ⊆ A,

so thatA is an interval or half-line as required. (The inf(A) and sup(A) may
or may not lie inA, leading to open, closed, or half-open intervals and open
or closed half-lines.) �

Proposition 9.13. (Intermediate Value Theorem.) Let f : [a, b]→ R be a contin-
uous function. Then the image of f is an interval in R. In particular, f takes every
value between f(a) and f(b).

Proof. Since [a, b] is connected, its image must be connected, and hence by
the above it is an interval. The in particular claim follows. �

Remark 9.14. Note that for the Intermediate Value Theorem we only needed
to know that [a, b] was connected and that a connected subset A of R has
the property that if x ≤ y lie in A then [x, y] ⊆ A.

9.2. Path connectedness. A quite different approach to connectedness might
start assuming that, whatever a connected set should be, the closed interval
should be one20.

Definition 9.15. Let (X, d) be a metric space. A path in X is a continuous
function γ : [a, b] → X where [a, b] is any non-empty closed interval. If
x, y ∈ X then we say there is a path between x and y if there is a path
γ : [a, b] → X such that γ(a) = x and γ(b) = y. We say that the metric
space X is path-connected if there is a path between any two points in X .
Note that since every closed interval [a, b] is homeomorphic to [0, 1] one can
equivalently require that paths are continuous functions γ : [0, 1] → X . In
the subsequent discussion we will, for convenience, impose this condition.

There are a number of useful operations on paths: Given two paths γ1, γ2

inX such that γ1(1) = γ2(0) we can form the concatenation γ1 ?γ2 of the two
paths to be the path

γ1 ? γ2(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2

γ2(2t− 1), 1/2 ≤ t ≤ 1

Finally, if γ : [0, 1] → X is a path, then the opposite path γ− is defined by
γ−(t) = γ(1− t).

Definition 9.16. There is a notion of path-component for a metric space: Let
us define a relation on points in X as follows: Say x ∼ y if there is a path
from x to y in X . The constant path γ(t) = x (for all t ∈ [0, 1]) shows that

20Since we’ve seen that the closed interval is connected according to our previous defi-
nition, it shouldn’t be too surprising that we will readily be able to see our second notion
of connectedness implies the first. The subtle point will be that it is actually in general a
strictly stronger condition.
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this relation is reflexive. If γ is a path from x to y then γ− is a path from
y to x, so the relation is symmetric. Finally if γ1 is a path from x to y and
γ2 is a path from y to z then γ1 ? γ2 is a path from x to z, so the relation is
transitive. It follows that ∼ is an equivalence relation and its equivalence
classes, which partition X , are known as the path components of X .

We now relate the two notions of connectedness.

Proposition 9.17. Let (X, d) be a metric space. If X is path-connected then it is
connected. If X is an open subset of V where V is a normed vector space, then X
is path-connected if it is connected.

Proof. Suppose that X is path-connected. To see X is connected we use the
characterization of connectedness in terms of functions to {0, 1}. Consider
such a function f : X → {0, 1}. We wish to show that f is constant, that is,
we need to show that if x, y ∈ X then f(x) = f(y). But Z is path-connected,
so there is a path γ : [0, 1] → X such that γ(0) = x and γ(1) = y. But then
f ◦ γ is a continuous function from the connected set [0, 1] to {0, 1} so that
f ◦ γ must be constant. But then f(x) = f ◦ γ(0) = f ◦ γ(1) = f(y) as
required.

Now suppose that X is open in V where V is a normed vector space.
Let x0 be a point in X and let P be its path component. Then if v ∈ P ,
since X is open, there is an open ball B(v, r) ⊆ Z. Given any point w in
B(v, r) we have the path γw(t) = tw + (1 − t)v from v to w, and hence
concatenating a path from x0 to v with γv we see that w lies in P . It follows
that B(v, r) ⊆ P so that P is open in V . But since X is the disjoint union of
its path components, it follows that if Z is connected it must have at most
one path-component and so is path-connected as required. �

Remark 9.18. Note that it is easy to see that if (X, d) is path-connected and
f : X → Y is continuous, then the image of X under f is a path-connected
subset of Y : if y1 = f(x1) and y2 = f(x2) are in the image of f , then if we
pick a path γ : [0, 1] → X from x1 to x2 in X , clearly f ◦ γ is a path from y1

to y2 in f(X).

Example 9.19. In general it is not true that a connected set need be path-
connected. One reason the two notions differ is because, as well as being
connected, the closed interval is what is known as compact, a notion we will
examine shortly. One consequence of this is that if (X, d) is a metric space
and A ⊂ X is a path-connected subspace then Ā, the closure of A need not
be path-connected, despite the fact that we have already seen that it must
be connected.

Consider the subset A ⊆ R2 given by

A = {(t, sin(1/t) : t ∈ (0, 1]}.

Since A is clearly the image of (0, 1] under a continuous map, it is a con-
nected subset of R2, and hence its closure Ā = A ∪ ({0} × [−1, 1]) is also
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connected. We claim however that Ā is not path-connected. To see infor-
mally why this is the case, suppose γ : [0, 1]→ R2 has a path from (1, sin(1))
to (0, 1). Then the first and second coordinates x(t) and y(t) of γ are con-
tinuous functions on a closed interval, so they are uniformly continuous.
By the intermediate value theorem x(t) must take every value between 1
and 0, but then y(t) must oscillate between −1 and 1 infinitely often which
violates uniform continuity.

10. COMPACTNESS

One of the most fundamental theorems in Prelims Analysis was the Bolzano-
Weierstrass theorem on bounded sequences of real numbers. It is the key
technical ingredient in a number of the main theorems in the whole se-
quence – the completeness of the reals, the fact that a continuous function
on a closed interval is bounded and attains its bounds, the equivalence of
continuity and uniform continuity for functions on a closed interval all rely
on it.

In this section we study metric spaces in which the conclusion of the
Bolzano-Weierstrass theorem holds, and show that not only do many of
the results from Prelims which relied on the Bolanzo-Weierstrass theorem
extend to these metric spaces (which is perhaps unsurprising) but also that
the class of such spaces is quite rich – it includes for example all closed
bounded subsets of Rn for any n.

Definition 10.1. Let (X, d) be a metric space. We say that X is (sequen-
tially21) compact if any sequence (xn)n≥1 inX contains a subsequence (xnk)k≥1

for which there exists an ` ∈ X with xnk → ` as k →∞.

Example 10.2. You saw last year that any bounded sequence of real num-
bers contains a convergent subsequence. This readily implies that any
closed interval [a, b] ⊂ R is compact: Indeed if (xn) is a sequence in [a, b]
then clearly it is bounded, so it contains a convergent subsequence (xnk),
say xnk → ` as k → ∞. But since limits preserve weak inequalities (or in
the language we have now developed, [a, b] is a closed subset of R and so
contains its limit points) we must have ` ∈ [a, b] and hence [a, b] is compact.

It is also easy to see that (a, b], [a, b) and (a, b) are not compact when b > a:
Take (a, b] for example: a tail of the sequence (a + 1/n)n≥1 will lie in (a, b]
and any subsequence of it will converge to a /∈ (a, b] since (a + 1/n)n≥1

does, thus (a+ 1/n)n≥1 has no subsequence which converges in (a, b].

We now establish some basic properties of compact metric spaces:

Lemma 10.3. Let (X, d) be a metric space and suppose Z ⊆ X is a subspace.
(1) If Z is compact then Z is closed and bounded.

21The word “compact” is in general used for a notion which is discussed in Section 11.
For metric spaces the two notions are equivalent. [Aside: the two notions make sense for
arbitrary topological spaces, where they turn out not to be equivalent.]
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(2) If X is compact and Z is closed in X then Z is compact.

Proof. Suppose that Z is compact in X . If a ∈ X is a limit point of Z then
there is a sequence (zn) in Z which converges to a. Since Z is compact,
the sequence (zn) has a subsequence (znk) which converges in Z. But since
the limit of a subsequence of a convergent sequence is just the limit of the
original sequence we have

a = lim
n→∞

zn = lim
k→∞

znk ∈ Z.

Thus Z contains all its limit points and hence Z is closed. Next suppose
that Z is unbounded in X . Then picking z0 ∈ Z we may find zn ∈ Z with
d(z0, zn) ≥ n for each n ∈ N. But then if (zn) had a convergent subsequence
(znk) say znk → b ∈ Z then we would have d(znk , z0) ≥ nk ≥ k and also
d(znk , z0) → d(b, z0), which is a contradiction, since a convergent sequence
of real numbers must be bounded.

Now suppose that X is compact and Z is closed in X . Then if (zn) is a
sequence in Z, since X is compact it has a convergent subsequence (znk)
tending to c ∈ X say. But then c is a limit point of Z and since Z is closed
c ∈ Z, so that (zn) has a convergent subsequence in Z as required.

�

The next Lemma essentially shows that compactness, like connected-
ness, is a topological property:

Lemma 10.4. Let (X, d) and (Y, d) be metric spaces and suppose that f : X →
Y is continuous. Then if X is compact, f(X) is a compact subspace of Y . In
particular, if X is compact and f : X → R is continuous, then f is bounded and
attains its bounds.

Proof. Suppose that (yn) is a sequence in f(X) ⊆ Y . Then for each n we
may pick an xn ∈ X such that f(xn) = yn. SinceX is compact the sequence
(xn) contains a convergent subsequence (xnk) say, with xnk → a as k →∞
for some a ∈ X . But then since f is continuous we have ynk = f(xnk) →
f(a) ∈ f(X) ⊆ Y , so that (yn) has a convergent subsequence whose limit
lies in f(X) as required.

For the final sentence, note that f(X) is a compact subset of R and hence
by Lemma 10.3 it is closed and bounded. But this precisely means that the
image of f is bounded and attains its bounds as required. �

Remark 10.5. The previous Lemma also shows that compactness is a prop-
erty which is preserved by homoeomorphisms: If f : X → Y is a contin-
uous bijection with g : Y → X its continuous inverse, then if X is com-
pact f(X) = Y must be compact, while conversely if Y is compact then
X = g(Y ) must be compact.

Theorem 10.6. Let f : X → Y be a continuous function and suppose that X is a
compact metric space. Then f is uniformly continuous.
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Proof. Suppose for the sake of a contradiction that f is not uniformly con-
tinuous. Then there exists some ε > 0 such that for each n ∈ N we may
find an, bn ∈ X such that d(an, bn) < 1/n but d(f(an), f(bn)) ≥ ε. Now
since X is compact, (an) contains a convergent subsequence, (ank) say, and
since d(ank , bnk) ≤ 1/nk ≤ 1/k it follows limk→∞ ank = limk→∞ bnk = c say.
But since f is continuous at c there is a δ > 0 such that for all x ∈ X with
d(c, x) < δ, we have d(f(c), f(x)) < ε/2. As both (ank) and (bnk) tend to c,
for all sufficiently large k we will have d(c, ank), d(c, bnk) < δ and hence

ε ≤ d(f(ank), f(bnk)) ≤ d(f(ank), f(c)) + d(f(c), f(bnk)) < ε/2 + ε/2 < ε,

which is a contradiction. Thus f must be uniformly continuous as required.
�

10.1. Compactness and products: a generalization of the Bolzano-Weierstrass
theorem. Recall from Example 2.11 that if (X, dX) and (Y, dY ) are metric
spaces then their Cartesian product X × Y can be equipped with a metric
by setting

d((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)}.
Example 10.7. Writing Rn = Rn−1×R this gives us an inductive definition
of a metric on Rn. Check that the metric one obtains is the metric d∞. Since
we know this metric is equivalent to the metrics d1 and d2 if we can charac-
terize the compact subsets of Rn equipped with the metric d = d∞ then we
also characterize the compact subsets of Rn with respect to either d1 and d2.

Using the above definition of a metric on products of metric spaces makes
the following result easy to check:

Lemma 10.8. Let X and Y be metric spaces. A sequence ((xn, yn))n≥1 in X ×Y
converges if and only if (xn) converges in X and (yn) converges in Y .

Proof. It is clear from the definitions that the projection maps pX : X×Y →
X and pY : X×Y → Y are continuous (in fact they are Lipschitz continuous
with Lipschitz constant 1). It follows that if (xn, yn) converges inX×Y then
(xn) and (yn) must converge.

Conversely, if xn → a ∈ X and yn → b ∈ Y then

d((xn, yn), (a, b)) = max{d(xn, a), d(yn, b)} → 0

as n→∞ so that (xn, yn)→ (a, b) as n→∞ as required. �

Proposition 10.9. LetX and Y be compact metric spaces. ThenX×Y is compact.

Proof. Let (xn, yn) be a sequence in X × Y . As X is compact, the sequence
(xn) in X has a convergent subsequence (xnk), say xnk → a ∈ X as k →∞.
But then consider the sequence (ynk) in Y . Since Y is compact this in turn
has a convergent subsequence (ynkr )r≥1, say ynkr → b ∈ Y . But since (xnkr )
is a subsequence of xnk is also converges to a and hence by the previous
Lemma (xnkr , ynkr ) → (a, b) and (xn, yn) has a convergent subsequence as
required. �
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It is now easy to give a generalisation of the Bolzano-Weierstrass theo-
rem to Rn.

Theorem 10.10. (Bolzano-Weierstrass in Rn). A subset X ⊆ Rn is compact if
and only if it is closed and bounded.

Proof. We have already seen in Lemma 10.3 that if X is compact in Rn then
it must be closed and bounded, thus it remains to show that any such set
is compact. But if X is bounded then there is an R > 0 such that22 X ⊆
B(0, R) = [−R,R]n. Now by the Bolzano-Weierstrass theorem for R, any
closed interval such as [−R,R] is compact. But then using Proposition 10.9
and induction it follows readily that [−R,R]n is compact, but then again
by Lemma 10.3 it follows that X , being a closed subset of a compact metric
space, is compact as required. �

Remark 10.11. Note that in a general metric space X , a closed bounded
subset of X need not be compact. An example of this is given by taking
Cb(R) the normed space of continuous bounded functions on the real line
equipped with ‖.‖∞ the supremum metric. If we let

f(t) =

{
2t, 0 ≤ t ≤ 1/2;

2(1− t), 1/2 ≤ t ≤ 1

and set fn(t) = f(t+ n) the each fn is bounded and in fact has ‖fn‖∞ = 1,
so that they all lie in B̄(0, 1). However, if n 6= m it is easy to see that
‖fn − fm‖∞ = 1, so that (fn) has no convergent subsequence and thus
B̄(0, 1) is not compact, despite clearly being closed and bounded in Cb(R).

10.2. Boundedness, completeness and compactness. In a general metric
space the property of being bounded is much weaker than one’s instincts
initially imagine. One can show for example that any metric space is home-
omorphic to a metric space which is bounded. There is however a property
stronger than boundedness which is often more useful:

Definition 10.12. A metric spaceX is said to be totally bounded if, given any
ε > 0 there is a finite set {x1, x2, . . . , xn} in X such that X =

⋃n
i=1B(xi, ε).

Lemma 10.13. Let X be a compact metric space. Then X is totally bounded.

Proof. Suppose that r > 0 is given and that, for the sake of a contradiction,
no such set S exists. We claim there exists a sequence (ai) in X such that
d(ai, aj) ≥ r for every i 6= j. Indeed suppose we have {a1, . . . , an} such that
d(ai, aj) ≥ r whenever 1 ≤ i 6= j ≤ n (one can begin with the empty set).
Our assumption that the union of any finite collection of open r-balls can-
not cover X , implies that there must exist an an+1 such that d(an+1, ai) ≥ r
for all i, (1 ≤ i ≤ n), and hence we may construct the sequence (ai) induc-
tively as required. But any such sequence clearly cannot contain a conver-
gent subsequence, and hence we have a contradiction.

�

22Recall that the “open balls” in the d∞ metric are hypercubes.
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Proposition 10.14. Let X be a compact metric space. Then X is complete.

Proof. Suppose that (xn) is a Cauchy sequence in X . Since X is compact,
(xn) has a convergent subsequence (xnk) say, so that xnk → a ∈ X as k →
∞. We claim that xn → a as n → ∞. Indeed given ε > 0 there is some
N ∈ N such that for all n,m ≥ N we have d(xn, xm) < ε/2. Now since
xnk → a as k →∞ we may find a K such that d(xnk , a) < ε/2 for all k ≥ K
and nK > N . But then if n ≥ N we have

d(xn, a) ≤ d(xn, xnK ) + d(xnK , a) < ε/2 + ε/2 = ε,

as required. �

Remark 10.15. We have shown that if X is a compact metric space then it is
complete and totally bounded. In fact any complete and totally bounded
metric space is compact as we will now show.

Lemma 10.16. Let X be a totally bounded metric space and suppose that (xn) is
a sequence in X . Then (xn) has a subsequence which is a Cauchy sequence.

Proof. Since X is totally bounded, for every n ∈ Z≥0 there is a finite collec-
tion of open balls {Bn

i : i ∈ Mn} each with radius 2−n whose union is all
of X (thus the indexing set Mn is finite). Since M0 is finite, there is some
i0 ∈ M0 such that S0 = {n ∈ N : xn ∈ B0

i0
} is infinite. Now suppose induc-

tively that S0 ⊇ S1 ⊇ . . . ⊇ Sk−1 have been chosen, each an infinite subset
of N with the property that for each j = 0, 1, . . . , k − 1 there is an ij ∈ Mj

with xn ∈ Bj
ij

for all n ∈ Sj . Thus all the xns with n ∈ Sj lie in an open ball
of radius 2−j . Then since Sk−1 is infinite and Mk is finite there is an ik ∈ Nk

such that
Sk = {n ∈ Sk−1 : xn ∈ Bk

ik
}.

is infinite. Proceeding in this way23 we get an infinite nested collection
of sequences of integers Sk = {nk1 < nk2 < . . .} such that for each k,
(xnki

)i≥1 is a subsequence of (xn) which lies in Bk
ik

, and hence the terms
of this subsequence are at distance at most 2−n+1 from each other. But then
the subsequence (yk) where yk = xnkk

must be a Cauchy subsequence of
(xn): If m ≥ k then by construction all the terms ym = xnmm are such that
nmm ∈ Sm ⊆ Sk and hence they are at distance at most 2−k+1 apart from each
other and hence since 2−k+1 → 0 as k →∞ it follows that (yk) is Cauchy as
required. �

Remark 10.17. The same “divide and conquer” proof strategy can be used
to prove that [−R,R]n is sequentially compact in Rn, as you can find in
many textbooks. The additional subtlety of this proof is that we need an

23This part of the proof is similar to the argument we used to prove that a product of
compact metric spaces X × Y is compact. We need a new trick here however – the di-
agonal argument – to deal with the fact that now we obtain an infinite number of nested
subsequences.
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infinite nested sequence of subsequences, and hence have to use a version
of Cantor’s diagonal argument to finish the proof.

Corollary 10.18. A complete and totally bounded metric space X is compact.

Proof. By Lemma 10.16, any sequence (xn) inX has a Cauchy subsequence.
Since X is complete, this subsequence converges, and hence X is compact
as required. �

11. COMPACTNESS AND OPEN SETS

We have already noted that compactness is a “topological property” of
metric spaces, in the sense that two metric spaces which are homeomorphic
have to either both be compact or both be non-compact. This might lead
one to consider if the notion of compactness can be expressed in terms of
open sets. In fact this is possible, though we wont quite prove the equiv-
alence of the definition we give in terms of open sets to the one we began
with in terms of convergence of subsequences24. For clarity in this section
we will refer to the notion of compactness given by the existence of con-
vergent subsequences as sequential compactness. The key definition is the
following:

Definition 11.1. Let X be a metric space and U = {Ui : i ∈ I} a collection
of open subsets of X . We say that U is an open cover of X if X =

⋃
i∈I Ui. If

J ⊆ I is a subset such that X =
⋃
i∈J Ui = X then we say that {Ui : i ∈ J}

is a subcover of U and if |J | <∞ then we say that it is a finite subcover. Recall
that if Z is a subspace of a metric space X , then the open sets of Z are of
the form Z ∩ U where U is an open subset of X . In this situation it is often
convenient to think of an open cover of Z as a collection U = {Ui : i ∈ I}
of open subsets of X whose union contains (but need not be equal to) the
subspace Z.

We can now give the definition of compactness in terms of open covers:

Definition 11.2. A metric space (X, d) is compact if every open cover U =
{Ui : i ∈ I} has a finite subcover.

For example, any finite subset of a metric space is compact. To have some
more non-trivial examples, we prove the following:

Proposition 11.3. (Heine-Borel.) The interval [a, b] is compact.

Proof. Let U = {Ui : i ∈ I} be an open cover of [a, b] (where we view the Ui
as open subsets of R). Then set S = {x ∈ [a, b] : [a, x] lies in a finite union of Uis}.
Then S is a non-empty subset of [a, b] (because a ∈ S). Let c = sup(S).
We may find a Ui0 ∈ U such that c ∈ Ui0 and hence a δ > 0 with (c −
δ, c + δ) ⊆ Ui0 . Now by the approximation property there is a d ∈ S with

24One should be a little careful here – the two notions are equivalent for metric spaces,
but for general topological spaces they are distinct.
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c − δ < d ≤ c, and so there is a finite subset of I , say i1, . . . , in, such that
[a, d] ⊆ Ui1 ∪ . . . ∪ Uin . But then clearly [a, c + δ) ⊆ (Ui1 ∪ . . . ∪ Uin) ∪ Ui0
so that [a, b] ∩ [a, c + δ) ⊆ S, which contradicts the definition of c unless
c = b ∈ S. But then U has a finite subcover as required.

�

It is easy to prove that a closed subset of a compact metric space is com-
pact, which combined with the previous proposition shows that any closed
bounded subset of R is compact (note we have already see this for sequen-
tially compact subsets of R). The next Proposition shows compactness im-
plies sequential compactness, hence all the results we have shown for such
metric spaces also apply to compact metric space. We first need a technical
lemma.

Lemma 11.4. Let (xn) be a sequence in a metric spaceX , and letAn = {xk : k ≥
n}. Then (xn) has a convergent subsequence if and only if

⋂
n≥1 Ān 6= ∅.

Proof. Suppose (xn) has a convergent subsequence (xnk), so that xnk →
` ∈ X as k → ∞. Then since for any m ∈ N all terms of the subsequence
(xnk+m)k≥1 lie inAm, it follows that ` ∈ Ām for allm, so that the intersection⋂
n≥1 Ān is non-empty.
Conversely, suppose that ` ∈

⋂
n≥1 Ān. Then we claim there is a subse-

quence of (xn) tending to `: Certainly since ` ∈ Ā1, we may find an xn1 such
that d(xn1 , a) < 1. Now suppose that n1 < n2 < . . . < nk have been found
such that d(xnj , `) < 1/j for each j with 1 ≤ j ≤ k. Then since ` ∈ Ānk+1

we may find an nk+1 > nk with d(xnk+1
, `) < 1/(k + 1). This subsequence

(xnk) clearly converges to ` so we are done. �

Proposition 11.5. Let (X, d) be a compact metric spaces. Then every sequence in
X has a convergent subsequence, that is, X is sequentially compact.

Proof. Suppose that (xn) is a sequence in X . For each n ∈ N let An = {xk :
k ≥ n}. Then Ā1 ⊇ Ā2 ⊇ . . . form a nested sequence of non-empty closed
subsets of X . Now by Lemma 11.4 we know that (xn) has a convergent
subsequence if and only if

⋂
n≥1 Ān is non-empty. Thus if we suppose for

the sake of contradiction that the sequence (xn) has no convergent subse-
quence it follows that

⋂
n≥1 Ān = ∅. But then if we let Un = X\Ān we

have X =
⋃
n≥1 Un, so that {Un : n ≥ 1} is an open cover of X . However

U1 ⊆ U2 ⊆ . . . and each is a proper subset of X , thus this cover clearly has
no finite subcover, contradicting the assumption that X is compact. �

We end this section with a simple Lemma on compact sets which are
contained in an open subset of a metric space, which will be useful later in
the course:

Lemma 11.6. Let (X, d) be a metric space and suppose K ⊆ U ⊆ X where K is
compact and U is open. Then there is an ε > 0 such that for any z ∈ K we have
B(z, ε) ⊆ U .
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Proof. Suppose for the sake of contradiction that no such ε exists. Then for
each n ∈ N we may find sequences xn ∈ K and yn ∈ U c with |xn − yn| <
1/n. But since K is sequentially compact we can find a convergent subse-
quence of (xn), say (xnk) which converges to p ∈ K. But then it follows
(ynk) also converges to p, which is impossible since p ∈ K ⊆ U while
(ynk) is a sequence in the U c and as U c is closed it must contain all its limit
points. �

Exercise 11.7. Use the technique of the proof of the previous Lemma to
show that if Ω is an open subset of Rn then it can be written as a countable
union of compact subsets, Ω =

⋃∞
n=1Kn.

11.1. Compactness and function spaces.

Definition 11.8. If X is a metric spaces and F is collection of real-valued
function on X , we say that F is equicontinuous if, for any ε > 0 there is
a δ (which only depends on ε) such that whenever d(x, y) < δ we have
|f(x) − f(y)| < ε for every f ∈ F . A collection of continuous functions F
on X is uniformly bounded if it is bounded as a subset of the normed vector
space (Cb(X), ‖.‖∞).

Theorem 11.9. (Arzela-Ascoli): Let X be a compact metric space and let F ⊆
C(X) be a collection of continuous functions on X which are equicontinuous and
uniformly bounded. Then any sequence (fn) in F contains a subsequence (fnk)
which converges uniformly on X .

Proof. To prove the theorem it suffices to check that F is totally bounded in
C(X), since then the completeness of C(X) implies that F̄ is complete and
totally bounded25 and hence compact.

Thus we must show that F is totally bounded. Suppose that ε > 0 is
given. Then since F is equicontinuous we know that there is a δ > 0 such
that if x, y ∈ X are such that d(x, y) < δ then |f(x) − f(y)| < ε/6. Now
X is compact and hence totally bounded, so that we may find a finite set
{x1, x2, . . . , xn} ⊆ X such that X =

⋃n
i=1B(xi, δ). Now since F is uni-

formly bounded, there is some N > 0 such that f(X) ⊆ [−N,N ] for each
f ∈ F . Pick an integer M > 0 so that 2N/M < ε/6 and divide [−N,N ]
into M equal parts Ij , 1 ≤ j ≤ M . Let A denote the set of nM functions
α : {1, . . . , n} → {1, . . . ,M} and for each such α, pick a function fα ∈ F (if
it exists) such that f(xi) ∈ Iα(i). We claim that the open balls B(fα, ε) cover
F as α runs over those functions α for which fα exists.26

Indeed suppose that f ∈ F . Then for each i ∈ {1, 2, . . . , n}we must have
f(xi) ∈ Iα(i) for someα : A. Consider d(f, fα) (which exists by assumption).
For each x ∈ X then there is some i ∈ {1, 2, . . . , n} such that x ∈ B(xi, δ).

25It is a straight-forward exercise to check that if A is a totally bounded subspace of a
metric space X then Ā is also totally bounded.

26It may be helpful to draw a picture in the case X = [a, b].
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Thus
d(f(x), fα(x)) ≤ d(f(x), f(xi)) + d(f(xi), fα(xi)) + d(fα(xi), fα(x)

≤ ε/6 + |Iα(i)|+ ε/6 < ε/2.

Since this holds for all x ∈ X it follows that ‖f − fα‖∞ ≤ ε/2 < ε and hence
f ∈ B(fα, ε). Thus F is totally bounded as required.

�

Remark 11.10. The previous theorem implies closed bounded equicontinu-
ous subsets of C(X) are compact. In fact the converse is also true. Since
a compact subspace F of any metric space is automatically closed and
bounded, one only needs to show that F is equicontinuous. To prove this
one uses the that if F is compact subset then it is totally bounded, com-
bined with the fact that since X is compact any f ∈ C(X) is uniformly
continuous.

Remark 11.11. The are various ways to generalise the above theorem to
spaces X which are not compact. For example, if Ω is an open subset of
Rn, one can show that Ω can be written as a countable union Ω =

⋃∞
n=1Kn

where eachKn is a closed bounded subset of Ω and then deduce that if (fn)
is a sequence in an equicontinuous uniformly bounded family of functions
F ⊆ Cn(Ω), there is a subsequence (fnk) which converges uniformly on any
compact subset of Ω.
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12. THE COMPLEX PLANE: TOPOLOGY AND GEOMETRY.

For the rest of the course we will study functions on C the complex plane,
focusing on those which satisfy the complex analogue of differentiability.
We will thus need the notions of convergence and limits which C possesses
because it is a metric space (in fact normed vector space).

In this regard, the complex plane is just R2 and we have seen that there
are a number of norms on R2 which give us the same notion of convergence
(and open sets). The additional structure of multiplication which we equip
R2 with when we view it as the complex plane however, makes it natural
to prefer the Euclidean one |z| =

√
(Re(z)2 + Im(z)2. More explicitly, if

z = (a, b) and w = (c, d) are vectors in R2, then we define their product to
be

z.w = (ac− bd, ad+ bc).

It is straight-forward, though a bit tedious, to check that this defines an
associative, commutative multiplication on R2 such that every non-zero
element has a multiplicative inverse: if z = (a, b) 6= (0, 0) has z−1 =
(a,−b)/(a2 + b2). The number (1, 0) is the multiplicative identity (and so is
denoted 1) while (0, 1) is denoted i (or j if you’re an engineer) and satisfies
i2 = −1. Since (1, 0) and (0, 1) form a basis for R2 we may write any com-
plex number z uniquely in the form a+ ib where a, b ∈ R. We refer to a and
b as the real and imaginary parts of z, and denote them by <(z) and =(z) or
Re(z) and Im(z) respectively.

Definition 12.1. If z = (a, b) we write z̄ = (a,−b) for the complex conjugate of
z. It is easy to check that zw = z̄.w̄ and z + w = z̄+ w̄. The Euclidean norm
on R2 is related to the multiplication of complex numbers by the formula
|z| =

√
zz̄, which moreover makes it clear that |zw| = |z||w|. (We call such

a norm multiplicative). If z 6= 0 then we will also write arg(z) ∈ R/2πZ for
the angle z makes with the positive half of the real axis.

Because subsets of the complex plane can have a much richer structure
than subsets of the real line, the topological material we developped in the
first half of the course will be indespensible in understanding complex dif-
ferentiable functions. We will need the notions of completeness, compact-
ness, and connectedness, along with the basic notions of open and closed
sets.

Definition 12.2. A connected open subset D of the complex plane will be
called a domain. As we have already seen, an open set in C is connected if
and only if it is path-connected.

We will also use the notations of closure, interior and boundary of a sub-
set of the complex plane. The diameter diam(X) of a set X is sup{|z − w| :
z, w ∈ X}. A set is bounded if and only if it has finite diameter. Recall that
the Heine-Borel theorem in the case of R2 ensures that a subset X ⊆ C is
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compact (that is, every open covering has a finite subcover) if and only if it
is closed and bounded.

Definition 12.3. Because the complex numbers form a field, we can, for a
function f : U → C defined on some subset U ⊆ C which is a neighbour-
hood of a ∈ U , define the (complex) derivative of f at a to be

lim
z→a

f(z)− f(a)

z − a
,

exactly as in the real variable case. We say that f is complex differentiable at
a, and if f is complex differentiable at every a ∈ U then we say that f is
holomorphic on U .

It is straight-forward to check from this definition that the basic results
about real derivatives, such as the product rule and quotient rule, carry
over to the complex setting – the proofs are identical to the real case (except
|.|means the modulus of a complex number rather than the absolute value
of a real number).

Proposition 12.4. Let U be an open subset of C and let f, g be complex-valued
functions on U .

(1) If f, g are differentiable at z0 ∈ U then f + g and fg are differentiable at
z0 with

(f + g)′(z0) = f ′(z0) + g′(z0); (f.g)′(z0) = f ′(z0).g(z0) + f(z0).g′(z0).

(2) If f, g are differentiable at z0 and g(z0) 6= 0 and g′(z0) 6= 0 then f/g is
differentiable at z0 with

(f/g)′(z0) =
f ′(z0)g(z0)− f(z0)g′(z0)

g′(z0)2
.

(3) If U and V are open subsets of C and f : V → U and g : U → C where
f is complex differentiable at z0 ∈ V and g is complex differentiable at
f(z0) ∈ U then g ◦ f is complex differentiable at z0 with

(g ◦ f)′(z0) = g′(f(z0)).f ′(z0).

Proof. These are proved in exactly the same way as they are for a function
of a single real variable. �

Remark 12.5. Just as for a single real variable, the basic rules of differentia-
tion stated above allow one to check that polynomial functions are differen-
tiable: Using the product rule and induction one sees that zn has derivative
nzn−1 for all n ≥ 0 (as a constant obviously has derivative 0). Then by
linearity it follows every polynomial is differentiable.
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13. THE EXTENDED COMPLEX PLANE

In this section we introduce the extended complex plane. As a set, the
extended complex plane C∞ is simply the complex plane union a single ad-
ditional point denoted∞. Although we cannot extend the algebraic prop-
erties of the complex plane27 to C∞, we will be able to extend its topological
and analytic properties. To understand the metric/topological structure of
C∞ we will use a construction from real geometry, while to understand
what it should mean for a function on C∞ to be differentiable, we will use
complex geometry.

Example 13.1. We start with a simpler example which is the real analogue
of the above approaches to construct an “extended real line”: We wish to
build a natural space which added a point at infinity to the real line R. If we
embed the real line into the plane as the set R of points {(1, t) : t ∈ R}, then
clearly every line through the origin (0, 0) intersects R in a unique point,
except for the y-axis, which is parallel to R. Thus the set of lines in the
plane R2 naturally adds a “point at infinity” to the real line. Now any line
L through the origin is spanned by any of its nonzero elements, and we can
use this to give ourselves parametrizations of part of the space of all lines:
So long as L is not the y-axis, it has a unique element of the form (1, t),
and so long as it is not the x-axis it has a unique point with coordinates
(s, 1). This gives us two systems of parametrizations (both defined almost
everywhere) attaching L to t or s, and the two parametrizations are related
(where they are both defined) by s = 1/t.

Alternatively, if one draws the circle tangent to the y-axis and the line
R, one sees that each line through the origin intersects that circle in two
points, the origin and one other, except for the y-axis. Thus we can natu-
rally identify the lines in the plane (and so our extended real line) with a
circle.

[Alternatively, another slightly more abstract way to see that the space of lines
through the origin is a circle, is to note that any line intersects the unit circle in
two opposite points, thus we can identify the space of lines in R2 with the space
we obtain by identifying opposite points. This might sound abstract, but if you
consider the restriction to the unit circle of the map z 7→ z2 on R2 (identified as
C), it sends opposite points on the circle to the same point, so this shows the space
we get is just a circle again!]

Let us now examine how similar ideas will let us construct the extended
complex plane C∞. We begin with the analogue of the circle construction,
which is known as the Riemann sphere.

13.1. Stereographic projection. Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
be the unit sphere of radius 1 centred at the origin in R3, and view the
complex plane as the copy of R2 inside R3 given by the plane {(x, y, 0) ∈

27Though it is sometimes useful to have conventions such as z +∞ =∞
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FIGURE 1. The extended real line.

R3 : x, y ∈ R}. Let N be the “north pole” N = (0, 0, 1) of the sphere S2.
Given a point z ∈ C, there is a unique line passing through N and z, which
intersects S\{N} in a point S(z). This map gives a bijection between C
and S\{N}. Indeed, explicitly, if (X,Y, Z) ∈ S\{N} then it corresponds
to28 z ∈ C where z = x + iy with x = X/(1 − Z) and y = Y/(1 − Z).
Correspondingly, given z = x+ iy ∈ C we have

S(z) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
=

1

1 + |z|2
(
2<(z), 2=(z), |z|2 − 1

)
.

(13.1)

Thus if we set S(∞) = N , then we get a bijection between C∞ and S2,
and we use this identification to make C∞ into a metric space (and thus we
obtain a notion of continuity for C∞): As a subset of R3 equipped with the
Euclidean metric S2 is naturally a metric space.

28Any point on the line between N and (X,Y, Z) can be written as t(0, 0, 1) + (1 −
t)(X,Y, Z) for some t ∈ R. It is then easy to calculate where this line intersects the plane
given by the equation z = 0.
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Lemma 13.2. The metric induced on C∞ by S is given by

d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
d(z,∞) =

2√
1 + |z|2

.

for any z, w ∈ C.

Proof. First consider the case where z, w ∈ C. Since S(z), S(w) ∈ S2 we see
that ‖S(z)− S(w)‖2 = 2− 2S(z).S(w). But using (13.1) we see that

S(z).S(w) =
2(zw̄ + z̄w) + (|z|2 − 1)(|w|2 − 1)

(1 + |z|2)(1 + |w|2)

=
2(zw̄ + z̄w) + zz̄ww̄ − zz̄ − ww̄ + 1

(1 + |z|2)(1 + |w|2)

= 1− 2|z − w|2

(1 + |z|2)(1 + |w|2)

so that

d2(S(z), S(w))2 =
4|z − w|2

(1 + |z|2)(1 + |w|2)

as required. The case where one or both of z, w is equal to∞ is similar but
easier. �

Remark 13.3. Note that in particular, S(z) tends to N = (0, 0, 1) if and only
if |z| → ∞, thus our notation z → ∞ now takes on a literal meaning, con-
sistent with its previous definition. One way we can use this is as follows:
If we take f(z) = 1/z defined on C\{0} and extend it to a map f̃ : C→ C∞
by setting f̃(0) =∞, then f̃ is a continuous function on the entire complex
plane.

The geometry of the sphere nicely unites lines and circles in the plane as
the following Lemma shows:

Lemma 13.4. The map S : C → S induces a bijection between lines in C and
circles in S which contain N , and a bijection between circles in C and circles in S
not containing N .

Proof. A circle in S is given by the intersection of S with a plane H . Any
plane H in R3 is given by an equation of the form aX + bY + cZ = d, and
H intersects S provided a2 + b2 + c2 > d2. Indeed to see this note that H
intersects the sphere in a circle if and only if its distance to the origin is less
than 1. Since the closest vector to the origin on H is perpendicular to the
plane it is a scalar multiple of (a, b, c), so it must be d

a2+b2+c2
(a, b, c), hence

H is at distance d2/(a2 + b2 + c2) from the origin and the result follows.
Moreover, clearly H contains N if and only if c = d.



METRIC SPACES AND COMPLEX ANALYSIS. 47

FIGURE 2. The stereographic projection map.

Now from the explicit formulas for S we see that if z = x+ iy then S(z)
lies on this plane if and only if

2ax+ 2by + c(x2 + y2 − 1) = d(x2 + y2 + 1)

⇐⇒ (c− d)(x2 + y2) + 2ax+ 2by − (c+ d) = 0

Clearly if c = d this is the equation of a line, while conversely if c 6= d it is
the equation of a circle in the plane. Indeed if c 6= d, we can normalize and
insist that c− d = 1, whence our equation becomes

(13.2) (x+ a)2 + (y + b)2 = (a2 + b2 + c+ d)

that is, the circle with centre (−a,−b) and radius
√
a2 + b2 + c+ d. Note

that the condition the plane intersected S becomes the condition that a2 +
b2 + c+ d > 0, that is, exactly the condition that Equation (13.2) has a non-
empty solution set.

To complete the proof, we need to show that all circles and lines in C are
given by the form of the above equation. When c = dwe get 2(ax+by−c) =
0, and clearly the equation of every line can be put into this form. When
c 6= d as before assume c − d = 1, then letting a, b, c + d vary freely we see
that we can obtain circle in the plane as required. �

13.2. The projective line. Our second approach to the extended complex
plane is via the projective line P1: this is, as a set, simply the collection
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of one-dimensional subspaces of C2. Although we cannot readily draw a
picture of these as we could in the real case, the same analysis we did in
that setting extends to the complex one: If e1, e2 denote the standard basis
of C2 then we have two subsets of P1, each naturally in bijection with C. If
we set U0 = P1\C.e1 and U1 = P1\Ce2, then we have maps i0, i∞ : C → P1

given by i0(z) = C.(ze1 + e2) and i∞(z) = C.(e1 + ze2) whose images are
U0 and U1 respectively. Given a nonzero vector (z, w) ∈ C2 we will write
[z, w] ∈ P1 for the line it spans. (The numbers z, w are often called the
homogeneous coordinates of [z, w]. They are only defined up to simultaneous
rescaling.)

Thus P1 is covered by two pieces U0 and U∞ whose union is all of P1. We
can use this to make P1 a topological space: we say that V is an open subset
of P1 if and only if V ∩ U0 and V ∩ U∞ are identified with open subsets
of C via the bijections i0 and i1 respectively. It is a good exercise to check
that this does indeed define a topology on P1 (in which both U0 and U∞ are
open, since C and C\{0} are open in C. We however will take a more direct
approach: Note that we can identify P1 with C∞ using the map i0 : C→ P1

extending it to C∞ by sending ∞ to Ce1 and we can thus transport the
metric on C∞ (which of course we obtained in turn from our identification
on C∞ with S2) to that on P1. Perhaps surprisingly, this metric has a natural
expression in terms of the Hermitian form 〈·, ·〉 on C2 as the next Lemma
shows:

Lemma 13.5. The metric induced on P1 by its identification with C∞ is given by

d(L1, L2) = 2

√
1− |〈v, w〉|

2

‖v‖2‖w‖2

where v ∈ L1\{0} and w ∈ L2\{0}.

Proof. Suppose L1 = [z, 1] and L2 = [w, 1]. Then the formula in the state-
ment of the Lemma gives

d(L1, L2) = 2

√
1− |zw̄ + 1|2

(1 + |z|2)(1 + |w2)

= 2

√
1 + |z|2 + |w|2 + |z|2|w|2 − |z|2|w|2 − zw̄ − z̄w − 1

(1 + |z|2)(1 + |w|2)

= 2

√
|z − w|2

(1 + |z|2)(1 + |w|2
=

2|z − w|√
1 + |z|2

√
1 + |w|2

The case when L2 =∞ = Ce1 is similar but easier. �

One advantage of thinking of C∞ as the projective line is that we can use
the charts U0 and U∞ to define what it means for a function f on C∞ to be
holomorphic:
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Definition 13.6. Suppose that f : W → P1 is a continuous function on an
open subset W of P1, and let L ∈ W . Suppose that L ∈ Up and f(L) ∈ Uq
where p, q ∈ {0,∞}. Then f−1(Uq)∩Up is an open set in Up ⊂ P1, which via
ip (or rather its inverse) we can identify with an open subset V of C, and
its image under f lies in Uq which we can identify with C via i−1

q . Thus f
yields a continuous function f̃ : V → C, where f̃ = i−1

q ◦ f ◦ ip and we say
f is holomorphic at L if f̃ is holomorphic at ip(z) = L.

f−1(Uq) ∩ Up
f // Up

i−1
q

��
V ⊆ C

f̃ //

ip

OO

C
Since most points in P1 lie in both U0 and U∞ the above definition seems

ambiguous. In fact, where there is a choice, it does not matter what which
of U0 or U∞ you pick. This is because i−1

0 ◦ i∞(z) = i−1
∞ ◦ i0(z) = 1/z for all

z ∈ C\{0} and the function 1/z is complex differentiable with complex dif-
ferentiable inverse (itself!) on C\{0}. This fact and the chain rule combine
to show that the definition is independent of any choices. The essential
point is that if f(z) is complex differentiable, then so are f(1/z), 1/f(z) and
1/f(1/z) wherever they are defined.

Example 13.7. Consider the example of f(z) = 1/(z2 +1) viewed as a func-
tion f : C = U0 → P1, where we extend it to a function on all of C by con-
tinuity, so that f(0) = ∞. We claim that f is in fact complex differentiable.
To check this near 0 we must write f(z) in the form [1 : f∞(z)] and check if
f∞ is complex diffentiable. For z 6= 0, by definition f(z) = [1/(z2 + 1) : 1],
thus since [1/(z2 + 1) : 1] = [1 : z2 + 1] we see that function f∞(z) = z2 + 1
which is clearly complex differentiable at z = 0 as required.

You can check using this definition that a holomorphic function f : C →
P1 are precisely the meromorphic functions, and with a bit more work show
that the holomorphic functions f which are defined on all of P1 are exactly
the set of rational functions.

Recall that we have identified C∞with the projective line P1. The general
linear group GL2(C) acts on C2 in the natural way, and this induces an
action on the set of lines in C. We thus get an action of GL2(C) on P1, and
so on the extended complex plane. Explicitly, if v = (z1, z2)t spans a line
L = C.v then if g ∈ GL2(C) is given by a matrix

g =

(
a b
c d

)
we see that

g(L) = C.g(v) = C
(
az1 + bz2

cz1 + dz2

)
.
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In particular, using our embedding i0 : C→ P1 we see that

g(i0(z)) = C.g
(
z
1

)
= C.

(
az + b
cz + d

)
= C.

(
az+b
cz+d

1

)
= i0(

az + b

cz + d
).

Note that f(−d/c) = ∞ and f(∞) = a/c, as is easily checked using the
fact that∞ = [1 : 0] ∈ P1.

Definition 13.8. The induced maps z 7→ az+b
cz+d from the extended com-

plex plane to itself are known as Mobius maps or Mobius transformations.
Since they come from the action of GL2(C) on P1 they automatically form
a group. Note this means that every Mobius transformation is a bijection
of the extended complex plane to itself, and moreover its inverse is also a
Mobius transformation. In particular, since rational functions on C yield
holomorphic functions on C∞, every Mobius transformation gives an in-
vertible holomorphic function on C∞.

Mob = {f(z) =
az + b

cz + d
: ad− bc 6= 0}.

Note that if we rescale a, b, c, d by the same (nonzero) scalar, then we get
the same transformation. In group theoretic terms, the map from GL2(C)
to Mob has a kernel, the scalar matrices, thus Mob is a quotient group of
GL2(C). As a quotient group it is usually denoted PGL2(C) the projective
general linear group.

Any Mobius transformation can be understood as a composition of a
small collection of simpler transformations, as we will now show. This
can be useful because it allows us to prove certain results about all Mobius
transformations by checking them for the simple transformations.

Definition 13.9. A transformation of the form z 7→ az where a 6= 0 is called
a dilation. A transformation of the form z 7→ z+ b is called a translation. The
transformation z 7→ 1/z is called inversion. Note that these are all Mobius
transformations, and the inverse of a dilation is a dilation, the inverse of
a translation is a translation, while inversion is an involution and so is its
own inverse.

Lemma 13.10. Any Mobius transformation can be written as a composition of
dilations, translations and an inversion.

Proof. Let G denote the set of all Mobius transformations which can be ob-
tained as compositions of dilations, translations and inversions. The set
G is a subgroup of Mob. We wish to show it is the full group of Mobius
transformations.

First note that any transformation of the form z 7→ az+b is a composition
of the dilation z 7→ az and the translation z 7→ z + b. Moreover, if f(z) =
az+b
cz+d is a Mobius transformation and c = 0 then f(z) = (a/d)z+ (b/d) (note
if c = 0 then ad− bc 6= 0 implies d 6= 0) and so is a composition of a dilation
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and a translation. If c 6= 0 then we have

(13.3)
az + b

cz + d
=

(a/c)(cz + d) + (b− da/c)
cz + d

=
a

c
+ (b− d/a)

1

cz + d
.

Now z 7→ 1
cz+d is the composition of an inversion with the map z 7→ cz+ d,

and so lies in G. But then by equation (13.3) we have f(z) is a composition
of this map with a dilation and a translation, and so f lies inG. Since f was
an arbitrary transformation with c 6= 0 it follows G = Mob as required. �

Remark 13.11. The subgroup of Mob generated by translations and dilations
is the group of C-linear affine transformations Aff(C) = {f(z) = az + b :
a 6= 0} of the complex plane. It is the stablizer of∞ in Mob.

Remark 13.12. One should compare the statement of the previous Lemma
with the theory or reduced row echelon form in Linear Algebra: any invert-
ible 2 × 2 matrix will have the identity matrix as its reduced row echelon
form, and the elementary row operations correspond essentially to the sim-
ple transformations which generate the Mobius group. This can be used to
give an alternative proof of the Lemma.

As an example of how we can use this result to study Mobius transfor-
mations, we prove the following:

Lemma 13.13. Let f : C∞ → C∞ be a Mobius transformation. Then f takes
circles to circles. (Here we view C∞ as S2 so that by Lemma 13.4 a circle in C∞ is
a line or a circle in C).

Proof. Since a line in C is given by the equation =(az) = s where s ∈ R and
|a| = 1, while a circle is given by the equation |z−a| = r for a ∈ C, r ∈ R>0,
it is easy to check that any dilation or translation takes a line to a line and a
circle to a circle.

The case of z 7→ 1/z is more interesting. One way to show it preserves
lines and circles is to use the fact that these are both just circles viewed on
the Riemann sphere. A direct calculation shows that the map z 7→ 1/z =
z̄/|z|2 corresponds to the map (x, y, z) 7→ (x,−y,−z), which is just the rota-
tion by π about the x-axis, which is an isometry and so certainly preserves
circles on unit sphere.

�

Exercise 13.14. Let a, b ∈ C be distinct complex numbers and let k ∈ (0, 1].
Then the locus of complex numbers satisfying |z − a| = k.|z − b| is a line if
k = 1 and is a circle otherwise.

Solution: Let f(z) = (z − a)/(z − b). Since a 6= b this is a Mobius map. The
condition that |z−a| = k|z−b| is just that |f(z)| = k, thus the locus of points
satisfying this condition is the image of the circle of radius k centred at the
origin under the Mobius map f−1(z) = (az−b)/(z−1). Since we have seen
Mobius maps take lines and circles to lines and circles, this image must be
a line or a circle. Since f−1(1) = ∞, the image is a circle if k < 1 and a line
if k = 1.
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14. COMPLEX DIFFERENTIABILITY AND THE CAUCHY-RIEMANN
EQUATIONS

We begin by recalling one way of defining the derivative of a real-valued
function:

Definition 14.1. Suppose that E ⊆ R and f : E → R is a function. If E is a
neighbourhood of x0 ∈ R then we say that f is differentiable at x0 if there
is a real number α such that for all x ∈ E we have

f(x) = f(x0) + α(x− x0) + ε(x)|x− x0|,
where ε(x) → ε(x0) = 0 as x → x0. If α exists it is unique and we write
α = f ′(x0).

Remark 14.2. Note that rearranging the above equation we have, for x 6=
a, |ε(x)| = |f(x)−f(a)

x−a − α|, thus the condition that ε(x) → 0 as x → a is

equivalent to limx→a
f(x)−f(a)

x−a = α. This also shows the uniqueness of α.
Note also that if E is not a neighbourhood of a, then the above definition

still makes sense, but more precise terminology is often used. For example
if E = [a, b] with a < b and we take x0 = a then we say f has a right-hand
derivative at x0 if limx→a(f(x)−f(a))/(x−a) exists as x→ awith x ∈ [a, b].

The above formulation of the definition of the derivative is a precise for-
mulation of the statement that a function is differentiable at a point a if
there is a “best linear approximation”, or tangent line, to f near x0 – that is,
the function x 7→ f(x0) + f ′(x0).(x−x0). (The condition that the error term
ε(x)|x − x0| goes to zero faster than x tends to x0 since ε(x) also tends to
zero as x tends to x0 is the rigorous meaning given to the adjective “best”.)
This has the advantage that it generalizes immediately to many variables:

Definition 14.3. Suppose that E ⊆ R2 is an open set, and f : E → R2. Then
we say that f is differentiable at a ∈ E if there is a linear map T : R2 → R2

such that
f(z) = f(a) + T (z − a) + ε(x)‖z − a‖

where ε(z)→ ε(a) = 0 as z → a. If such a map T exists it is unique, and we
denote it as Df(a) (or sometimes Dfa. It is known as the total derivative29 of
f at a.

One can prove the uniqueness ofDfa directly, but it is more illuminating
to understand the relation of α to the partial derivatives: If v ∈ R2 we define
the directional derivative of f at a in the direction v to be

∂vf(a) = lim
t→0

f(a+ t.v)− f(a)

t
,

(if this limit exists). When f is differentiable at a with derivative T , then it
follows from the definitions that t−1(f(a+t.v)−f(a)) = T (v)±ε(t.v)‖v‖ →

29As opposed to the partial derivatives.
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T (v) as t→ 0, so the directional derivative of f at a all exist. In particular if
z = (x, y) and we write f(z) = (u(x, y), v(x, y))) the directional derivatives
in the direction of the standard basis vectors e1 and e2 are just (∂xu, ∂xv)
and (∂yu, ∂yv). Thus we see that if T exists then its matrix with respect to
the standard basis is just given by(

∂xu ∂yu
∂xv ∂yv

)
that is the matrix of T is just the Jacobian matrix of the partial derivatives of f
(and hence the total derivative is uniquely determined, as asserted above).

We are now ready to define what it means for f : U → C a function on
an open subset U of C, to be complex differentiable: We simply require that
the linear map T is complex linear, or in other words, that T is given by
multiplication by a complex number f ′(a):

Definition 14.4. A function f : U → C on an open subset U of C is complex
differentiable at a ∈ U if there exists a complex number f ′(a) such that

f(z) = f(a) + f ′(a).(z − a) + ε(z).|z − a|,
where as before ε(z)→ ε(a) = 0 as z → a.

Remark 14.5. If a function f : U → C on an open subsetU of C is everywhere
complex differentiable on U we say it is holomorphic on U . We will use the
terms “complex differentiable” and “holomorphic” interchangeably. (The
term “analytic” is also commonly used, we will come back to that term
later.)

Since the standard basis corresponds to {1, i}, since (r + is)(x + iy) =
(rx− sy) + i(sx+ ry), the matrix of the linear map given by multiplication
by w = r + is is just (

r s
−s r

)
This gives us our first important result about complex differentiability:

Lemma 14.6. (Cauchy-Riemann equations): If U is an open subset of C and
f : U → C, then f is complex differentiable at a ∈ U if and only if it is real-
differentiable and the partial derivatives satisfy the equations:

∂xu = ∂yv, ∂xv = −∂yu.

Proof. This follows immediately from the definitions above. Note that it
also shows that the complex derivative satisfies f ′(a) = ∂xf = ∂xu + i∂xv
and f ′(a) = 1

i ∂yf = 1
i (∂yu+ i∂yv). �

Remark 14.7. Since the operation of multiplication by a complex number w
is a composition of a rotation (by the argument of w) and a dilation (by the
modulus of w) the matrix of the corresponding linear map is, up to scalar,
a rotation matrix. The Cauchy-Riemann equations just capture this fact for
the matrix of the total (real) derivative of a complex differentiable function.
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A subtlety of real-differentiability in many variables is that it is possible
for the partial derivatives of a function to exist without the function being
differentiable in the sense of Definition 14.3. In most reasonable situations
however, the following theorem shows that this does not happen:

Theorem 14.8. Let U be an open subset of R2 and f : U → R2. Let f have
components f1, f2 so that f = (f1, f2)t. If, for i = 1, 2, the partial derivatives
∂xfi, ∂yfi exist and are continuous at z0 ∈ U then f is differentiable at z0.

The proof of this (although it is not hard – one only needs the defini-
tions and the single-variable mean-value theorem) is not part of this course.
For completeness, a proof is given in the Appendix. Combining this the-
orem with the Cauchy-Riemann equations gives a criterion for complex-
differentiability:

Theorem 14.9. Suppose that U is an open subset of C and let f : U → C be a
function. If f is differentiable as a function of two real variables with continu-
ous partial derivatives satisfying the Cauchy-Riemann equations on U , then f is
complex differentiable on U .

Proof. Since the partial derivatives are continuous, Theorem 14.8 shows
that f is differentiable as a function of two real variables, with total de-
rivative given by the matrix of partial derivatives. If f also satisfies the
Cauchy-Riemann equations, then by Lemma 14.6 it follows it is complex
differentiable as required. �

Example 14.10. The previous theorem allows us to show that the complex
logarithm is a holomorphic function – up to the issue that we cannot define
it continuously on the whole complex plane! The function z 7→ ez is not
injective, since ez+2nπi = ez for all n ∈ Z thus it cannot have an inverse
defined on all of C. However, since ex+iy = ex(cos(y) + i sin(y)), it follows
that if we pick a ray through the origin, say B = {z ∈ C : =(z) = 0,<(z) ≤
0}, then we may define Log : C\B → C by setting Log(z) = log(|z|) + iθ

where θ ∈ (−π, π] is the argument of z. Clearly eLog(z) = z, while Log(ez)
differs from z by an integer multiple of 2πi.

We claim that Log is complex differentiable: To show this we use Theo-
rem 14.9. Indeed the function L(x, y) = (log(

√
x2 + y2), θ) = (L1, L2) has

∂xL1 =
x

x2 + y2
, ∂yL1 =

y

x2 + y2
,

∂xL2 = − y

x2 + y2
, ∂yL2 =

x

x2 + y2
.

where in calculating the partial derivatives of L2 we used that it is equal to
arctan(y/x) in (−π/2, π/2) (and one can similarly use other inverse trigon-
metric functions in the rest of the complex plane). Examining the formulae
we see that the partial derivatives are all continuous, and obey the Cauchy-
Riemann equations, so that Log is indeed complex differentiable.
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14.1. Harmonic functions. Recall that the two-dimensional Laplace oper-
ator ∆ is the differential operator ∂2

x + ∂2
y (defined on functions f : R2 → R

which are twice differentiable in the sense that their partial derivatives are
again differentiable). A function which is in the kernel of the Laplace oper-
ator is said to be harmonic, that is, a function u : D → R defined on an open
subset D of R2 is harmonic if ∆(u) = ∂2

xu+ ∂2
yu = 0.

If we work over the complex numbers, then the Laplacian can be factor-
ized30 as

∆ = (∂x + i∂y)(∂x − i∂y) = (∂x − i∂y)(∂x + i∂y).

The two first-order differential operators ∂x+i∂y and ∂x−i∂y are closely re-
lated to the Cauchy-Riemann equations, as we now show, which yields an
important connection between complex-differentiable functions and har-
monic functions.

Definition 14.11. The Wirtinger (partial) derivatives are defined to be ∂z =
1
2(∂x − i∂y) and ∂z̄ = 1

2(∂x + i∂y). By the equation above, we have ∆ =
4∂z∂z̄ = 4∂z̄∂z (as operators on twice continuously differentiable func-
tions).

Remark 14.12. Notice that, as you study in Differential Equations, to obtain
D’Alembert’s solution to the one-dimensional wave equation, one factors
∂2
x − ∂2

y = (∂x − ∂y)(∂x + ∂y), and then performs the change of coordinates
η = x+ y, ξ = x− y. Over the complex numbers, the above factorization of
∆ shows that we can analyze the Laplacian in a similar way.

Exercise 14.13. Show that if T : C → C is any real linear map (that is, view-
ing C as R2 we have T : R2 → R2 is a linear map) then there are unique
a, b ∈ C such that T (z) = az + bz̄. (Hint: note that the map z 7→ az + bz̄ is
R-linear. What matrix does it correspond to as a map from R2 to itself?)

Lemma 14.14. Let U be an open subset of C and let f : U → C. Then f satisfies
the Cauchy-Riemann equations if and only if ∂z̄f = 0.

Proof. Let f(z) = u(z) + iv(z) where u and v are real-valued. Then we have

∂z̄f = (∂x + i∂y)(u+ iv) = (∂xu− ∂yv) + i(∂xv + ∂yu),

thus the result follows by taking real and imaginary parts. �

Corollary 14.15. Suppose thatU is an open subset of C and f : U → C is complex
differentiable and f(z) = u(z) + iv(z) are its real and imaginary parts. If u and
v are twice continuously31 differentiable then they are harmonic on U . Moreover
any function g : U → R is harmonic if it is twice continuously differentiable and
∂z(g) is complex differentiable.

30Acting on functions which are twice continuously differentiable, the two first order
factors commute.

31That is, all of their second partial deriviatives exist and are continuous.
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Proof. The previous Lemma shows that if f is complex differentiable then
∂z̄f = 0. Since the Laplacian ∆ is equal to 4∂z∂z̄ it follows that

∆(<(f)) = <(∆(f)) = <(4∂z∂z̄(f)) = 0,

so that <(f) is harmonic. Similarly we find =(f) is harmonic. The final part
is also immediate from the fact that ∆ = 4∂z̄∂z . �

Remark 14.16. We will shortly see that if f = u+iv is complex differentiable
then it is in fact infinitely complex differentiable. Since we have seen that
f ′ = ∂xf = 1

i ∂yf it follows that u and v are in fact infinitely differentiable
so the condition in the previous lemma on the existence and continuity of
their second derivatives holds automatically. For a proof of the fact that the
mixed partial derivatives of a twice continuously differentiable function are
equal, see the Appendix.

Corollary 14.15 motivates the following definition:

Definition 14.17. If u : R2 → R is a harmonic function, we say that v : R2 →
R is a harmonic conjugate of u if f(z) = u+ iv is holomorphic.

Notice that if u is harmonic, it is twice differentiable so that its partial
derivatives are continuously differentiable. It follows that a function v is a
harmonic conjugate precisely if the pair (u, v) satisfy the Cauchy-Riemann
equations. Thus provided we can integrate these equations to find v, a
harmonic conjugate will exist. We will show later that, at least when the
second partial derivatives are continuous, this can always been done locally
in the plane.

14.2. Power series. Another important family of examples are the func-
tions which arise from power series. We review here the main results about
complex power series which were proved in Analysis II last year:

Definition 14.18. Let (an)n≥0 be a sequence of complex numbers. Then we
have an associated sequence of polynomials sn(z) =

∑n
k=0 akz

k. Let S be
the set on which this sequence converges pointwise, that is

S = {z ∈ C : lim
n→∞

sn(z) exists}.

Note that since sn(0) = a0 we have 0 ∈ S so in particular S is nonempty. On
the set S, we can define a function s(z) = limn sn(z) =

∑∞
k=0 akz

k which
we call a power series. We define the radius of convergence R of the power
series

∑
k≥0 akz

k to be sup{|z| : z ∈ S} (or∞ if S is unbounded).
By convention, given any sequence of complex numbers (cn)n≥0 we write∑∞
k=0 ckz

k for the corresponding power series (even though it may be that
it converges only for z = 0).

We can give an explicit formula for the radius of convergence using the
notion of lim sup which we now recall:
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Definition 14.19. If (an)n≥0 is a sequence of real numbers, set sn = sup{ak :
k ≥ n} ∈ R ∪ {∞} (where we take sn = ∞ if {ak : k ≥ n} is not bounded
above). Then the sequence (sn) is either constant and equal to∞ or eventu-
ally becomes a decreasing sequence of real numbers. In the first case we set
lim supn an = ∞, whereas in the second case we set lim supn an = limn sn
(which is finite if (sn) is bounded below, and equal to −∞ otherwise).

Lemma 14.20. Let
∑

k≥0 akz
k be a power series, let S be the subset of C on which

it converges and let R be its radius of convergence. Then we have

B(0, R) ⊆ S ⊆ B̄(0, R).

The series converges absolutely on B(0, R) and if 0 ≤ r < R then it converges
uniformly on B̄(0, r). Moreover, we have

1/R = lim sup
n
|an|1/n.

Proof. Let L = lim supn |an|1/n ∈ [0,∞]. If L = 0 then the statement should
be understood to say that the radius of convergence R is∞, while if L =∞
we take R = 0. These two cases are in fact similar but easier than the case
where L ∈ (0,∞), so we will only give the details for the case where L is
finite and positive. Let sn = sup{|ak|1/k : k ≥ n} so that L = limn→∞ sn.

If 0 < s < 1/L we can find an ε > 0 such that (L + ε).s = r < 1. Thus
by definition, for sufficiently large n we have |an|1/n ≤ sn < L+ ε so that if
|z| ≤ s we have

|an||z|n ≤ [(L+ ε)|z|]n ≤ rn,
and hence by the comparison test,

∑∞
n=0 anz

n converges absolutely and
uniformly on B̄(0, s). It follows the power series converges everywhere in
B(0, 1/L).

On the other hand, if |z| > 1/L we can find an ε1 > 0 such that |z|(L −
ε1) = r > 1. But then for all k we have sk ≥ L since (sn) is decreasing,
and hence by the approximation property for each k we can find an nk ≥ k
with |ank |1/nk > sk − ε1 ≥ L− ε and hence |ankznk | > rk. Thus |anzn| has a
subsequence which does not tend to zero, so the series cannot converge. It
follows the radius of convergence of

∑∞
n=0 anz

n is 1/L as claimed.
�

The next lemma is a relatively straight-forward consequence of standard
algebra of limits style results:

Lemma 14.21. Let s(z) =
∑∞

k=0 akz
k and t(z) =

∑∞
k=0 bkz

k be power series
with radii of convergence R1 and R2 respectively and let T = min{R1, R2}.

(1) Let cn =
∑

k+l=n akbl, then the power series
∑∞

n=0 cnz
n has radius of

convergence at least T and if |z| < T we have
∞∑
n=0

cnz
n = s(z)t(z).
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Thus the product of power series is a power series.
(2) If s(z) and t(z) are as above, then

∑∞
k=0(ak+bk)z

k is a power series which
converges to s(z) + t(z) in B(0, T ), thus the sum of power series is again
a power series.

Proof. This was established in Prelims Analysis II. Note that T is only a
lower bound for the radius of convergence in each case – it is easy to find
examples where the actual radius of convergence of the sum or product is
strictly larger than T . �

The behaviour of a power series at its radius of convergence is in general
a rather complicated phenomenon. The following result, which we shall
not prove, gives some information however. Some of the ideas involved in
its proof are investigated in Problem Set 4.

Theorem 14.22. (Abel’s theorem:) Suppose that (an) is a sequence of complex
numbers and

∑∞
n=0 an exists. Then the series

∑∞
n=0 anz

n converges for |z| < 1
and

lim
r∈(−1,1)
r↑1

( ∞∑
n=0

anr
n
)

=

∞∑
n=0

an.

Proof. Note that since the series
∑∞

n=0 anz
n converges at z = 1 by assump-

tion, its radius of convergence is at least 1, so that the first statement holds.
For some idea of what goes into the proof of the second part, see the Prob-
lem sets. �

Proposition 14.23. Let s(z) =
∑

k≥0 akz
k be a power series, let S be the domain

on which it converges, and let R be its radius of convergence. Then power series
t(z) =

∑∞
k=1 kakz

k−1 also has radius of convergenceR and onB(0, R) the power
series s is complex differentiable with s′(z) = t(z). In particular, it follows that a
power series is infinitely complex differentiable within its radius of convergence.

Proof. This is proved in Prelims Analysis II. An alternative proof is given in
Appendix II. �

Example 14.24. The previous Proposition gives us a large supply of com-
plex differentiable functions. For example,

exp(z) =

∞∑
n=0

zn

n!
, cos(z) =

∞∑
n=0

(−1)n
z2n

(2n)!
, sin(z) =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

are all complex differentiable on the whole complex plane (since R =∞ in
each case). Note that one can use the above theorem to show that cos(z)2 +
sin(z)2 = 1 for all z ∈ C, but since sin(z) and cos(z) are not in general real,
this does not imply that | sin(z)| or | cos(z)| at most 1. (In fact it is easy to
check that they are both unbounded on C). Using what we have already
established about power series it is also easy to check that the complex
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sin function encompases both the real trigonometric and real hyperbolic
functions, indeed:

sin(a+ ib) = sin(a) cosh(b) + i cos(a) sinh(b).

Example 14.25. Let s(z) =
∑∞

n=1
zn

n . Then s(z) has radius of convergence 1,
and in B(0, 1) we have s′(z) =

∑∞
n=0 z

n = 1/(1− z), thus this power series
is a complex differentiable function which extends the function− log(1−z)
on the interval (−1, 1) to the open disc B(0, 1) ⊂ C. We will see later that
we will not be able to extend the function log to a complex differentiable
function on C\{0} – we will only be able to construct a “multi-valued”
extension.

Note that, slightly more generally, we can work with power series cen-
tred at an arbitrary point z0 ∈ C. Such power series are functions given by
an expression of the form

f(z) =
∑
n≥0

an(z − z0)n.

All the results we have shown above immediately extend to these more
general power series, since if

g(z) =
∑
n≥0

anz
n,

then the function f is obtained from g simply by composing with the trans-
lation z 7→ z − z0. In particular, the chain rule shows that

f ′(z) =
∑
n≥1

nan(z − z0)n−1.

15. BRANCH CUTS

It is often the case that we study a holomorphic function on a domain
D ⊆ C which does not extend to a function on the whole complex plane.

Example 15.1. Consider the square root “function” f(z) = z1/2. Unlike
the case of real numbers, every complex number has a square root, but just
as for the real numbers, there are two possiblities unless z = 0. Indeed if
z = x+ iy and w = u+ iv has w2 = z we see that

u2 − v2 = x; 2uv = y,

and so

u2 =
x+

√
x2 + y2

2
, v2 =

y +
√
x2 + y2

2
.

where the requirement that u2, v2 are nonnegative determines the signs.
Hence taking square roots we obtain the two possible solutions for w sati-
fyingw2 = z. (Note it looks like there are four possible sign combinations in
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the above, however the requirement that 2uv = y means the sign of u deter-
mines that of v.) In polars it looks simpler: if z = reiθ then w = ±r1/2eiθ/2.
Indeed this expression gives us a continuous choice of square root except
at the positive real axis: for any z ∈ C we may write z uniquely as reiθ

where θ ∈ [0, 2π), and then set f(z) = r1/2eiθ/2. But now for θ small and
positive, f(z) = r1/2eiθ has small positive argument, but if z = re(2π−ε)i we
find f(z) = r1/2e(π−ε/2)i, thus f(z) in the first case is just above the positive
real axis, while in the second case f(z) is just below the negative real axis.
Thus the function f is only continuous on C\{z ∈ C : =(z) = 0,<(z) > 0}.
Using Theorem 14.9 you can check f is also holomorphic on this domain.
The positive real axis is called a branch cut for the multi-valued function z1/2.
By chosing different intervals for the argument (such as (−π, π] say) we can
take different cuts in the plane and obtain different branches of the function
z1/2 defined on their complements.

We formalize these concepts as follows:

Definition 15.2. A multi-valued function or multifunction on a subset U ⊆
C is a map f : U → P(C) assigning to each point in U a subset32 of the
complex numbers. A branch of f on a subset V ⊆ U is a function g : V → C
such that g(z) ∈ f(z), for all z ∈ V . If g is continuous (or holomorphic)
on V we refer to it as a continuous, (respectively holomorphic) branch of
f . We will primarily be interested in branches of multifunctions which are
holomorphic.

Remark 15.3. In order to distinguish between multifunctions and functions,
it is sometimes useful to introduce some notation: if we wish to consider
z 7→ z1/2 as a multifunction, then to emphasize that we mean a multifunc-
tion we will write [z1/2]. Thus [z1/2] = {w ∈ C : w2 = z}. Similarly we
write [Log(z)] = {w ∈ C : ew = z}. This is not a uniform convention in the
subject, but is used, for example, in the text of Priestley.

Thus the square root z 7→ [z1/2] is a multifunction, and we saw above
that we can obtain holomorphic branches of it on a cut plane C\R where
R = {teiθ : t ∈ R≥0}. The point here is that both the origin and infinity as
“branch points” for the multifunction [z1/2].

Definition 15.4. Suppose that f : U → P(C) is a multi-valued function de-
fined on an open subset U of C. We say that z0 ∈ U is not a branch point
of f if there is an open disk33 D ⊆ U containing z0 such that there is a
holomorphic branch of f defined on D\{z0}. We say z0 is a branch point
otherwise. When C\U is bounded, we say that f does not have a branch

32We use the notation P(X) to denote the power set of X , that is, the set of all subsets of
X .

33In fact any simply-connected domain – see our discussion of the homotopy form of
Cauchy’s theorem.
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point at ∞ if there is a branch of f defined on C\B(0, R) ⊆ U for some
R > 0. Otherwise we say that∞ is a branch point of f .

A branch cut for a multifunction f is a curve in the plane on whose com-
plement we can pick a holomorphic branch of f . Thus a branch cut must
contain all the branch points.

Example 15.5. Another important example of a multi-valued function which
we have already discussed is the complex logarithm: as a multifunction we
have Log(z) = {log(|z|) + i(θ + 2nπ) : n ∈ Z} where z = |z|eiθ. To obtain
a branch of the multifunction we must make a choice of argument function
arg : C→ R we may define

Log(z) = log(|z|) + i arg(z),

which is a continuous function away from the branch cut we chose. By
convention, the principal branch of Log is defined by taking arg(z) ∈ (−π, π].

Another important class of examples of multifunctions are the fractional
power multifunctions z 7→ [zα] where α ∈ C: These are given by

z 7→ exp(α.[Log(z)]) = {exp(α.w) : w ∈ C, ew = z}
Note this is includes the square root multifunction we discussed above,
which can be defined without the use of exponential function. Indeed if
α = m/n is rational, m ∈ Z, n ∈ Z>0, then [zα] = {w ∈ C : wm = zn}. For
α ∈ C\Q however we can only define [zα] using the exponential function.
Clearly from its definition, anytime we choose a branch L(z) of [Log(z)]
we obtain a corresponding branch exp(α.L(z)) of [zα]. If L(z) is the prin-
cipal branch of [Log(z)] then the corresponding branch of [zα] is called the
principal branch of [zα].

Example 15.6. Let F (z) be the multi-function

[(1 + z)α] = {exp(α.w) : w ∈ C, exp(w) = 1 + z}.
Using L(z) the principal branch of [Log(z)] we obtain a branch f(z) of [(1+
z)α] given by f(z) = exp(α.L(1+z)). Let

(
α
k

)
= 1

k!α.(α−1) . . . (α−k+1). We
want to show that a version of the binomial theorem holds for this branch
of the multifunction [(1 + z)α]. Let

s(z) =
∞∑
k=0

(
α

k

)
zk,

By the ratio test, s(z) has radius of convergence equal to 1, so that s(z) de-
fines a holomorphic function in B(0, 1). Moreover, you can check using the
properties of power series established in the previous section that, within
B(0, 1), s(z) satisfies (1 + z)s′(z) = a.s(z).

Now f(z) is defined on C\(−∞,−1), and hence on all of B(0, 1). More-
over34 We claim that within the open ball B(0, 1) the power series s(z) =

34Any continuous branch L(z) of [Log(z)] is holomorphic where it is defined and satis-
fies exp(L(z)) = z, hence by the chain rule one obtains L′(z) = 1/z.
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n=0

(
α
k

)
zk coincides with f(z). Indeed we have

d

dz
(L(s(z))) = s′(z)/s(z) = α/(1 + z) =

d

dz
(αL(1 + z))

so that L(s(z)) = α.L(1+z)+c for some constant c (asB(0, 1) is connected)
which by evaluating at z = 0 we find is zero. Finally, it follows that s(z) =
exp(αL(1 + z)) so that s(z) ∈ [(1 + z)α] as required.

Example 15.7. A more interesting example is the function f(z) = [(z2 −
1)1/2]. Using the principal branch of the square root function, we obtain a
branch f1 of f on the complement of E = {z ∈ C : z2−1 ∈ (−∞, 0]}, which
one calculates is equal to (−1, 1)∪ iR. If we cross either the segment (−1, 1)
or the imaginary axis, this branch of f is discontinuous.

To find another branch, note that we may write f(z) =
√
z − 1

√
z + 1,

thus we can take the principal branch of the square root for each of these
factors. More explicity, if we write z = 1 + reiθ1 = −1 + seiθ2 where θ1, θ2 ∈
(−π, π] then we get a branch of f given by f2(z) =

√
rs.ei(θ1+θ2)/2. Now the

factors are discontinuous on (−∞, 1] and (∞,−1] respectively, however let
us examine the behaviour of their product: If z crosses the negative real axis
at =(z) < −1 then θ1 and θ2 both jumps by 2π, so that (θ1 + θ2)/2 jumps by
2π, and hence exp((θ1 + θ2)/2) is in fact continuous. On the other hand, if
we cross the segment (−1, 1) then only the factor

√
z − 1 switches sign, so

our branch is discontinuous there. Thus our second branch of f is defined
away from the cut [−1, 1].

Example 15.8. The branch points of the complex logarithm are 0 and infin-
ity: indeed if z0 6= 0 then we can find a half-planeH = {z ∈ C : =(az) > 0},
for some a ∈ C, |a| = 1, such that z0 ∈ H . We can chose a continuous
choice of argument function on H , and this gives a holomorphic branch of
Log defined on H and hence on the disk B(z0, r) for r sufficiently small.
The logarithm also has a branch point at infinity, since we cannot chose a
continous argument function on C\B(0, R) for any R > 0. (We will return
to this point when discussing the winding number later in the course.)

Note that if f(z) = [
√
z2 − 1] then the second of our branches f2 dis-

cussed above shows that f does not have a branch point at infinity, whereas
both 1 and −1 are branch points – as we move in a sufficiently small circle
around we cannot make a continuous choice of branch. One can given a
rigorous proof of this using the branch f2: given any branch g of [

√
z2 − 1]

defined on B(1, r) for r < 1 one proves that g = ±f2 so that g is not contin-
uous on B(0, r)∩ (−1, 1). See Problem Sheet 4, question 5, for more details.

Example 15.9. A more sophisticated point of view on branch points and
cuts uses the theory of Riemann surfaces. As a first look at this theory,
consider the multifunction f(z) = [

√
z2 − 1] again. Let Σ = {(z, w) ∈

C2 : w2 = z2 − 1} (this is an example of a Riemann surface). Then we
have two maps from Σ to C, projecting along the first and second factor:
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p1(z, w) = z and p2(z, w) = w. Now if g(z) is a branch of f , it gives us a
map G : C → Σ where G(z) = (z, g(z)). If we take f2(z) =

√
z − 1

√
z + 1

(using the principal branch of the square root function in each case, then
let Σ+{(z, f2(z)) : z /∈ [−1, 1]} and Σ− = {(z,−f2(z)) : z /∈ [−1, 1]}, then
Σ+ ∪ Σ− covers all of Σ apart from the pairs (z, w) where z ∈ [−1, 1]. For
such z we have w = ±i

√
1− z2, and Σ is obtained by gluing together the

two copies Σ+ and Σ− of the cut plane C\[−1, 1] along the cut locus [−1, 1].
However, we must examine the discontinuity of g in order to see how this
gluing works: the upper side of the cut in Σ+ is glued to the lower side of
the cut in Σ− and similarly the lower side of the cut in Σ+ is glued to the
upper side of Σ−.

Notice that on Σ we have the (single-valued) function p2(z, w) = w, and
any map q : U → Σ from an open subset U of C to Σ such that p1 ◦ q(z) = z

gives a branch of f(z) =
√
z2 − 1 given by p2 ◦ q. Such a function is called a

section of p1. Thus the multi-valued function on C becomes a single-valued
function on Σ, and a branch of the multifunction corresponds to a section
of the map p1 : Σ → C. In general, given a multi-valued function f one
can construct a Riemann surface Σ by gluing together copies of the cut
complex plane to obtain a surface on which our multifunction becomes a
single-valued function.

16. PATHS AND INTEGRATION

Paths will play a crucial role in our development of the theory of complex
differentiable functions. In this section we review the notion of a path and
define the integral of a continuous function along a path.

16.1. Paths. Recall that a path in the complex plane is a continuous function
γ : [a, b]→ C. A path is said to be closed if γ(a) = γ(b). If γ is a path, we will
write γ∗ for its image, that is

γ∗ = {z ∈ C : z = γ(t), some t ∈ [a, b]}.

Although for some purposes it suffices to assume that γ is continuous, in
order to make sense of the integral along a path we will require our paths
to be (at least piecewise) differentiable. We thus need to define what we
mean for a path to be differentiable:

Definition 16.1. We will say that a path γ : [a, b] → C is differentiable if its
real and imaginary parts are differentiable as real-valued functions. Equiv-
alently, γ is differentiable at t0 ∈ [a, b] if

lim
t→t0

γ(t)− γ(t0)

t− t0
exists, and then we denote this limit as γ′(t0). (If t = a or b then we interpret
the above as a one-sided limit.) We say that a path isC1 if it is differentiable
and its derivative γ′(t) is continuous.
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We will say a path is piecewise C1 if it is continuous on [a, b] and the
interval [a, b] can be divided into subintervals on each of which γ is C1.
That is, there is a finite sequence a = a0 < a1 < . . . < am = b such that
γ|[ai,ai+1] is C1. Thus in particular, the left-hand and right-hand derivatives
of γ at ai (1 ≤ i ≤ m− 1) may not be equal.

Remark 16.2. Note that a C1 path may not have a well-defined tangent at
every point: if γ : [a, b] → C is a path and γ′(t) 6= 0, then the line {γ(t) +
sγ′(t) : s ∈ R} is tangent to γ∗, however if γ′(t) = 0, the image of γ may
have no tangent line there. Indeed consider the example of γ : [−1, 1] → C
given by

γ(t) =

{
t2 −1 ≤ t ≤ 0
it2 0 ≤ t ≤ 1.

Since γ′(0) = 0 the path is C1, even though it is clear there is no tangent
line to the image of γ at 0.

If s : [a, b] → [c, d] is a differentiable map, then we have the following
version of the chain rule, which is proved in exactly the same way as the
real-valued case. It will be crucial in our definition of the integral of func-
tions f : C→ C along paths.

Lemma 16.3. Let γ : [c, d] → C and s : [a, b] → [c, d] and suppose that s is
differentiable at t0 and γ is differentiable at s0 = s(t0). Then γ ◦ s is differentiable
at t0 with derivative

(γ ◦ s)′(t0) = s′(t0).γ′(s(t0)).

Proof. Let ε : [c, d]→ C be given by ε(s0) = 0 and

γ(x) = γ(s0) + γ′(s0)(x− s0) + (x− s0)ε(x),

(so that this equation holds for all x ∈ [c, d]), then ε(x)→ 0 as x→ s0 by the
definition of γ′(s0), i.e. ε is continuous at t0. Substituting x = s(t) into this
we see that for all t 6= t0 we have

γ(s(t))− γ(s0)

t− t0
=
s(t)− s(t0)

t− t0
(
γ′(s(t)) + ε(s(t))

)
.

Now s(t) is continuous at t0 since it is differentiable there hence ε(s(t))→ 0
as t→ t0, thus taking the limit as t→ t0 we see that

(γ ◦ s)′(t0) = s′(t0)(γ′(s0) + 0) = s′(t0)γ′(s(t0)),

as required. �

Definition 16.4. If φ : [a, b]→ [c, d] is continuously differentiable with φ(a) =
c and φ(b) = d, and γ : [c, d] → C is a C1-path, then setting γ̃ = γ ◦ φ, by
Lemma 16.3 we see that γ̃ : [a, b] → C is again a C1-path with the same
image as γ and we say that γ̃ is a reparametrization of γ.
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Definition 16.5. We will say two parametrized paths γ1 : [a, b] → C and
γ2 : [c, d]→ C are equivalent if there is a continuously differentiable bijective
function s : [a, b]→ [c, d] such that s′(t) > 0 for all t ∈ [a, b] and γ1 = γ2 ◦ s.
It is straight-forward to check that equivalence is indeed an equivalence
relation on parametrized paths, and we will call the equivalence classes
oriented curves in the complex plane. We denote the equivalence class of γ
by [γ]. The condition that s′(t) > 0 ensures that the path is traversed in the
same direction for each of the parametrizations γ1 and γ2. Moreover γ1 is
piecewise C1 if and only if γ2 is.

Recall that we saw before (in a general metric space) that any path γ : [a, b]→
C has an opposite path γ− and that two paths γ1 : [a, b]→ C and γ2 : [c, d]→
C with γ1(b) = γ2(c) can be concatenated to give a path γ1 ? γ2. If γ, γ1, γ2

are piecewise C1 then so are γ− and γ1 ? γ2. (Indeed a piecewise C1 path is
precisely a finite concatenation of C1 paths).

Remark 16.6. Note that if γ : [a, b] → C is piecewise C1, then by choosing a
reparametrization by a function ψ : [a, b] → [a, b] which is strictly increas-
ing and has vanishing derivative at the points where γ fails to be C1, we
can replace γ by γ̃ = γ ◦ ψ to obtain a C1 path with the same image. For
this reason, some texts insist that C1 paths have everywhere non-vanishing
derivative. In this course we will not insist on this. Indeed sometimes it is
convenient to consider a constant path, that is a path γ : [a, b]→ C such that
γ(t) = z0 for all t ∈ [a, b] (and hence γ′(t) = 0 for all t ∈ [a, b]).

Example 16.7. The most basic example of a closed curve is a circle: If z0 ∈ C
and r > 0 then the path z(t) = z0 + re2πit (for t ∈ [0, 1]) is the simple
closed path with positive orientation encircling z0 with radius r. The path
z̃(t) = z0 + re−2πit is the simple closed path encircling z0 with radius r and
negative orientation.

Another useful path is a line segment: if a, b ∈ C then the path γ[a,b] : [0, 1]→
C given by t 7→ a+ t(b−a) = (1− t)a+ tb traverses the line segment from a
to b. We denote the corresponding oriented curve by [a, b] (which is consis-
tent with the notation for an interval in the real line). One of the simplest
classes of closed paths are triangles: given three points a, b, c, we define the
triangle, or triangular path, associated to them, to be the concatenation of
the associated line segments, that is Ta,b,c = γa,b ? γb,c ? γc,a.

16.2. Integration along a path. To define the integral of a complex-valued
function along a path, we first need to be able to integrate functionsF : [a, b]→
C on a closed interval [a, b] taking values in C. Last year in Analysis III the
Riemann integral was defined for a function on a closed interval [a, b] tak-
ing values in R, but it is easy to extend this to functions taking values in
C: Indeed we may write F (t) = G(t) + iH(t) where G,H are functions on
[a, b] taking real values. Then we say that F is Riemann integrable if both
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G and H are, and we define:∫ b

a
F (t)dt =

∫ b

a
G(t)dt+ i

∫ b

a
H(t)dt

It is easy to check that the integral is then complex linear, that is, if F1, F2

are complex-valued Riemann integrable functions on [a, b], and α, β ∈ C,
then αF1 + βF2 is Riemann integrable and∫ b

a
(α.F1 + β.F2)dt = α.

∫ b

a
F1dt+ β.

∫ b

a
F2dt.

Note that if F is continuous, then its real and imaginary parts are also con-
tinuous, and so in particular Riemann integrable35. The class of Riemann
integrable (real or complex valued) functions on a closed interval is how-
ever slightly larger than the class of continuous functions, and this will be
useful to us at certain points. In particular, we have the following:

Lemma 16.8. Let [a, b] be a closed interval and S ⊂ [a, b] a finite set. If f is a
bounded continuous function (taking real or complex values) on [a, b]\S then it is
Riemann integrable on [a, b].

Proof. The case of complex-valued functions follows from the real case by
taking real and imaginary parts. For the case of a function f : [a, b]\S → R,
let a = x0 < x1 < x2 < . . . < xk = b be any partition of [a, b] which includes
the elements of S. Then on each open interval (xi, xi+1) the function f is
bounded and continuous, and hence integrable. We may therefore set∫ b

a
f(t)dt =

∫ x1

x0

f(t)dt+

∫ x2

x1

f(t)dt+ . . .+

∫ xk

xk−1

f(t)dt

The standard additivity properties of the integral then show that
∫ b
a f(t)dt

is independent of any choices. �

Remark 16.9. Note that normally when one speaks of a function f being in-
tegrable on an interval [a, b] one assumes that f is defined on all of [a, b].
However, if we change the value of a Riemann integrable function f at a fi-
nite set of points, then the resulting function is still Riemann integrable and
its integral is the same. Thus if one prefers the function f in the previous
lemma to be defined on all of [a, b] one can define f to take any values at all
on the finite set S.

It is easy to check that the Riemann integral of complex-valued func-
tions is complex linear. We also note a version of the triangle inequality for
complex-valued functions:

35It is clear this definition extends to give a notion of the integral of a function f : [a, b]→
Rn – we say f is integrable if each of its components is, and then define the integral to be
the vector given by the integrals of each component function.
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Lemma 16.10. Suppose that F : [a, b] → C is a complex-valued function. Then
we have ∣∣ ∫ b

a
F (t)dt

∣∣ ≤ ∫ b

a
|F (t)|dt.

Proof. First note that if F (t) = x(t) + iy(t) then |F (t)| =
√
x2 + y2 so that

if F is integrable |F (t)| is also36. We may write
∫ b
a F (t)dt = reiθ, where

r ∈ [0,∞) and θ ∈ [0, 2π). Now taking the components of F in the direction
of eiθ and ei(θ+π/2) = ieiθ, we may write F (t) = u(t)eiθ + iv(t)eiθ. Then by
our choice of θ we have

∫ b
a F (t)dt = eiθ

∫ b
a u(t)dt, and so∣∣ ∫ b

a
F (t)dt

∣∣ =
∣∣ ∫ b

a
u(t)dt

∣∣ ≤ ∫ b

a
|u(t)|dt ≤

∫ b

a
|F (t)|dt,

where in the first inequality we used the triangle inequality for the Rie-
mann integral of real-valued functions. �

We are now ready to define the integral of a function f : C → C along a
piecewise-C1 curve.

Definition 16.11. If γ : [a, b] → C is a piecewise-C1 path and f : C → C,
then we define the integral of f along γ to be∫

γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

In order for this integral to exist in the sense we have defined, we have seen
that it suffices for the functions f(γ(t)) and γ′(t) to be bounded and contin-
uous at all but finitely many t. Our definition of a piecewise C1-path en-
sures that γ′(t) is bounded and continuous away from finitely many points
(the boundedness follows from the existence of the left and right hand lim-
its at points of discontinuity of γ′(t)). For most of our applications, the
function f will be continuous on the whole image γ∗ of γ, but it will occa-
sionally be useful to weaken this to allow f(γ(t)) finitely many (bounded)
discontinuities.

Lemma 16.12. If γ : [a, b] → C be a piecewise C1 path and γ̃ : [c, d] → C is an
equivalent path, then for any continuous function f : C→ C we have∫

γ
f(z)dz =

∫
γ̃
f(z)dz.

In particular, the integral only depends on the oriented curve [γ].

Proof. Since γ̃ is equivalent to γ there is a continuously differentiable func-
tion s : [c, d] → [a, b] with s(c) = a, s(d) = b and s′(t) > 0 for all t ∈ [c, d].

36The simplest way to see this is to use that fact that if φ is continuous and f is Riemann
integrable, then φ ◦ f is Riemann integrable.
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Suppose first that γ is C1. Then by the chain rule we have∫
γ̃
f(z)dz =

∫ d

c
f(γ(s(t)))(γ ◦ s)′(t)dt

=

∫ d

c
f(γ(s(t))γ′(s(t))s′(t)dt

=

∫ b

a
f(γ(s))γ′(s)ds

=

∫
γ
f(z)dz.

where in the second last equality we used the change of variables formula.
If a = x0 < x1 < . . . < xn = b is a decomposition of [a, b] into subintervals
such that γ is C1 on [xi, xi+1] for 1 ≤ i ≤ n− 1 then since s is a continuous
increasing bijection, we have a corresponding decomposition of [c, d] given
by the points s−1(x0) < . . . < s−1(xn), and we have∫

γ̃
f(z)dz =

∫ d

c
f(γ(s(t))γ′(s(t))s′(t)dt

=

n−1∑
i=0

∫ s−1(xi+1)

s−1(xi)
f(γ(s(t))γ′(s(t))s′(t)dt

=

n−1∑
i=0

∫ xi+1

xi

f(γ(x))γ′(x)dx

=

∫ b

a
f(γ(x))γ′(x)dx =

∫
γ
f(z)dz.

where the third equality follows from the case of C1 paths established
above. �

Definition 16.13. If γ : [a, b]→ C is a C1 path then we define the length of γ
to be

`(γ) =

∫ b

a
|γ′(t)|dt.

Using the chain rule as we did to show that the integrals of a function
f : C→ C along equivalent paths are equal, one can check that the length of
a parametrized path is also constant on equivalence classes of paths, so in
fact the above defines a length function for oriented curves. The definition
extends in the obvious way to give a notion of length for piecewise C1-
paths. More generally, one can define the integral with respect to arc-length
of a function f : U → C such that γ∗ ⊆ U to be∫

γ
f(z)|dz| =

∫ b

a
f(γ(t))|γ′(t)|dt.
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This integral is invariant with respect to C1 reparametrizations s : [c, d] →
[a, b] if we require s′(t) 6= 0 for all t ∈ [c, d] (the condition s′(t) > 0 is not
necessary because of this integral takes the modulus of γ′(t)). In particular
`(γ) = `(γ−).

The integration of functions along piecewise smooth paths has many of
the properties that the integral of real-valued functions along an interval
possess. We record some of the most standard of these:

Proposition 16.14. Let f, g : U → C be continuous functions on an open subset
U ⊆ C and γ, η : [a, b] → C be piecewise-C1 paths whose images lie in U . Then
we have the following:

(1) (Linearity): For α, β ∈ C,∫
γ
(αf(z) + βg(z))dz = α

∫
γ
f(z)dz + β

∫
γ
g(z)dz.

(2) If γ− denotes the opposite path to γ then∫
γ
f(z)dz = −

∫
γ−
f(z)dz.

(3) (Additivity): If γ ? η is the concatenation of the paths γ, η in U , we have∫
γ?η

f(z)dz =

∫
γ
f(z)dz +

∫
η
f(z)dz.

(4) (Estimation Lemma.) We have

∣∣ ∫
γ
f(z)dz

∣∣ ≤ sup
z∈γ∗
|f(z)|.`(γ).

Proof. Since f, g are continous, and γ, η are piecewise C1, all the integrals
in the statement are well-defined: the functions f(γ(t))γ′(t), f(η(t))η′(t),
g(γ(t))γ′(t) and g(η(t))η′(t) are all Riemann integrable. It is easy to see that
one can reduce these claims to the case where γ is smooth. The first claim
is immediate from the linearity of the Riemann integral, while the second
claim follows from the definitions and the fact that (γ−)′(t) = −γ′(a+b−t).
The third follows immediately for the corresponding additivity property of
Riemann integrable functions.

For the fourth part, first note that γ([a, b]) is compact in C since it is the
image of the compact set [a, b] under a continuous map. It follows that the
function |f | is bounded on this set so that supz∈γ([a,b]) |f(z)| exists. Thus we
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have ∣∣ ∫
γ
f(z)dz

∣∣ =
∣∣ ∫ b

a
f(γ(t))γ′(t)dt

∣∣
≤
∫ b

a
|f(γ(t))||γ′(t)|dt

≤ sup
z∈γ∗
|f(z)|

∫ b

a
|γ′(t)|dt

= sup
z∈γ∗
|f(z)|.`(γ).

where for the first inequality we use the triangle inequality for complex-
valued functions as in Lemma 16.10 and the positivity of the Riemann in-
tegral for the second inequality. �

Remark 16.15. We give part (4) of the above proposition a name (the “esti-
mation lemma”) because it will be very useful later in the course. We will
give one important application of it now:

Proposition 16.16. Let fn : U → C be a sequence of continuous functions on an
open subset U of the complex plane. Suppose that γ : [a, b] → C is a path whose
image is contained in U . If (fn) converges uniformly to a function f on the image
of γ then ∫

γ
fn(z)dz →

∫
γ
f(z)dz.

Proof. We have∣∣∣∣∫
γ
f(z)dz −

∫
γ
fn(z)dz

∣∣∣∣ =

∣∣∣∣∫
γ
(f(z)− fn(z))dz

∣∣∣∣
≤ sup

z∈γ∗
{|f(z)− fn(z)|}.`(γ),

by the estimation lemma. Since we are assuming that fn tends to f uni-
formly on γ∗ we have sup{|f(z) − fn(z)| : z ∈ γ∗} → 0 as n → ∞ which
implies the result. �

Definition 16.17. Let U ⊆ C be an open set and let f : U → C be a con-
tinuous function. If there exists a differentiable function F : U → C with
F ′(z) = f(z) then we say F is a primitive for f on U .

The fundamental theorem of calculus has the following important con-
sequence37:

Theorem 16.18. (Fundamental theorem of Calculus): Let U ⊆ C be a open and
let f : U → C be a continuous function. If F : U → C is a primitive for f and
γ : [a, b]→ U is a piecewise C1 path in U then we have∫

γ
f(z)dz = F (γ(b))− F (γ(a)).

37You should compare this to the existence of a potential in vector calculus.
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In particular the integral of such a function f around any closed path is zero.

Proof. First suppose that γ is C1. Then we have∫
γ
f(z)dz =

∫
γ
F ′(z)dz =

∫ b

a
F ′(γ(t))γ′(t)dt

=

∫ b

a

d

dt
(F ◦ γ)(t)dt

= F (γ(b))− F (γ(a)),

where in second line we used a version of the chain rule38 and in the last
line we used the Fundamental theorem of Calculus from Prelims analysis
on the real and imaginary parts of F ◦ γ.

If γ is only39 piecewise C1, then take a partition a = a0 < a1 < . . . <
ak = b such that γ is C1 on [ai, ai+1] for each i ∈ {0, 1, . . . , k − 1}. Then we
obtain a telescoping sum:∫

γ
f(z) =

∫ b

a
f(γ(t))γ′(t)dt

=
k−1∑
i=0

∫ ai+1

ai

f(γ(t))γ′(t)dt

=

k−1∑
i=0

(F (γ(ai+1))− F (γ(ai)))

= F (γ(b))− F (γ(a)),

Finally, since γ is closed precisely when γ(a) = γ(b) it follows immedi-
ately that the integral of f along a closed path is zero. �

Remark 16.19. If f(z) has finitely many point of discontinuity S ⊂ U but is
bounded near them, and γ(t) ∈ S for only finitely many t, then provided
F is continuous and F ′ = f on U\S, the same proof shows that the fun-
damental theorem still holds – one just needs to take a partition of [a, b] to
take account of those singularities along with the singularities of γ′(t).

Theorem 16.18 already has an important consequence:

Corollary 16.20. Let U be a domain and let f : U → C be a function with f ′(z) =
0 for all z ∈ U . Then f is constant.

Proof. Pick z0 ∈ U . Since U is path-connected, if w ∈ U , we may find40 a
piecewise C1-path γ : [0, 1]→ U such that γ(a) = z0 and γ(b) = w. Then by

38See the appendix for a discussion of this – we need a version of the chain rule for a
composition of real-differentiable functions f : R2 → R2 and g : R→ R2.

39The reason we must be careful about this case is that the Fundamental Theorem of
Calculus only holds when the integrand is continuous.

40Check that you see that if U is an open subset of C which is path-connected then any
two points can be joined by a piecewise C1-path.
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Theorem 16.18 we see that

f(w)− f(z0) =

∫
γ
f ′(z)dz = 0,

so that f is constant as required. �

The following theorem is a kind of converse to the fundamental theorem:

Theorem 16.21. If U is a domain (i.e. it is open and path connected) and f : U →
C is a continuous function such that for any closed path in U we have

∫
γ f(z)dz =

0, then f has a primitive.

Proof. Fix z0 in U , and for any z ∈ U set

F (z) =

∫
γ
f(z)dz.

where γ : [a, b]→ U with γ(a) = z0 and γ(b) = z.
We claim that F (z) is independent of the choice of γ. Indeed if γ1, γ2

are two such paths, let γ = γ1 ? γ
−
2 be the path obtained by concatenating

γ1 and the opposite γ−2 of γ2 (that is, γ traverses the path γ1 and then goes
backward along γ2). Then γ is a closed path and so, using Proposition 16.14
we have

0 =

∫
γ
f(z)dz =

∫
γ1

f(z)dz +

∫
γ−2

f(z)dz,

hence since
∫
γ−2
f(z)dz = −

∫
γ2
f(z)dz we see that

∫
γ1
f(z)dz =

∫
γ2
f(z)dz.

Next we claim that F is differentiable with F ′(z) = f(z). To see this, fix
w ∈ U and ε > 0 such that B(w, ε) ⊆ U and choose a path γ : [a, b] → U
from z0 to w. If z1 ∈ B(w, ε) ⊆ U , then the concatenation of γ with the
straight-line path s : [0, 1]→ U given by s(t) = w+ t(z −w)from w to z is a
path γ1 from z0 to z. It follows that

F (z1)− F (w) =

∫
γ1

f(z)dz −
∫
γ
f(z)dz

= (

∫
γ
f(z)dz +

∫
s
f(z)dz)−

∫
γ
f(z)dz

=

∫
s
f(z)dz.

But then we have for z1 6= w∣∣∣∣F (z1)− F (w)

z1 − w
− f(w)

∣∣∣∣ =

∣∣∣∣ 1

z1 − w

(∫ 1

0
f(w + t(z1 − w)(z1 − w)dt

)
− f(w)

∣∣∣∣
=

∣∣∣∣∫ 1

0
(f(w + t(z1 − w))− f(w))dt

∣∣∣∣
≤ sup

t∈[0,1]
|f(w + t(z1 − w))− f(w)|

→ 0 as z1 → w
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as f is continuous at w. Thus F is differentiable at w with derivative
F ′(w) = f(w) as claimed. �

Remark 16.22. Note that any two primitives for a function f differ by a
constant: This follows immediately from Corollary 16.20, since if F1 and F2

are two primitives, their difference (F1 − F2) has zero derivative.

17. WINDING NUMBERS

The previous section on the fundamental theorem of calculus in the com-
plex plane shows that not every holomorphic function can have a primitive.
The most fundamental example of this is the function f(z) = 1/z on the do-
main C×.

Example 17.1. Let f : C× → C× be the function f(z) = 1/z. Then f does not
have a primitive on C×. Indeed if γ : [0, 1]→ C is the path γ(t) = exp(2πit)
then∫

γ
f(z)dz =

∫ 1

0
f(γ(t))γ′(t)dt =

∫ 1

0

1

exp(2πit)
.(2πi exp(2πit))dt = 2πi.

Since the path γ is closed, this integral would have to be zero if f(z) has a
primitive in an open set containing γ∗, thus f(z) has no primitive on C× as
claimed.

Note that 1/z does have a primitive on any domain in C× where we
can chose a branch of the argument function (or equivalently a branch of
[Log(z)]): Indeed if l(z) is a branch of [Log(z)] on a domain D ⊂ C× then
since exp(l(z)) = z the chain rule shows that exp(l(z)).l′(z) = 1 and hence
l′(z) = 1/z.

In the present section we investigate the change in argument as we move
along a path. It will turn out to be a basic ingredient in computing integrals
around closed paths. In more detail, suppose that γ : [0, 1] → C is a closed
path which does not pass through 0. We would like to give a rigorous
definition of the number of times γ “goes around the origin”. Roughly
speaking, this will be the change in argument arg(γ(t)), and therein lies the
difficulty, since arg(z) cannot be defined continuously on all of C\{0}. The
next Proposition shows that we can however always define the argument
as a continuous function of the parameter t ∈ [0, 1]:

Proposition 17.2. Let γ : [0, 1] → C\{0} be a path. Then there is continuous
function a : [0, 1]→ R such that

γ(t) = |γ(t)|e2πia(t).

Moreover, if a and b are two such functions, then there exists n ∈ Z such that
a(t) = b(t) + n for all t ∈ [0, 1].

Proof. By replacing γ(t) with γ(t)/|γ(t)| we may assume that |γ(t)| = 1 for
all t. Since γ is continuous on a compact set, it is uniformly continuous, so
that there is a δ > 0 such that |γ(s)− γ(t)| <

√
3 for any s, t with |s− t| < δ.
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Choose an integer n > 0 such that n > 1/δ so that on each subinterval
[i/n, (i + 1)/n] we have |γ(s) − γ(t)| <

√
3/2. Now on any half-plane in

C we may certainly define a holomorphic branch of [Log(z)] (simply pick
a branch cut along a ray in the opposite half-plane) and hence a continu-
ous argument function, and if |z1| = |z2| = 1 and |z1 − z2| <

√
3, then

the angle between z1 and z2 is at most π/3. It follows there exists a con-
tinuous functions ai : [j/n, (j + 1)/n] → R such that γ(t) = e2πiaj(t) for
t ∈ [j/n, (j + 1)/n] (since γ([j/n, (j + 1)/n]) must lie in an arc of length
at most 2π/3). Now since e2πiaj(j/n) = e2πiaj−1(j/n) aj−1(j/n) and ai(j/n)
differ by an integer. Thus we can successively adjust the aj for j > 1 by an
integer (as if γ(t) = e2πiaj(t) then γ(t) = e2πi(a(t)+n) for any n ∈ Z) to obtain
a continuous function a : [0, 1] → C such that γ(t) = e2πia(t) as required.
Finally, the uniqueness statement follows because e2πi(a(t)−b(t)) = 1, hence
a(t)− b(t) ∈ Z, and since [0, 1] is connected it follows a(t)− b(t) is constant
as required. �

Definition 17.3. If γ : [0, 1]→ C\{0} is a closed path and γ(t) = |γ(t)|e2πia(t)

as in the previous lemma, then since γ(0) = γ(1) we must have a(1)−a(0) ∈
Z. This integer is called the winding number I(γ, 0) of γ around 0. It is
uniquely determined by the path γ because the function a is unique up to
an integer. By translation, if γ is any closed path and z0 is not in the image
of γ, we may define the winding number I(γ, z0) of γ about z0 in the same
fashion. Explicitly, if γ is a closed path with z0 /∈ γ∗ then let t : C → C be
given by t(z) = z − z0 and define I(γ, z0) = I(t ◦ γ, 0).

Remark 17.4. Note that if γ : [0, 1] → U where 0 /∈ U and there exists a
holomorphic branch L : U → C of [Log(z)] on U , then I(γ, 0) = 0. Indeed in
this case we may define a(t) = =(L(γ(t))), and since γ(0) = γ(1) it follows
a(1) − a(0) = 0 as claimed. Note also that the definition of the winding
number only requires the closed path γ to be continuous, not piecewise C1.
Of course as usual, we will mostly only be interested in piecewiseC1 paths,
as these are the ones along which we can integrate functions.

We now see that the winding number has a natural interpretation in term
of path integrals: Note that if γ is piecewise C1 then the function a(t) is also
piecewise C1, since any branch of the logarithm function is in fact differ-
entiable where it is defined, and a(t) is locally given as =(log(γ(t)) for a
suitable branch.

Lemma 17.5. Let γ be a piecewise C1 closed path and z0 ∈ C a point not in the
image of γ. Then the winding number I(γ, z0) of γ around z0 is given by

I(γ, z0) =
1

2πi

∫
γ

dz

z − z0
.

Proof. If γ : [0, 1] → C we may write γ(t) = z0 + r(t)e2πia(t) (where r(t) =
|γ(t) − z0| > 0 is continuous and the existence of a(t) is guaranteed by
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Proposition 17.2). Then we have∫
γ

dz

z − z0
=

∫ 1

0

1

r(t)e2πia(t)
.
(
r′(t) + 2πir(t)a′(t)

)
e2πia(t)dt

=

∫ 1

0
r′(t)/r(t) + 2πia′(t)dt = [log(r(t)) + 2πia(t)]10

= 2πi(a(1)− a(0)),

since r(1) = r(0) = |γ(0)− z0|. �

The next Proposition will be useful not only for the study of winding
numbers. We first need a definition:

Definition 17.6. If f : U → C is a function on an open subset U of C, then
we say that f is analytic on U if for every z0 ∈ C there is an r > 0 with
B(z0, r) ⊆ U such that there is a power series

∑∞
k=0 ak(z− z0)k with radius

of convergence at least r and f(z) =
∑∞

k=0 ak(z−z0)k. An analytic function
is holomorphic, as any power series is (infinitely) complex differentiable.

Proposition 17.7. Let U be an open set in C and let γ : [0, 1] → U be a closed
path. If f(z) is a continuous function on γ∗ then the function

If (γ,w) =
1

2πi

∫
γ

f(z)

z − w
dz,

is analytic. in w.
In particular, if f(z) = 1 this shows that the function w 7→ I(γ,w) is a contin-

uous function on C\γ∗, and hence, since it is integer-valued, it is constant on the
connected components of C\γ∗.

Proof. We wish to show that Iγ(f(w) is holomorphic at each z0 ∈ C\γ∗.
Translating if necessary we may assume z0 = 0.

Now since C\γ∗ is open, there is some r > 0 such that B(0, 2r) ∩ γ∗ = ∅.
We claim that If (γ,w) is holomorphic in B(0.r). Indeed if w ∈ B(0, r)
and z ∈ γ∗ it follows that |w/z| < 1/2. Moreover, since γ∗ is compact,
M = sup{|f(z)| : z ∈ γ∗} is finite, and hence

|f(z).wn/zn+1| = |f(z)||z|−1|w/z|n < M

2r
(1/2)n, ∀z ∈ γ∗.

It follows from the Weierstrass M -test that the series
∞∑
n=0

f(z).wn

zn+1
=

∞∑
n=0

f(z)

z
(w/z)n =

f(z)

z
(1− w/z)−1 =

f(z)

z − w

viewed as a function of z, converges uniformly on γ∗ to f(z)/(z−w). Thus
for all w ∈ B(0, r) we have

If (γ,w) =
1

2πi

∫
γ

f(z)dz

z − w
=

∞∑
n=0

(
1

2πi

∫
γ

f(z)

zn+1
dz

)
wn,
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hence If (γ,w) is given by a power series in B(0, r) (and hence is also holo-
morphic there) as required.

Finally, if f = 1, then since I1(γ, z) = I(γ, z) is integer-valued, it follows
it must be constant on any connected component of C\γ∗ as required. �

Remark 17.8. Note that since the coefficients of a power series centred at a
point z0 are given by its derivatives at that point, the proof above actually
also gives formulae for the derivatives of g(w) = If (γ,w) at z0:

g(n)(z0) =
n!

2πi

∫
γ

f(z)dz

(z − z0)n+1
.

Remark 17.9. If γ is a closed path then γ∗ is compact and hence bounded.
Thus there is an R > 0 such that the connected set C\B(0, R) ∩ γ∗ = ∅. It
follows that C\γ∗ has exactly one unbounded connected component. Since∣∣ ∫

γ

dζ

ζ − z
∣∣ ≤ `(γ). sup

ζ∈γ∗
|1/(ζ − z)| → 0

as z →∞ it follows that I(γ, z) = 0 on the unbounded component of C\γ∗.

Definition 17.10. Let γ : [0, 1] → C be a closed path. We say that a point z
is in the inside41 of γ if z /∈ γ∗ and I(γ, z) 6= 0. The previous remark shows
that the inside of γ is a union of bounded connected components of C\γ∗.
(We don’t, however, know that the inside of γ is necessarily non-empty.)

Example 17.11. Suppose that γ1 : [−π, π] → C is given by γ1 = 1 + eit

and γ2 : [0, 2π] → C is given by γ2(t) = −1 + e−it. Then if γ = γ1 ? γ2,
γ traverses a figure-of-eight and it is easy to check that the inside of γ is
B(1, 1) ∪ B(−1, 1) where I(γ, z) = 1 for z ∈ B(1, 1) while I(γ, z) = −1 for
z ∈ B(−1, 1).

Remark 17.12. It is a theorem, known as the Jordan Curve Theorem, that if
γ : [0, 1]→ C is a simple closed curve, so that γ(t) = γ(s) if and only if s = t
or s, t ∈ {0, 1}, then C\γ∗ is the union of precisely one bounded and one
unbounded component, and on the bounded component I(γ, z) is either 1
or −1. If I(γ, z) = 1 for z on the inside of γ we say γ is postively oriented
and we say it is negatively oriented if I(γ, z) = −1 for z on the inside.

18. CAUCHY’S THEOREM

The key insight into the study of holomorphic functions is Cauchy’s the-
orem, which (somewhat informally) states that if f : U → C is holomorphic
and γ is a path in U whose interior lies entirely in U then

∫
γ f(z)dz = 0.

It will follow from this and Theorem 16.21 that, at least locally, every holo-
morphic function has a primitive. The strategy to prove Cauchy’s theorem
goes as follows: first show it for the simplest closed contours – triangles.

41The term interior of γ might be more natural, but we have already used this in the first
part of the course to mean something quite different.
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Then use this to deduce the existence of a primitive (at least for certain
kinds of sufficiently nice open sets U which are called “star-like”) and then
use Theorem 16.18 to deduce the result for arbitrary paths in such open
subsets. We will discuss more general versions of the theorem later, after
we have applied Cauchy’s theorem for star-like domains to obtain impor-
tant theorems on the nature of holomorphic functions. First we recall the
definition of a triangular path:

Definition 18.1. A triangle or triangular path T is a path of the form γ1?γ2?γ3

where γ1(t) = a+ t(b−a), γ2(t) = b+ t(c− b) and γ3(t) = c+ t(a− c) where
t ∈ [0, 1] and a, b, c ∈ C. (Note that if {a, b, c} are collinear, then T is a
degenerate triangle.) That is, T traverses the boundary of the triangle with
vertices a, b, c ∈ C. The solid triangle T bounded by T is the region

T = {t1a+ t2b+ t3c : ti ∈ [0, 1],
3∑
i=1

ti = 1},

with the points in the interior of T corresponding to the points with ti > 0
for each i ∈ {1, 2, 3}. We will denote by [a, b] the line segment {a+ t(b−a) :
t ∈ [0, 1]}, the side of T joining vertex a to vertex b. Whenever it is not
evident what the vertices of the triangle T are, we will write Ta,b,c.

Theorem 18.2. (Cauchy’s theorem for a triangle): Suppose thatU ⊆ C is an open
subset and let T ⊆ U be a triangle whose interior is entirely contained in U . Then
if f : U → C is holomorphic we have∫

T
f(z)dz = 0

Proof. The proof proceeds using a version of the “divide and conquer”
strategy one uses to prove the Bolzano-Weierstrass theorem. Suppose for
the sake of contradiction that

∫
T f(z)dz 6= 0, and let I = |

∫
T f(z)dz| > 0.

We build a sequence of smaller and smaller triangles Tn around which the
integral of f is not too small, as follows: Let T 0 = T , and suppose that we
have constructed T i for 0 ≤ i < k. Then take the triangle T k−1 and join
the midpoints of the edges to form four smaller triangles, which we will
denote Si (1 ≤ i ≤ 4).

Then we have
∫
Tk−1 f(z)dz =

∑4
i=1

∫
Si
f(z)dz, since the integrals around

the interior edges cancel (see Figure 3). In particular, we must have

Ik = |
∫
Tk−1

f(z)dz| ≤
4∑
i=1

|
∫
Si

f(z)dz|,

so that for some i we must have |
∫
Si
f(z)dz| ≥ Ik−1/4. Set T k to be this

triangle Si. Then by induction we see that `(T k) = 2−k`(T ) while Ik ≥
4−kI .

Now let T be the solid triangle with boundary T and similarly let T k
be the solid triangle with boundary T k. Then we see that diam(T k) =
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FIGURE 3. Subdivision of a triangle

2−kdiam(T )→ 0, and the sets T k are clearly nested. It follows from Lemma
8.6 that there is a unique point z0 which lies in every T k. Now by assump-
tion f is holomorphic at z0, so we have

f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)ψ(z),

where ψ(z) → 0 = ψ(z0) as z → z0. Note that ψ is continuous and hence
integrable on all of U . Now since the linear function z 7→ f ′(z0)z + f(z0)
clearly has a primitive it follows from Theorem 16.18∫

Tk
f(z)dz =

∫
Tk

(z − z0)ψ(z)dz

Now since z0 lies in T k and z is on the boundary T k of T k, we see that
|z − z0| ≤ diam(T k) = 2−kdiam(T ). Thus if we set ηk = supz∈Tk |ψ(z)|, it
follows by the estimation lemma that

Ik =
∣∣ ∫

Tk
(z − z0)ψ(z)dz

∣∣ ≤ ηk.diam(T k)`(T k)

= 4−kηk.diam(T ).`(T ).

But since ψ(z) → 0 as z → z0, it follows ηk → 0 as k → ∞, and hence
4kIk → 0 as k → ∞. On the other hand, by construction we have 4kIk ≥
I > 0, thus we have a contradiction as required. �

Definition 18.3. Let X be a subset in C. We say that X is convex if for each
z, w ∈ U the line segment between z and w is contained in X . We say that
X is star-like if there is a point z0 ∈ X such that for every w ∈ X the line
segment [z0, w] joining z0 and w lies in X . We will say that X is star-like
with respect to z0 in this case. Thus a convex subset is thus starlike with
respect to every point it contains.

Example 18.4. A disk (open or closed) is convex, as is a solid triangle or
rectangle. On the other hand a cross, such as {0} × [−1, 1] ∪ [−1, 1]× {0} is
star-like with respect to the origin, but is not convex.

Theorem 18.5. (Cauchy’s theorem for a star-like domain): Let U be a star-like
domain. Then if f : U → C is holomorphic and γ : [a, b] → U is a closed path in
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U we have ∫
γ
f(z)dz = 0.

Proof. The proof proceeds similarly to the proof of Theorem 16.21: by The-
orem 16.18 it suffices to show that f has a primitive in U . To show this, let
z0 ∈ U be a point for which the line segment from z0 to every z ∈ U lies in
U . Let γz = z0 + t(z − z0) be a parametrization of this curve, and define

F (z) =

∫
γz

f(ζ)dζ.

We claim that F is a primitive for f on U . Indeed pick ε > 0 such that
B(z, ε) ⊆ U . Then if w ∈ B(z, ε) note that the triangle T with vertices
z0, z, w lies entirely in U by the assumption that U is star-like with respect
to z0. It follows from Theorem 18.2 that

∫
T f(ζ)dζ = 0, and hence if η(t) =

w + t(z − w) is the straight-line path going from w to z (so that T is the
concatenation of γw, η and γ−z ) we have∣∣F (z)− F (w)

z − w
− f(z)

∣∣ =
∣∣ ∫

η

f(ζ)

z − w
dζ − f(z)

∣∣
=
∣∣ ∫ 1

0
f(w + t(z − w))dt− f(z)

∣∣
=
∣∣ ∫ 1

0
(f(w + t(z − w))− f(z)dt

∣∣
≤ sup

t∈[0,1]
|f(w + t(z − w))− f(z)|,

which, since f is continuous at w, tends to zero as w → z so that F ′(z) =
f(z) as required.

�

Note that our proof of Cauchy’s theorem for a star-like domain D pro-
ceeded by showing that any holomorphic function on D has a primitive,
and hence by the fundamental theorem of calculus its integral around a
closed path is zero. This motivates the following definition:

Definition 18.6. We say that a domain D ⊆ C is primitive42 if any holomor-
phic function f : D → C has a primitive in D.

Thus, for example, our proof of Theorem 18.5 shows that all star-like
domains are primitive. The following Lemma shows however that we can
build many primitive domains which are not star-like.

Lemma 18.7. Suppose that D1 and D2 are primitive domains and D1 ∩ D2 is
connected. Then D1 ∪D2 is primitive.

42This is not standard terminology. The reason for this will become clear later.



80 KEVIN MCGERTY.

FIGURE 4. Contours for the proof of Theorem 18.8.

Proof. Let f : D1 ∪D2 → C be a holomorphic function. Then f|D1
is a holo-

morphic function on D1, and thus it has a primitive F1 : D1 → C. Similarly
f|D2

has a primitive, F2 say. But then F1−F2 has zero derivative onD1∩D2,
and since by assumption D1∩D2 is connected (and thus path-connected) it
follows F1 − F2 is constant, c say, on D1 ∩D2. But then if F : D1 ∪D2 → C
is a defined to be F1 on D1 and F2 + c on D2 it follows that F is a primitive
for f on D1 ∪D2 as required. �

18.1. Cauchy’s Integral Formula. We are now almost ready to prove one
of the most important consequences of Cauchy’s theorem – the integral
formula. This formula will have incredibly powerful consequences.

Theorem 18.8. (Cauchy’s Integral Formula.) Suppose that f : U → C is a holo-
morphic function on an open set U which contains the disc B̄(a, r). Then for all
w ∈ B(a, r) we have

f(w) =
1

2πi

∫
γ

f(z)

z − w
dz,

where γ is the path t 7→ a+ re2πit.

Proof. Fix w ∈ B(a, r). We use the contours Γ1 and Γ2 as shown in Diagram
4 (where Γ1 follows the direction of the blue arrows, and Γ2 the directions of
the red arrows). These paths join the circular contours γ(a, r) and γ(w, ε)−
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where ε is small enough to lie in the interior of B(a, r). By the additivity
properties of path integrals, the contributions of the line segments cancel
so that∫

Γ1

f(z)

z − w
dz +

∫
Γ2

f(z)

z − w
dz =

∫
γ(a,r)

f(z)

z − w
dz −

∫
γ(w,ε)

f(z)

z − w
dz.

On the other hand, each of Γ1,Γ2 lies in a primitive domain in which f/(z−
w) is holomorphic – indeed by the quotient rule, f(z)/(z−w) is holomophic
on U\{w} – so each of the integrals on the left-hand side vanish, and hence

1

2πi

∫
γ(a,r)

f(z)

z − w
dz =

1

2πi

∫
γ(w,ε)

f(z)

z − w
dz.

Thus we can replace the integral over the circle γ(a, r) with an integral over
an arbtirary small circle centred at w itself. But for such a small circle,

1

2πi

∫
γ(w,ε)

f(z)

z − w
dz =

1

2πi

∫
γ(w,ε)

f(z)− f(w)

z − w
dz +

f(w)

2πi

∫
γ(w,ε)

dz

z − w
.

=
1

2πi

∫
γ(w,ε)

f(z)− f(w)

z − w
dz + f(w)I(γ(w, ε), w)

=
1

2πi

∫
γ(w,ε)

f(z)− f(w)

z − w
dz + f(w)

But since f is complex differentiable at z = w, the term (f(z)−f(w))/(z−w)
is bounded as ε → 0, so that by the estimation lemma its integral over
γ(w, ε) tends to zero. Thus as ε → 0 the path integral around γ(w, ε) tends
to f(w). But since it is also equal to (2πi)−1

∫
γ(a,r) f(z)/(z − w)dz, which

is independent of ε, we conclude that it must in fact be equal to f(w). The
result follows.

�

Remark 18.9. The same result holds for any oriented curve γ once we weight
the left-hand side by the winding number43 of a path around the point w /∈
γ∗, provided that f is holomorphic on the inside of γ.

18.2. Applications of the Integral Formula.

Remark 18.10. Note that Cauchy’s integral formula can be interpreted as
saying the value of f(w) for w inside the circle is obtained as the “convo-
lution” of f and the function 1/(z − w) on the boundary circle. Since the
function 1/(z−w) is infinitely differentiable one can use this to show that f
itself is infinitely differentiable as we will shortly show. If you take the In-
tegral Transforms, you will see convolution play a crucial role in the theory
of transforms. In particular, the convolution of two functions often inher-
its the “good” properties of either. We next show that in fact the formula
implies a strong version of Taylor’s Theorem.

43Which, as we used in the proof above, is 1 in the case of a point inside a positively
oriented circular path.
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Corollary 18.11. If f : U → C is holomorphic on an open set U , then for any
z0 ∈ U , the f(z) is equal to its Taylor series at z0 and the Taylor series converges
on any open disk centred at z0 lying in U . Moreover the derivatives of f at z0 are
given by

(18.1) f (n)(z0) =
n!

2πi

∫
γ(a,r)

f(z)

(z − z0)n+1
dz.

For any a ∈ C, r ∈ R>0 with z0 ∈ B(a, r).

Proof. This follows immediately from the proof of Proposition 17.7, and
Remark 17.8. The integral formulae of Equation 18.1 for the derivatives of
f are also referred to as Cauchy’s Integral Formulae. �

Definition 18.12. Recall that a function which is locally given by a power
series is said to be analytic. We have thus shown that any holomorphic
function is actually analytic, and from now on we may use the terms inter-
changeably (as you may notice is common practice in many textbooks).

One famous application of the Integral formula is known as Liouville’s
theorem, which will give an easy proof of the Fundamental Theorem of
Algebra44. We say that a function f : C → C is entire if it is complex differ-
entiable on the whole complex plane.

Theorem 18.13. Let f : C → C be an entire function. If f is bounded then it is
constant.

Proof. Suppose that |f(z)| ≤ M for all z ∈ C. Let γR(t) = Re2πit be the cir-
cular path centred at the origin with radius R. The for R > |w| the integral
formula shows

|f(w)− f(0)| =
∣∣ 1

2πi

∫
γR

f(z)
( 1

z − w
− 1

z

)
dz
∣∣

=
1

2π

∣∣ ∫
γR

w.f(z)

z(z − w)
dz
∣∣

≤ 2πR

2π
sup

z:|z|=R

∣∣ w.f(z)

z(z − w)
|

≤ R. M |w|
R.(R− |w|)

=
M |w|
R− |w|

,

Thus letting R → ∞ we see that |f(w) − f(0)| = 0, so that f is constant an
required.

�

Theorem 18.14. Suppose that p(z) =
∑n

k=0 akz
k is a non-constant polynomial

where ak ∈ C and an 6= 0. Then there is a z0 ∈ C for which p(z0) = 0.

44Which, when it comes down to it, isn’t really a theorem in algebra. The most “alge-
braic” proof of that I know uses Galois theory, which you can learn about in Part B.
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Proof. By rescaling p we may assume that an = 1. If p(z) 6= 0 for all z ∈ C
it follows that f(z) = 1/p(z) is an entire function (since p is clearly entire).
We claim that f is bounded. Indeed since it is continuous it is bounded on
any disc B̄(0, R), so it suffices to show that |f(z)| → 0 as z →∞, that is, to
show that |p(z)| → ∞ as z →∞. But we have

|p(z)| = |zn +
n−1∑
k=0

akz
k| = |zn|

{
|1 +

n−1∑
k=0

ak
zn − k

|
}
≥ |zn|.(1−

n−1∑
k=0

|ak|
|z|n−k

).

Since 1
|z|m → 0 as |z| → ∞ for anym ≥ 1 it follows that for sufficiently large

|z|, say |z| ≥ R, we will have 1 −
∑n−1

k=0
|ak|
|z|n−k ≥ 1/2. Thus for |z| ≥ R we

have |p(z)| ≥ 1
2 |z|

n. Since |z|n clearly tends to infinity as |z| does it follows
|p(z)| → ∞ as required. �

Remark 18.15. The crucial point of the above proof is that one term of the
polynomial – the leading term in this case– dominates the behaviour of the
polynomial for large values of z. All proofs of the fundamental theorem
hinge on essentially this point. Note that p(z0) = 0 if and only if p(z) = (z−
z0)q(z) for a polynomial q(z), thus by induction on degree we see that the
theorem implies that a polynomial over C factors into a product of degree
one polynomials.

Corollary 18.16. (Riemann’s removable singularity theorem): Suppose that U is
an open subset of C and z0 ∈ U . If f : U\{z0} → C is holomorphic and bounded
near z0, then f extends to a holomorphic function on all of U .

Proof. Define h(z) by

h(z) =

{
(z − z0)2f(z), z 6= 0;

0, z = z0

The clearly h(z) is holomorphic on U\{z0}, using the fact that f and stan-
dard rules for complex differentiablility. On the other hand, at z = z0 we
see directly that

h(z)− h(z0)

z − z0
= (z − z0)f(z)→ 0

as z → z0 since f is bounded near z0 by assumption. It follows that h is
in fact holomorphic everywhere in U . But then if we chose r > 0 is such
that B̄(z0, r) ⊂ U , then by Corollary 18.11 h(z) is equal to its Taylor series
centred at z0, thus

h(z) =
∞∑
k=0

ak(z − z0)k.

But since we have h(z0) = h′(z0) = 0 we see a0 = a1 = 0, and so
∑∞

k=0 ak+2(z−
z0)k defines a holomorphic function in B(z0, r). Since this clearly agrees
with f(z) on B(z0, r)\{0}, we see that by redefining f(z0) = a2, we can
extend f to a holomorphic function on all of U as required. �
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We end this section with a kind of converse to Cauchy’s theorem:

Theorem 18.17. (Morera’s theorem) Suppose that f : U → C is a continuous
function on an open subset U ⊆ C. If for any closed path γ : [a, b] → U we have∫
γ f(z)dz = 0, then f is holomorphic.

Proof. By Theorem 16.21 we know that f has a primitive F : U → C. But
then F is holomorphic on U and so infinitely differentiable on U , thus in
particular f = F ′ is also holomorphic. �

Remark 18.18. One can prove variants of the above theorem: If U is a star-
like domain for example, then our proof of Cauchy’s theorem for such do-
mains shows that f : U → C has a primitive (and hence will be differen-
tiable itself) provided

∫
T f(z)dz = 0 for every triangle in U . In fact the

assumption that
∫
T f(z)dz = 0 for all triangles whose interior lies in U suf-

fices to imply f is holomorphic for any open subset U : To show f is holo-
morphic on U , it suffices to show that f is holomorphic on B(a, r) for each
open diskB(a, r) ⊂ U . But this follows from the above as disks are star-like
(in fact convex). It follows that we can characterize the fact that f : U → C
is holomorphic on U by an integral condition: f : U → C is holomorphic if
and only if for all triangles T which bound a solid triangle T with T ⊂ U ,
the integral

∫
T f(z)dz = 0.

This characterization of the property of being holomorphic has some im-
portant consequences. We first need a definition:

Definition 18.19. Let U be an open subset of C. If (fn) is a sequence of
functions defined on U , we say fn → f uniformly on compacts if for every
compact subset K of U , the sequence (fn|K) converges uniformly to f|K .
Note that in this case f is continuous if the fn are: Indeed to see that f is
continuous at a ∈ U , note that since U is open, there is some r > 0 with
B(a, r) ⊆ U . But then K = B̄(a, r/2) ⊆ U and fn → f uniformly on K,
whence f is continuous on K, and so certainly it is continuous at a.

Example 18.20. Convergence of power series f(z) =
∑∞

k=0 anz
n is a basic

example of convergence on compacts: if R is the radius of convergences
of f(z) the partial sums sn(z) of the power series B(0, R) converge uni-
formly on compacts in B(0, R). The convergence is not necessarily uni-
form on B(0, R), as the example f(z) =

∑∞
n=0 z

n shows. Nevertheless,
since B(0, R) =

⋃
r<R B̄(0, r) is the union of its compact subsets, many of

the good properties of the polynomial functions sn(z) are inherited by the
power series because the convergence is uniform on compact subsets.

Proposition 18.21. Suppose that U is a domain and the sequence of holomorphic
functions fn : U → C converges to f : U → C uniformly on compacts in U . Then
f is holomorphic.

Proof. Note by the above that f is continuous on U . Since the property of
being holomorphic is local, it suffices to show for each w ∈ U that there
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is a ball B(w, r) ⊆ U within which f is holomorphic. Since U is open, for
any such w we may certainly find r > 0 such that B(w, r) ⊆ U . Then as
B(w, r) is convex, Cauchy’s theorem for a star-like domain shows that for
every closed path γ : [a, b] → B(w, r) whose image lies in B(w, r) we have∫
γ fn(z)dz = 0 for all n ∈ N.

But γ∗ = γ([a, b]) is a compact subset of U , hence fn → f uniformly on
γ∗. It follows that

0 =

∫
γ
fn(z)dz →

∫
γ
f(z)dz,

so that the integral of f around any closed path in B(w, r) is zero. But
then Theorem 16.21 shows that f has a primitive F on B(w, r). But we
have seen that any holomorphic function is in fact infinitely differentiable,
so it follows that F , and hence f is infinitely differentiable on B(w, r) as
required.

�

Often functions on the complex plane are defined in terms of integrals. It
is thus useful to have a criterion by which one can check if such a function
is holomorphic. The following theorem gives such a criterion.

Theorem 18.22. Let U be an open subset of C and suppose that F : U × [a, b] is
a function satisfying

(1) The function z 7→ F (z, s) is holomorphic in z for each s ∈ [a, b].
(2) F is continuous on U × [a, b]

Then the function f : U → C defined by

f(z) =

∫ b

a
F (z, s)ds

is holomorphic.

Proof. Changing variables we may assume that [a, b] = [0, 1] (explicitly, one
replaces s by (s − a)/(b − a)). By Theorem 18.21 it is enough to show that
we may find a sequence of holomorphic functions fn(z) which converge
of f(z) uniformly on compact subsets of U . To find such a sequence, recall
from Prelims Analysis that the Riemann integral of a continuous function is
equal to the limit of its Riemann sums as the mesh of the partition used for
the sum tends to zero. Using the partition xi = i/n for 0 ≤ i ≤ n evaluating
at the right-most end-point of each interval, we see that

fn(z) =
1

n

n∑
i=1

F (z, i/n),

is a Riemann sum for the integral
∫ 1

0 F (z, s)ds, hence as n → ∞ we have
fn(z) → f(z) for each z ∈ U , i.e. the sequence (fn) converges pointwise to
f on all of U . To complete the proof of the theorem it thus suffices to check
that fn → f as n→∞ uniformly on compact subsets of U . But if K ⊆ U is
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compact, then since F is clearly continuous on the compact set K × [0, 1], it
is uniformly continuous there, hence, given any ε > 0, there is a δ > 0 such
that |F (z, s)−F (z, t)| < ε for all z ∈ B̄(a, ρ) and s, t ∈ [0, 1] with |s− t| < δ.
But then if n > δ−1 we have for all z ∈ K

|f(z)− fn(z)| =
∣∣ ∫ 1

0
F (z, s)dz − 1

n

n∑
i=1

F (z, i/n)
∣∣

=

∣∣∣∣∣
n∑
i=1

∫ i/n

(i−1)/n

(
F (z, s)− F (z, i/n)

)
ds

∣∣∣∣∣
≤

n∑
i=1

∫ i/n

(i−1)/n
|F (z, s)− F (z, i/n)|ds

<

n∑
i=1

ε/n = ε.

Thus fn(z) tends to f(z) uniformly on K as required. �

Example 18.23. If f is any continuous function on [0, 1], then the previous
theorem shows that the function f(z) =

∫ 1
0 e

iszf(s)ds is holomorphic in
z, since clearly F (z, s) = eiszf(z) is continuous as a function on C × [0, 1]
and, for fixed s ∈ [0, 1], F is holomorphic as a function of z. Integrals of
this nature (though perhaps over the whole real line or the positive real
axis) arise frequently in many parts of mathematics, as you can learn more
about in the optional course on Integral Transforms.

Remark 18.24. Another way to prove the theorem is to use Morera’s theorem
directly: if γ : [0, 1]→ C is a closed path in B(a, r), then we have∫

γ
f(z)dz =

∫
γ

( ∫ 1

0
F (z, s)ds

)
dz

=

∫ 1

0

( ∫
γ
F (z, s)dz

)
ds = 0,

where in the first line we interchanged the order of integration, and in the
second we used the fact that F (z, s) is holomorphic in z and Cauchy’s theo-
rem for a disk. To make this completely rigorous however, one has to justify
the interchange of the orders of integration. Next term’s course on Integra-
tion proves a very general result of this form known as Fubini’s theorem,
but for continous functions on compact subets of Rn one can give more el-
ementary arguments by showing any such function is a uniform limit of
linear combinations of indicator functions of ”boxes” – the higher dimen-
sional analogues of step functions – and the elementary fact that the inter-
change of the order of integration for indicator functions of boxes holds
trivially.
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19. THE IDENTITY THEOREM, ISOLATED ZEROS AND SINGULARITIES

The fact that any complex differentiable function is in fact analytic has
some very surprising consequences – the most striking of which is perhaps
captured by the “Identity theorem”. This says that if f, g are two holomor-
phic functions defined on a domain U and we let S = {z ∈ U : f(z) = g(z)}
be the locus on which they are equal, then if S has a limit point in U it must
actually be all of U . Thus for example if there is a disk B(a, r) ⊆ U on
which f and g agree (not matter how small r is), then in fact they are equal
on all of U ! The key to the proof of the Identity theorem is the following
result on the zeros of a holomorphic function:

Proposition 19.1. Let U be an open set and suppose that g : U → C is holomor-
phic on U . Let S = {z ∈ U : g(z) = 0}. If z0 ∈ S then either z0 is isolated
in S (so that g is non-zero in some disk about z0 except at z0 itself) or g = 0 on
a neighbourhood of z0. In the former case there is a unique integer k > 0 and
holomorphic function g1 such that g(z) = (z − z0)kg1(z) where g1(z0) 6= 0.

Proof. Pick any z0 ∈ U with g(z0) = 0. Since g is analytic at z0, if we pick
r > 0 such that B̄(z0, r) ⊆ U , then we may write

g(z) =
∞∑
k=0

ck(z − z0)k,

for all z ∈ B(z0, r) ⊆ U , where the coeficients ck are given as in Theorem
18.11. Now if ck = 0 for all k, it follows that g(z) = 0 for all z ∈ B(0, r).
Otherwise, we set k = min{n ∈ N : cn 6= 0} (where since g(z0) = 0 we
have c0 = 0 so that k ≥ 1). Then if we let g1(z) = (z − z0)−kg(z), clearly
g1(z) is holomorphic on U\{z0}, but since in B(z0, r) we have we have
g1(z) =

∑∞
n=0 ck+n(z − z0)n, it follows if we set g1(z0) = ck 6= 0 then g1

becomes a holomorphic function on all of U . Since g1 is continuous at z0

and g1(z0) 6= 0, there is an ε > 0 such that g1(z) 6= 0 for all z ∈ B(z0, ε). But
(z − z0)k vanishes only at z0, hence it follows that g(z) = (z − z0)kg1(z) is
non-zero on B(a, ε)\{z0}, so that z0 is isolated.

Finally, to see that k is unique, suppose that g(z) = (z − z0)kg1(z) =
(z−z0)lg2(z) say with g1(z0) and g2(z0) both nonzero. If k < l then g(z)/(z−
z0)k = (z − z0)l−kg2(z) for all z 6= z0, hence as z → z0 we have g(z)/(z −
z0)k → 0, which contradicts the assumption that g1(z) 6= 0. By symmetry
we also cannot have k > l so k = l as required. �

Remark 19.2. The integer k in the previous proposition is called the multi-
plicity of the zero of g at z = z0 (or sometimes the order of vanishing).

Theorem 19.3. (Identity theorem): Let U be a domain and suppose that f1, f1 are
holomorphic functions defined on U . Then if S = {z ∈ U : f1(z) = f2(z)} has a
limit point in U , we must have S = U , that is f1(z) = f2(z) for all z ∈ U .

Proof. Let g = f1 − f2, so that S = g−1({0}). We must show that if S has a
limit point then S = U . Since g is clearly holomorphic in U , by Proposition
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19.1 we see that if z0 ∈ S then either z0 is an isolated point of S or it lies
in an open ball contained in S. It follows that S = V ∪ T where T = {z ∈
S : z is isolated} and V = int(S) is open. But since g is continuous, S =

g−1({0}) is closed in U , thus V ∪ T is closed, and so ClU (V ), the closure45

of V in U , lies in V ∪ T . However, by definition, no limit point of V can lie
in T so that ClU (V ) = V , and thus V is open and closed in U . Since U is
connected, it follows that V = ∅ or V = U . In the former case, all the zeros
of g are isolated so that S′ = T ′ = ∅ and S has no limit points. In the latter
case, V = S = U as required.

�

Remark 19.4. The requirement in the theorem that S have a limit point lying
in U is essential: If we take U = C\{0} and f1 = exp(1/z) − 1 and f2 = 0,
then the set S is just the points where f1 vanishes on U . Now the zeros of f1

have a limit point at 0 /∈ U since f(1/(2πin)) = 0 for all n ∈ N, but certainly
f1 is not identically zero on U !

We now wish to study singularities of holomorphic functions. The key
result here is Riemann’s removable singularity theorem, Corollary 18.16.

Definition 19.5. If U is an open set in C and z0 ∈ U , we say that a func-
tion f : U\{z0} → C has an isolated singularity at z0 if it is holomorphic on
B(z0, r)\{z0} for some r > 0.

Suppose that z0 is an isolated singularity of f . If f is bounded near z0

we say that f has a removable singularity at z0, since by Corollary 18.16 it
can be extended to a holomorphic function at z0. If f is not bounded near
z0, but the function 1/f(z) has a removable singularity at z0, that is, 1/f(z)
extends to a holomorphic function on all of B(z0, r), then we say that f has
a pole at z0. By Proposition 19.1 we may write (1/f)(z) = (z − z0)mg(z)
where g(z0) 6= 0 and m ∈ Z>0. (Note that the extension of 1/f to z0 must
vanish there, as otherwise f would be bounded near z0.) We say that m is
the order of the pole of f at z0. In this case we have f(z) = (z − z0)−m.(1/g)
near z0, where 1/g is holomorphic near z0 since g(z0) 6= 0. If m = 1 we say
that f has a simple pole at z0.

Finally, if f has an isolated singularity at z0 which is not removable nor
a pole, we say that z0 is an essential singularity.

Lemma 19.6. Let f be a holomorphic function with a pole of order m at z0. Then
there is an r > 0 such that for all z ∈ B(z0, r)\{z0} we have

f(z) =
∑
n≥−m

cn(z − z0)n

45I use the notation ClU (V ), as opposed to V̄ , to emphasize that I mean the closure of V
in U , not in C, that is, ClU (V ) is equal to the union of V with the limits points of V which
lie in U .
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Proof. As we have already seen, we may write f(z) = (z−z0)−mh(z) where
m is the order of the pole of f at z0 and h(z) is holomorphic and non-
vanishing at z0. The claim follows since, near z0, h(z) is equal to its Taylor
series at z0, and multiplying this by (z−z0)−m gives a series of the required
form for f(z). �

Definition 19.7. The series
∑

n≥−m cn(z−z0)n is called the Laurent series for
f at z0. We will show later that if f has an isolated essential singularity it
still has a Laurent series expansion, but the series is then involves infinitely
many positive and negative powers of (z − z0).

A function on an open set U which has only isolated singularities all
of which are poles is called a meromorphic function on U . (Thus, strictly
speaking, it is a function only defined on the complement of the poles in
U .)

Lemma 19.8. Suppose that f has an isolated singularity at a point z0. Then z0 is
a pole if and only if |f(z)| → ∞ as z → z0.

Proof. If z0 is a pole of f then 1/f(z) = (z − z0)kg(z) where g(z0) 6= 0 and
k > 0. But then for z 6= z0 we have f(z) = (z − z0)−k(1/g(z)), and since
g(z0) 6= 0, 1/g(z) is bounded away from 0 near z0, while |(z − z0)−k| → ∞
as z → z0, so |f(z)| → ∞ as z → z0 as required.

On the other hand, if |f(z)| → ∞ as z → z0, then 1/f(z) → 0 as z → z0,
so that 1/f(z) has a removable singularity and f has a pole at z0. �

Remark 19.9. The previous Lemma can be rephrased to say that f has a pole
at z0 precisely when f extends to a continuous function f : U → C∞ with
f(z0) = ∞. Moreover, you can check from Definition 13.6 that in this case,
the extension is actually holomorphic. Thus the Riemann sphere allows us
to put holomorphic and meromorphic functions on the same footing.

The case where f has an essential singularity is more complicated. We
prove that near an isolated singularity the values of a holomorphic function
are dense:

Theorem 19.10. (Casorati-Weierstrass): Let U be an open subset of C and let
a ∈ U . Suppose that f : U\{a} → C is a holomorphic function with an iso-
lated essential singularity at a. Then for all ρ > 0 with B(a, ρ) ⊆ U , the set
f(B(a, ρ)\{a}) is dense in C, that is, the closure of f(B(a, ρ)\{a}) is all of C.

Proof. Suppose, for the sake of a contradiction, that there is some ρ > 0
such that z0 ∈ C is not a limit point of f(B(a, ρ)\{a}). Then the function
g(z) = 1/(f(z) − z0) is bounded and non-vanishing on B(a, ρ)\{a}, and
hence by Riemann’s removable singularity theorem, it extends to a holo-
morphic function on all of B(a, ρ). But then f(z) = z0 + 1/g(z) has at most
a pole at a which is a contradiction. �

Remark 19.11. In fact much more is true: Picard showed that if f has an iso-
lated essential singularity at z0 then in any open disk about z0 the function
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f takes every complex value infinitely often with at most one exception.
The example of the function f(z) = exp(1/z), which has an essential sin-
gularity at z = 0 shows that this result is best possible, since f(z) 6= 0 for
all z 6= 0.

19.1. Principal parts.

Definition 19.12. Recall that by Lemma 19.6 if a function f has a pole of
order k at z0 then near z0 we may write

f(z) =
∑
n≥−k

cn(z − z0)n.

The function
∑−1

n=−k cn(z−z0)n is called the principal part of f at z0, and we
will denote it by Pz0(f). It is a rational function which is holomorphic on
C\{z0}. Note that f − Pz0(f) is holomorphic at z0 (and also holomorphic
wherever f is). The residue of f at z0 is defined to be the coefficient c−1 and
denoted Resz0(f).

The reason for introducing these definitions is the following: Suppose
that f : U → C∞ is a meromorphic function with poles at a finite set S ⊆ U .
Then for each z0 ∈ S we have the principal part Pz0(f) of f at z0, a rational
function which is holomorphic everywhere on C\{z0}. The difference

g(z) = f(z)−
∑
z0∈S

Pz0(f),

is holomorphic on all of U (away from S the is clear because each term
is, at z0 ∈ S the terms Ps(f) for s ∈ S\{z0} are all holomorphic, while
f(z)− Pz0(f) is holomorphic at z0 by the definition of Pz0(f)). Thus if U is
starlike and γ : [0, 1]→ U is any closed path in U with γ∗ ∩ S = ∅, we have∫

γ
f(z)dz =

∫
γ
g(z)dz +

∑
z0∈S

∫
γ
Pz0(f)dz =

∑
z0∈S

∫
γ
Pz0(f)dz.

The most important term in the principal part Pz0(f) is the term c−1/(z −
z0). This is because every other term has a primitive on C\{z0}, hence by
the Fundamental Theorem of Calculus it is the only part which contributes
to the integral of Pz0(f) around the closed path γ. Combining these obser-
vations we see that∫

γ
f(z)dz =

∑
z0∈S

Resz0(f)

∫
γ

dz

z − z0
= 2πi

∑
z0∈S

Resz0(f).I(γ, z0),

where I(γ, z0) denotes the winding number of γ about the pole z0. This
is the residue theorem for meromorphic functions on a starlike domain. We
will shortly generalize it.

Lemma 19.13. Suppose that f has a pole of order m at z0, then

Resz0(f) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)mf(z))
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Proof. Since f has a pole of orderm at z0 we have f(z) =
∑

n≥−m cn(z−z0)n

for z sufficiently close to z0. Thus

(z − z0)mf(z) = c−m + c−m+1(z − z0) + . . .+ c−1(z − z0)m−1 + . . .

and the result follows from the formula for the derivatives of a power se-
ries. �

Remark 19.14. The last lemma is perhaps most useful in the case where the
pole is simple, since in that case no derivatives need to be computed. In fact
there is a special case which is worth emphasizing: Suppose that f = g/h
is a ratio of two holomorphic functions defined on a domain U ⊆ C, where
h is non-constant. Then f is meromorphic with poles at the zeros46 of h. In
particular, if h has a simple zero at z0 and g is non-vanishing there, then f
correspondingly has a simple pole at z0. Since the zero of h is simple at z0,
we must have h′(z0) 6= 0, and hence by the previous result

Resz0(f) = lim
z→z0

g(z)(z − z0)

h(z)
= lim

z→z0
g(z). lim

z→z0

z − z0

h(z)− h(z0)
= g(z0)/h′(z0)

where the last equality holds by standard Algebra of Limits results.

20. HOMOTOPIES, SIMPLY-CONNECTED DOMAINS AND CAUCHY’S
THEOREM

A crucial point in our proof of Cauchy’s theorem for a triangle was that
the interior of the triangle was entirely contained in the open set on which
our holomorphic function f was defined. In general however, given a
closed curve, it is not always easy to say what we mean by the “interior”
of the curve. In fact there is a famous theorem, known as the Jordan Curve
Theorem, which resolves this problem, but to prove it would take us too
far afield. Instead we will take a slightly different strategy: in fact we will
take two different approaches: the first using the notion of homotopy and
the second using the winding number. For the homotopy approach, rather
than focusing only on closed curves and their “interiors” we consider arbi-
trary curves and study what it means to deform one to another.

Definition 20.1. Suppose thatU is an open set in C and a, b ∈ U . If η : [0, 1]→
U and γ : [0, 1] → U are paths in U such that γ(0) = η(0) = a and γ(1) =
η(1) = b, then we say that γ and η are homotopic in U if there is a continuous
function h : [0, 1]× [0, 1]→ U such that

h(0, s) = a, h(1, s) = b

h(t, 0) = γ(t), h(t, 1) = η(t).

One should think of h as a family of paths in U indexed by the second
variable s which continuously deform γ into η.

46Strictly speaking, the poles of f form a subset of the zeros of h, since if g also vanishes
at a point z0, then f may have a removable singularity at z0.
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A special case of the above definition is when a = b and γ and η are
closed paths. In this case there is a constant path ca : [0, 1]→ U going from
a to b = a which is simply given by ca(t) = a for all t ∈ [0, 1]. We say a
closed path starting and ending at a point a ∈ U is null homotopic if it is
homotopic to the constant path ca. One can show that the relation “γ is
homotopic to η” is an equivalence relation, so that any path γ between a
and b belongs to a unique equivalence class, known as its homotopy class.

Definition 20.2. Suppose that U is a domain in C. We say that U is simply
connected if for every a, b ∈ U , any two paths from a to b are homotopic in
U .

Lemma 20.3. Let U be a convex open set in C. Then U is simply connected.
Moreover if U1 and U2 are homeomorphic, then U1 is simply connected if and only
if U2 is.

Proof. Suppose that γ : [0, 1] → U and η : [0, 1] → U are paths starting and
ending at a and b respectively for some a, b ∈ U . Then for (s, t) ∈ [0, 1] ×
[0, 1] let

h(t, s) = (1− s)γ(t) + sη(t)

It is clear that h is continuous and one readily checks that h gives the re-
quired homotopy. For the moreover part, if f : U1 → U2 is a homeomor-
phism then it is clear that f induces a bijection between continuous paths
in U1 to those in U2 and also homotopies in U1 to those in U2, so the claim
follows. �

Remark 20.4. (Non-examinable) In fact, with a bit more work, one can show
that any starlike domain D is also simply-connected. The key is to show
that a domain is simply-connected if all closed paths starting and ending
at a given point z0 ∈ D are null-homotopic. If D is star-like with respect
to z0 ∈ D, then if γ : [0, 1] → D is a closed path with γ(0) = γ(1) = z0,
it follows h(s, t) = z0 + s(γ(t) − z0) gives a homotopy between γ and the
constant path cz0 .

Thus we see that we already know many examples of simply connected
domains in the plane, such as disks, ellipsoids, half-planes. The second
part of the above lemma also allows us to produce non-convex examples:

Example 20.5. Consider the domain

Dη,ε = {z ∈ C : z = reiθ : η < r < 1, 0 < θ < 2π(1− ε)},
where 0 < η, ε < 1/10 say, then Dη,ε is clearly not convex, but it is the
image of the convex set (0, 1) × (0, 1 − ε) under the map (r, θ) 7→ re2πiθ.
Since this map has a continuous (and even differentiable) inverse, it follows
Dη,ε is simply-connected. When η and ε are small, the boundary of this set,
oriented anti-clockwise, is a version of what is called a key-hole contour.

We are now ready to state our extension of Cauchy’s theorem. The proof
is given in the Appendices.
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Theorem 20.6. Let U be a domain in C and a, b ∈ U . Suppose that γ and η
are paths from a to b which are homotopic in U and f : U → C is a holomorphic
function. Then ∫

γ
f(z)dz =

∫
η
f(z)dz.

Remark 20.7. Notice that this theorem is really more general than the previ-
ous versions of Cauchy’s theorem we have seen – in the case where a holo-
morphic function f : U → C has a primitive the conclusion of the previous
theorem is of course obvious from the Fundamental theorem of Calculus47,
and our previous formulations of Cauchy’s theorem were proved by pro-
ducing a primitive for f on U . One significance of the homotopy form of
Cauchy’s theorem is that it applies to domains U even when there is no
primitive for f on U .

Theorem 20.8. Suppose that U is a simply-connected domain, let a, b ∈ U , and
let f : U → C be a holomorphic function on U . Then if γ1, γ2 are paths from a to
b we have ∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

In particular, if γ is a closed oriented curve we have
∫
γ f(z)dz = 0, and hence any

holomorphic function on U has a primitive.

Proof. Since U is simply-connected, any two paths from from a to b are
homotopic, so we can apply Theorem 20.6. For the last part, in a simply-
connected domain any closed path γ : [0, 1] → U , with γ(0) = γ(1) = a
say, is homotopic to the constant path ca(t) = a, and hence

∫
γ f(z)dz =∫

ca
f(z)dz = 0. The final assertion then follows from the Theorem 16.21. �

Example 20.9. If U ⊆ C\{0} is simply-connected, the previous theorem
shows that there is a holomorphic branch of [Log(z)] defined on all of U
(since any primitive for f(z) = 1/z will be such a branch).

Remark 20.10. Recall that in Definition 18.6 we called a domain D in the
complex plane primtive if every holomorphic function f : D → C on it had a
primitive. Theorem 20.8 shows that any simply-connected domain is prim-
itive. In fact the converse is also true – any primitive domain is necessarily
simply-connected. Thus the term “primitive domain” is in fact another
name for a simply-connected domain.

The definition of winding number allows us to give another version of
Cauchy’s integral formula (sometimes called the winding number or homol-
ogy form of Cauchy’s theorem).

47Indeed the hypothesis that the paths γ and η are homotopic is irrelevant when f has a
primitive on U .
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Theorem 20.11. Let f : U → C be a holomorphic function and let γ : [0, 1]→ U
be a closed path whose inside lies entirely in U , that is I(γ, z) = 0 for all z /∈ U .
Then we have, for all z ∈ U\γ∗,∫

γ
f(ζ)dζ = 0;

∫
γ

f(ζ)

ζ − z
dζ = 2πiI(γ, z)f(z).

Moreover, if U is simply-connected and γ : [a, b] → U is any closed path, then
I(γ, z) = 0 for any z /∈ U , so the above identities hold for all closed paths in such
U .

Remark 20.12. The “moreover” statement in fact just uses the fact that a
simply-connected domain is primitive: if D is a domain and w /∈ D, then
the function 1/(z−w) is holomorphic on all ofD, and hence has a primitive
on D. It follows I(γ,w) = 0 for any path γ with γ∗ ⊆ D.

Remark 20.13. This version of Cauchy’s theorem has a natural extension: in-
stead of integrating over a single closed path, one can integrate over formal
sums of closed paths, which are known as cycles: if a ∈ N and γ1, . . . , γk are
closed paths and a1, . . . , ak are complex numbers (we will usually only con-
sider the case where they are integers) then we define the integral around
the formal sum Γ =

∑k
i=1 aiγi of a function f to be∫

Γ
f(z)dz =

k∑
i=1

ai

∫
γi

f(z)dz.

Since the winding number can be expressed as an integral, this also gives
a natural defintion of the winding number for such Γ: explicitly I(Γ, z) =∑k

i=1 aiI(γi, z). If we write Γ∗ = γ∗1 ∪ . . . ∪ γ∗k then I(Γ, z) is defined for all
z /∈ Γ∗. The winding number version Cauchy’s theorem then holds (with
the same proof) for cycles in an open set U , where we define the inside of a
cycle to be the set of z ∈ C for which I(Γ, z) 6= 0.

Note that if z is inside Γ then it must be the case that z is inside some γi,
but the converse is not necessarily the case: it may be that z lies inside some
of the γi but does not lie inside Γ. One natural way in which cycles arise
are as the boundaries of an open subsets of the plane: if Ω is an domain
in the plane, then ∂Ω, the boundary of Ω is often a union of curves rather
than a single curve48. For example if r < R then Ω = B(0, R)\B̄(0, r)
has a boundary which is a union of two concentric circles. If these circles
are oriented correctly, then the “inside” of the cycle Γ which they form is
precisely Ω (see the discussion of Laurent series below for more details).
Thus the origin, although inside each of the circles γ(0, r) and γ(0, R), is not
inside Γ. The cycles version of Cauchy’s theorem is thus closest to Green’s
theorem in multivariable calculus.

48Of course in general the boundary of an open set need not be so nice as to be a union
of curves at all.
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As a first application of this new form of Cauchy’s theorem, we establish
the Laurent expansion of a function which is holomorphic in an annulus.
This is a generalization of Taylor’s theorem, and we already saw it in the
special case of a function with a pole singularity.

Definition 20.14. Let 0 ≤ r < R be real numbers and let z0 ∈ C. An open
annulus is a set

A = A(r,R, z0) = B(z0, R)\B̄(z0, r) = {z ∈ C : r < |z − z0| < R}.
If we write (for s > 0) γ(z0, s) for the closed path t 7→ z0 + se2πit then notice
that the inside of the cycle Γr,R,z0 = γ(z0, R) − γ(z0, r) is precisely A, since
for any s, I(γ(z0, s), z) is 1 precisely if z ∈ B(z0, s) and 0 otherwise.

Theorem 20.15. Suppose that 0 < r < R and A = A(r,R, z0) is an annulus
centred at z0. If f : U → C is holomorphic on an open set U which contains Ā,
then there exist cn ∈ C such that

f(z) =
∞∑

n=−∞
cn(z − z0)n, ∀z ∈ A.

Moreover, the cn are unique and are given by the following formulae:

cn =
1

2πi

∫
γs

f(z)

(z − z0)n+1
dz,

where s ∈ [r,R] and for any s > 0 we set γs(t) = z0 + se2πit.

Proof. By translation we may assume that z0 = 0. SinceA is the inside of the
cycle Γr,R,z0 it follows from the winding number form of Cauchy’s integral
formula that for w ∈ A we have

2πif(w) =

∫
γR

f(z)

z − w
dz −

∫
γr

f(z)

z − w
dz

But now the result follows in the same way as we showed holomorphic
functions were analytic: if we fix w, then, for |w| < |z| we have 1

z−w =∑∞
n=0w

n/zn+1, converging uniformly in z in |z| > |w| + ε for any ε > 0. It
follows that∫

γR

f(z)

z − w
dz =

∫
γR

∞∑
n=0

f(z)wn

zn+1
dz =

∑
n≥0

(∫
γR

f(z)

zn+1
dz

)
wn.

for allw ∈ A. Similarly since for |z| < |w|we have49 1
w−z =

∑
n≥0 z

n/wn+1 =∑−∞
n=−1w

n/zn+1, again converging uniformly on |z| when |z| < |w| − ε for
ε > 0, we see that∫

γr

f(z)

w − z
dz =

∫
γr

−∞∑
n=−1

f(z)wn/zn+1dz =
−∞∑
n=−1

( ∫
γr

f(z)

zn+1
dz
)
wn.

49Note the sign change.
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Thus taking (cn)n∈Z as in the statement of the theorem, we see that

f(w) =
1

2πi

∫
γR

f(z)

z − w
dz − 1

2πi

∫
γr

f(z)

z − w
dz =

∑
n∈Z

cnz
n,

as required. To see that the cn are unique, one checks using uniform con-
vergence that if

∑
n∈Z dnz

n is any series expansion for f(z) on A, then the
dn must be given by the integral formulae above.

Finally, to see that the cn can be computed using any circular contour γs,
note that if r ≤ s1 < s2 ≤ R then f/(z−z0)n+1 is holomorphic on the inside
of Γ = γs2 − γs1 , hence by the homology form of Cauchy’s theorem 0 =∫

Γ f(z)/(z−z0)n+1dz =
∫
γs2

f(z)/(z−z0)n+1dz−
∫
γs1

f(z)/(z−z0)n+1dz. �

Remark 20.16. Note that the above proof shows that the integral
∫
γR

f(z)
z−wdz

defines a holomorphic function of w in B(z0, R), while
∫
γr

f(z)
z−wdz defines a

holomorphic function of w on C\B(z0, r). Thus we have actually expressed
f(w) on A as the difference of two functions which are holomorphic on
B(z0, R) and C\B̄(z0, r) respectively.

Corollary 20.17. If f : U → C is a holomorphic function on an open set U con-
taining an annulus A = A(r,R, z0) then f has a Laurent expansion on A. In
particular, if f has an isolated singularity at z0, then it has a Laurent expansion
on a punctured disc B(z0, r)\{z0} for sufficiently small r > 0.

Proof. This follows from the previous Theorem and the fact that for any
0 ≤ r ≤ R we have

A(r,R, z0) =
⋃

r<r1<R1<R

A(r1, R1, z0).

The final sentence follows from the fact that B(z0, r)\{z0} = A(0, r, z0). �

Definition 20.18. Let f : U\S → C be a function which is holomorphic on
a domain U except at a discrete set S ⊆ U . Then for any a ∈ S Corollary
20.17 shows that for r > 0 sufficiently small, we have

f(z) =
∑
n∈Z

cn(z − a)n, ∀z ∈ B(a, r)\{a}.

We define

Pa(f) =
−∞∑
n=−1

cn(z − a)n,

to be the principal part of f at a. This generalizes the previous definition we
gave for the principal part of a meromorphic function. Note that the proof
of Theorem 20.17 shows that the series Pa(f) is uniformly convergent on
C\B(a, r) for all r > 0, and hence defines a holomorphic function on C\{a}.
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21. THE ARGUMENT PRINCIPLE

Lemma 21.1. Suppose that f : U → C is a meromorphic and has a zero of order
k or a pole of order k at z0 ∈ U . Then f ′(z)/f(z) has a simple pole at z0 with
residue k or −k respectively.

Proof. If f(z) has a zero of order k we have f(z) = (z − z0)kg(z) where g(z)
is holomorphic near z0 and g(z0) 6= 0. It follows that

f ′(z)/f(z) =
k

z − z0
+ g′(z)/g(z),

and since g(z) 6= 0 near z0 it follows g′(z)/g(z) is holomorphic near z0, so
that the result follows. The case where f has a pole at z0 is similar. �

Remark 21.2. Note that if U is an open set on which one can define a holo-
morphic branch L of [Log(z)] then g(z) = L(f(z)) has g′(z) = f ′(z)/f(z).
Thus integrating f ′(z)/f(z) along a path γ will measure the change in ar-
gument around the origin of the path f(γ(t)). The residue theorem allows
us to relate this to the number of zeros and poles of f inside γ, as the next
theorem shows:

Theorem 21.3. (Argument principle): Suppose that U is an open set and f : U →
C is a meromorphic function on U . If B(a, r) ⊆ U and N is the number of
zeros (counted with multiplicity) and P is the number of poles (again counted
with multiplicity) of f inside B(a, r) and f has neither on ∂B(a, r) then

N − P =
1

2πi

∫
γ

f ′(z)

f(z)
dz,

where γ(t) = a + re2πit is a path with image ∂B(a, r). Moreover this is the
winding number of the path Γ = f ◦ γ about the origin.

Proof. It is easy to check that I(γ, z) is 1 if |z − a| ≤ 1 and is 0 otherwise.
Since Lemma 21.1 shows that f ′(z)/f(z) has simple poles at the zeros and
poles of f with residues the corresponding orders the result immediately
from Theorem 22.1.

For the last part, note that the winding number of Γ(t) = f(γ(t)) about
zero is just ∫

f◦γ
dw/w =

∫ 1

0

1

f(γ(t))
f ′(γ(t))γ′(t)dt =

∫
γ

f ′(z)

f(z)
dz

�

Remark 21.4. The argument principle also holds, with the same proof, to
any closed path γ on which f is continuous and non-vanishing, provided
it has winding number +1 around its inside. Thus for example it applies
to triangles, or paths built from an arc of a circle and the line segments
joining the end-points to the centre of the circle, provided they are correctly
oriented.
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The argument principle is very useful – we use it here to establish some
important results.

Theorem 21.5. (Rouché’s theorem): Suppose that f and g are holomorphic func-
tions on an open set U in C and B̄(a, r) ⊂ U . If |f(z)| > |g(z)| for all z ∈
∂B(a, r) then f and f +g have the same change in argument around γ, and hence
the same number of zeros in B(a, r) (counted with multiplicities).

Proof. Let γ(t) = a + re2πit be a parametrization of the boundary circle of
B(a, r). We need to show that (f + g)/f = 1 + g/f has the same number
of zeros as poles (Note that f(z) 6= 0 on ∂B(a, r) since |f(z)| > |g(z)|.) But
by the argument principle, this number is the winding number of Γ(t) =
h(γ(t)) about zero, where h(z) = 1 + g(z)/f(z). Since, by assumption, for
z ∈ γ∗ we have |g(z)| < |f(z)| and so |g(z)/f(z)| < 1, the image of Γ lies
entirely in B(1, 1) and thus in the half-plane {z : <(z) > 0}. Hence picking
a branch of Log defined on this half-plane, we see that the integral∫

Γ

dz

z
= Log(h(γ(1))− Log(h(γ(0)) = 0

as required.
�

Remark 21.6. Rouche’s theorem can be useful in counting the number of
zeros of a function f – one tries to find an approximation to f whose zeros
are easier to count and then by Rouche’s theorem obtain information about
the zeros of f . Just as for the argument principle above, it also holds for
closed paths which having winding number about their inside.

Example 21.7. Suppose that P (z) = z4 + 5z + 2. Then on the circle |z| = 2,
we have |z|4 = 16 > 5.2 + 2 ≥ |5z + 2|, so that if g(z) = 5z + 2 we see that
P − g = z4 and P have the same number of roots in B(0, 2). It follows by
Rouche’s theorem that the four roots of P (z) all have modulus less than 2.
On the other hand, if we take |z| = 1, then |5z + 2| ≥ 5 − 2 = 3 > |z4| = 1,
hence P (z) and 5z + 2 have the same number of roots in B(0, 1). It follows
P (z) has one root of modulus less than 1, and 3 of modulus between 1 and
2.

Theorem 21.8. (Open mapping theorem): Suppose that f : U → C is holomor-
phic and non-constant on a domain U . Then for any open set V ⊂ U the set f(V )
is also open.

Proof. Suppose that w0 ∈ f(V ), say f(z0) = w0. Then g(z) = f(z) − w0

has a zero at z0 which, since f is nonconstant, is isolated. Thus we may
find an r > 0 such that g(z) 6= 0 on B̄(z0, r)\{z0} ⊂ U and in particular
since ∂B(z0, r) is compact, we have |g(z)| ≥ δ > 0 on ∂B(z0, r). But then
if |w − w0| < δ it follows |w − w0| < |g(z)| on ∂B(z0, r), hence by Rouche’s
theorem, since g(z) has a zero in B(z0, r) it follows h(z) = g(z) + (w0 −
w) = f(z) − w does also, that is, f(z) takes the value w in B(z0, r). Thus
B(w0, δ) ⊆ f(B(z0, r)) and hence f(U) is open as required. �
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Remark 21.9. Note that the proof actually establishes a bit more than the
statement of the theorem: if w0 = f(z0) then the multiplicity d of the zero
of the function f(z)−w0 at z0 is called the degree of f at z0. The proof shows
that locally the function f is d-to-1, counting multiplicities, that is, there are
r, ε ∈ R>0 such that for every w ∈ B(w0, ε) the equation f(z) = w has d
solutions counted with multiplicity in the disk B(z0, r).

Theorem 21.10. (Inverse function theorem): Suppose that f : U → C is injective
and holomorphic and that f ′(z) 6= 0 for all z ∈ U . If g : f(U)→ U is the inverse
of f , then g is holomorphic with g′(w) = 1/f ′(g(w)).

Proof. By the open mapping theorem, the function g is continuous, indeed
if V is open in f(U) then g−1(V ) = f(V ) is open by that theorem. To see
that g is holomorphic, fix w0 ∈ f(U) and let z0 = g(w0). Note that since
g and f are continuous, if w → w0 then f(w) → z0. Writing z = f(w) we
have

lim
w→w0

g(w)− g(w0)

w − w0
= lim

z→z0

z − z0

f(z)− f(z0)
= 1/f ′(z0)

as required. �

Remark 21.11. Note that the non-trivial part of the proof of the above theo-
rem is the fact that g is continuous! In fact the condition that f ′(z) 6= 0 fol-
lows from the fact that f is bijective – this can be seen using the degree of f :
if f ′(z0) = 0 and f is nonconstant, we must have f(z)−f(z0) = (z−z0)kg(z)
where g(z0) 6= 0 and k ≥ 1. Since we can chose a holomorphic branch of
g1/k near z0 it follows that f(z) is locally k-to-1 near z0, which contradicts
the injectivity of f . For details see the Appendices. Notice that this is in
contrast with the case of a single real variable, as the example f(x) = x3

shows. Once again, complex analysis is “nicer” than real analysis!

22. THE RESIDUE THEOREM

We can now prove one of the most useful theorems of the course – it is
extremely powerful as a method for computing integrals, as you will see
this course and many others.

Theorem 22.1. (Residue theorem): Suppose that U is an open set in C and γ is
a path whose inside is contained in U , so that for all z /∈ U we have I(γ, z) = 0.
Then if S ⊂ U is a finite set such that S ∩ γ∗ = ∅ and f is a holomorphic function
on U\S we have

1

2πi

∫
γ
f(z)dz =

∑
a∈S

I(γ, a)Resa(f)

Proof. For each a ∈ S let Pa(f)(z) =
∑−∞

n=−1 cn(a)(z − a)n be the principal
part of f at a, a holomorphic function on C\{a}. Then by definition of
Pa(f), the difference f − Pa(f) is holomorphic at a ∈ S, and thus g(z) =
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f(z) −
∑

a∈S Pa(f) is holomorphic on all of U . But then by Theorem 20.11
we see that

∫
γ g(z)dz = 0, so that∫

γ
f(z)dz =

∑
a∈S

∫
γ
Pa(f)(z)dz

But by the proof of Theorem 20.17, the series Pa(f) converges uniformly
on γ∗ so that∫

γ
Pa(f)dz =

∫
γ

−∞∑
n=−1

cn(a)(z − a)n =

∞∑
n=1

∫
γ

c−n(a)dz

(z − a)n

=

∫
γ

c−1(a)dz

z − a
= I(γ, a)Resa(f),

since for n > 1 the function (z − a)−n has a primitive on C\{a}. The result
follows. �

Remark 22.2. In practice, in applications of the residue theorem, the wind-
ing numbers I(γ, a) will be simple to compute in terms of the argument of
(z− a) – in fact most often they will be 0 or ±1 as we will usually apply the
theorem to integrals around simple closed curves.

22.1. Residue Calculus. The Residue theorem gives us a very powerful
technique for computing many kinds of integrals. In this section we give a
number of examples of its application.

Example 22.3. Consider the integral
∫ 2π

0
dt

1+3 cos2(t)
. If we let γ be the path

t 7→ eit and let z = eit then cos(t) = <(z) = 1
2(z + z̄) = 1

2(z + 1/z). Thus we
have

1

1 + 3 cos2(t)
=

1

1 + 3/4(z + 1/z)2
=

1

1 + 3
4z

2 + 3
2 + 3

4z
−2

=
4z2

3 + 10z2 + 3z4
,

Finally, since dz = izdt it follows∫ 2π

0

dt

1 + 3 cos2(t)
=

∫
γ

−4iz

3 + 10z2 + 3z4
dz.

Thus we have turned our real integral into a contour integral, and to eval-
uate the contour integral we just need to calculate the residues of the mero-
morphic function g(z) = −4iz

3+10z2+3z4
at the poles it has inside the unit circle.

Now the poles of g(z) are the zeros of the polynomial p(z) = 3+10z2 +3z4,
which are at z2 ∈ {−3,−1/3}. Thus the poles inside the unit circle are at
±i/
√

3. In particular, since p has degree 4 and has four roots, they must all
be simple zeros, and so g has simple poles at these points. The residue at
a simple pole z0 can be calculated as the limit limz→z0(z − z0)g(z), thus we
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see (compare with Remark 19.14) that

Resz=±i/√3(g(z)) = lim
z→±i/

√
3

−4iz(z −±i/
√

3)

3 + 10z2 + 3z4
= (±4/

√
3).

1

p′(±i/
√

3)

= (±4/
√

3).
1

20(±i/
√

3) + 12(±i/
√

3)3
= 1/4i.

It now follows from the Residue theorem that∫ 2π

0

dt

1 + 3 cos2(t)
= 2πi

(
Resz=i/√3((g(z)) + Resz=−i/√3(g(z))

)
= π.

Remark 22.4. Often we are interested in integrating along a path which is
not closed or even finite, for example, we might wish to understand the
integral of a function on the positive real axis. The residue theorem can still
be a power tool in calculating these integrals, provided we complete the
path to a closed one in such a way that we can control the extra contribution
to the integral along the part of the path we add.

Example 22.5. If we have a function f which we wish to integrate over the
whole real line (so we have to treat it as an improper Riemann integral)
then we may consider the contours ΓR given as the concatenation of the
paths γ1 : [−R,R]→ C and γ2 : [0, 1]→ C where

γ1(t) = −R+ t; γ2(t) = Reiπt.

(so that ΓR = γ2 ? γ1 traces out the boundary of a half-disk). In many cases
one can show that

∫
γ2
f(z)dz tends to 0 as R → ∞, and by calculating the

residues inside the contours ΓR deduce the integral of f on (−∞,∞). To
see this strategy in action, consider the integral∫ ∞

0

dx

1 + x2 + x4
.

It is easy to check that this integral exists as an improper Riemann integral,
and since the integrand is even, it is equal to

1

2
lim
R→∞

∫ R

−R

dx

1 + x2 + x4
dx.

If f(z) = 1/(1 + z2 + z4), then
∫

ΓR
f(z)dz is equal to 2πi times the sum of

the residues inside the path ΓR. The function f(z) = 1/(1 + z2 + z4) has
poles at z2 = ±e2πi/3 and hence at {eπi/3, e2πi/3, e4πi/3, e5πi/3}. They are all
simple poles and of these only {ω, ω2} are in the upper-half plane, where
ω = eiπ/3. Thus by the residue theorem, for all R > 1 we have∫

ΓR

f(z)dz = 2πi
(
Resω(f(z)) + Resω2(f(z))

)
,

and we may calculate the residues using the limit formula as above (and the
fact that it evaluates to the reciprocal of the derivative of 1+z2+z4): Indeed
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since ω3 = −1 we have Resω(f(z)) = 1
2ω+4ω3 = 1

2ω−4 , while Resω2(f(z)) =
1

2ω2+4ω6 = 1
4+2ω2 . Thus we obtain:∫
ΓR

f(z)dz = 2πi
( 1

2ω − 4
+

1

2ω2 + 4
)

= πi
( 1

ω − 2
+

1

ω2 + 2

)
= πi

( ω2 + ω

2(ω − ω2)− 5

)
= −
√

3π/(−3) = π/
√

3,

(where we used the fact that ω2 + ω = i
√

3 and ω − ω2 = 1). Now clearly∫
ΓR

f(z)dz =

∫ R

−R

dt

1 + t2 + t4
+

∫
γ2

f(z)dz,

and by the estimation lemma we have∣∣ ∫
γ2

f(z)dz
∣∣ ≤ sup

z∈γ∗2
|f(z)|.`(γ2) ≤ πR

R4 −R2 − 1
→ 0,

as R→∞, it follows that

π/
√

3 = lim
R→∞

∫
ΓR

f(z)dz =

∫ ∞
−∞

dt

1 + t2 + t4
.

22.2. Jordan’s Lemma and applications. The following lemma is a real-
variable fact which is fundamental to something known as convexity. Note
that if x, y are vectors in any vector space then the set {tx + (1 − t)y : t ∈
[0, 1]} describes the line segment between x and y.

Lemma 22.6. Let g : R → R be a twice differentiable function. Then if [a, b] is
an interval on which g′′(x) < 0, the function g is convex on [a, b], that is, for
x < y ∈ [a, b] we have

g(tx+ (1− t)y) ≥ tg(x) + (1− t)g(y), t ∈ [0, 1].

Thus informally speaking, chords between points on the graph of g lie below the
graph itself.

Proof. Given x, y ∈ [a, b] and t ∈ [0, 1] let ξ = tx + (1 − t)y, a point in the
interval between x and y. Now the slope of the chord between (x, g(x))
and (ξ, g(ξ)) is, by the Mean Value Theorem, equal to g′(s1) where s1 lies
between x and ξ, while the slope of the chord between (ξ, g(ξ)) and (y, g(y))
is equal to g′(s2) for s2 between ξ and y. If g(ξ) < tg(x) + (1 − t)g(y) it
follows that g′(s1) < 0 and g′(s2) > 0. Thus by the mean value theorem for
g′(x) applied to the points s1 and s2 it follows there is an s ∈ (s1, s2) with
g′′(s) = (g′(s2) − g′(s1))/(s2 − s1) > 0, contradicting the assumption that
g′′(x) is negative on (a, b). �

The following lemma is an easy application of this convexity result.
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Lemma 22.7. (Jordan’s Lemma): Let f : H→ C∞ be a meromorphic function on
the upper-half plane H = {z ∈ C : =(z) > 0}. Suppose that f(z)→ 0 as z →∞
in H. Then if γR(t) = Reit for t ∈ [0, π] we have∫

γR

f(z)eiαzdz → 0

as R→∞ for all α ∈ R>0.

Proof. Suppose that ε > 0 is given. Then by assumption we may find an S
such that for |z| > S we have |f(z)| < ε. Thus if R > S and z = γR(t), it
follows that

|f(z)eiαz| =≤ εe−αR sin(t).

But now applying Lemma 22.6 to the function g(t) = sin(t) with x = 0
and y = π/2 we see that sin(t) ≥ 2

π t for t ∈ [0, π/2]. Similarly we have
sin(π − t) ≥ 2(π − t)/π for t ∈ [π/2, π]. Thus we have

|f(z)eiαz| ≤
{

ε.e−2αRt/π, t ∈ [0, π/2]

ε.e−2αR(π−t)/π t ∈ [π/2, π]

But then it follows that∣∣ ∫
γR

f(z)eiαzdz
∣∣ ≤ 2

∫ π/2

0
εR.e−2αRt/πdt = ε.π

1− e−αR

α
< ε.π/α,

Thus since π/α > 0 is independent of R, it follows that
∫
γR
f(z)eiαzdz → 0

as R→∞ as required. �

Remark 22.8. If ηR is an arc of a semicircle in the upper half plane, say
ηR(t) = Reit for 0 ≤ t ≤ 2π/3, then the same proof shows that

∫
ηR
f(z)eiαzdz

tends to zero as R tends to infinity. This is sometimes useful when inte-
grating around the boudary of a sector of disk (that is a set of the form
{reiθ : 0 ≤ r ≤ R, θ ∈ [θ1, θ2]}).

It is also useful to note that if α < 0 then the integral of f(z)eiαz around a
semicircle in the lower half plane tends to zero as the radius of the semicircle
tends to infinity provided |f(z)| → 0 as |z| → ∞ in the lower half plane.
This follows immediately from the above applied to f(−z).

Example 22.9. Consider the integral
∫∞
−∞

sin(x)
x dx. This is an improper inte-

gral of an even function, thus it exists if and only if the limit of
∫ R
−R

sin(x)
x dx

exists as R → ∞. To compute this consider the integral along the closed
curve ηR given by the concatenation ηR = νR ? γR, where νR : [−R,R]→ R
given by νR(t) = t and γR(t) = Reit (where t ∈ [0, π]). Now if we let
f(z) = eiz−1

z , then f has a removable singularity at z = 0 (as is easily seen
by considering the power series expansion of eiz) and so is an entire func-
tion. Thus we have

∫
ηR
f(z)dz = 0 for all R > 0. Thus we have

0 =

∫
ηR

f(z)dz =

∫ R

−R
f(t)dt+

∫
γR

eiz

z
dz −

∫
γR

dz

z
.
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Now Jordan’s lemma ensures that the second term on the right tends to
zero asR→∞, while the third term integrates to

∫ π
0
iReit

Reit
dt = iπ. It follows

that
∫ R
−R f(t)dt tends to iπ asR→∞. and hence taking imaginary parts we

conclude the improper integral
∫∞
−∞

sin(x)
x dx is equal to π.

Remark 22.10. The function f(z) = eiz−1
z might not have been the first

meromorphic function one could have thought of when presented with the
previous improper integral. A more natural candidate might have been
g(z) = eiz

z . There is an obvious problem with this choice however, which is
that it has a pole on the contour we wish to integrate around. In the case
where the pole is simple (as it is for eiz/z) there is standard procedure for
modifying the contour: one indents it by a small circular arc around the
pole. Explicitly, we replace the νR with ν−R ? γε ? ν

+
R where ν±R (t) = t and

t ∈ [−R,−ε] for ν−R , and t ∈ [ε, R] for ν+
R (and as above γε(t) = εei(π−t) for

t ∈ [0, π]). Since sin(x)
x is bounded at x = 0 the sum∫ −ε

−R

sin(x)

x
dx+

∫ R

ε

sin(x)

x
dx→

∫ R

−R

sin(x)

x
dx,

as ε→ 0, while the integral along γε can be computed explicitly: by the Tay-
lor expansion of eiz we see that Resz=0

eiz

z = 1, so that eiz − 1/z is bounded
near 0. It follows that as ε → 0 we have

∫
γε

(eiz/z − 1/z)dz → 0. On the

other hand
∫
γε
dz/z =

∫ 0
−π(−εiei(π−t))/(ei(π−t)dt = −iπ, so that we see∫

γε

eiz

z
dz → −iπ

as ε→ 0.
Combining all of this we conclude that if Γε = ν−R ? γε ? ν

+
R ? γR then

0 =

∫
Γε

f(z)dz =

∫ −ε
−R

eix

x
dx+

∫
γε

eiz

z
dz +

∫ R

ε

eix

x
dx+

∫
γR

eiz

z
dz.

= 2i

∫ R

ε

sin(x)

x
+

∫
γε

eiz

z
+

∫
γR

eiz

z
dz

→ 2i

∫ R

0

sin(x)

x
dx− iπ +

∫
γR

eiz

z
dz.

as ε → 0. Then letting R → ∞, it follows from Jordans Lemma that the
third term tends to zero so we see that∫ ∞

−∞

sin(x)

x
dx = 2

∫ ∞
0

sin(x)

x
dx = π

as required.

We record a general version of the calculation we made for the contribu-
tion of the indentation to a contour in the following Lemma.
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Lemma 22.11. Let f : U → C be a meromorphic function with a simple pole at
a ∈ U and let γε : [α, β]→ C be the path γε(t) = a+ εeit, then

lim
ε→0

∫
γε

f(z)dz = Resa(f).(β − α)i.

Proof. Since f has a simple pole at a, we may write

f(z) =
c

z − a
+ g(z)

where g(z) is holomorphic near z and c = Resa(f) (indeed c/(z − a) is
just the principal part of f at a). But now as g is holomorphic at a, it is
continuous at a, and so bounded. Let M, r > 0 be such that |g(z)| < M for
all z ∈ B(a, r). Then if 0 < ε < r we have∣∣ ∫

γε

g(z)dz
∣∣ ≤ `(γε)M = (β − α)ε.M,

which clearly tends to zero as ε→ 0. On the other hand, we have∫
γε

c

z − a
dz =

∫ β

α

c

εeit
iεeitdt =

∫ β

α
(ic)dt = ic(β − α).

Since
∫
γε
f(z)dz =

∫
γε
c/(z − a)dz +

∫
γε
g(z)dz the result follows. �

22.3. On the computation of residues and principal parts. The previous
examples will hopefully have convinced you of the power of the residue
theorem. Of course for it to be useful one needs to be able to calculate the
residues of functions with isolated singularities. In practice the integral
formulas we have obtained for the residue are often not the best way to do
this. In this section we discuss a more direct approach which is often useful
when one wishes to calculate the residue of a function which is given as the
ratio of two holomorphic functions.

More precisely, suppose that we have a function F : U → C given to us as
a ratio f/g of two holomorphic functions f, g on U where g is non-constant.
The singularities of the function F are therefore poles which are located
precisely at the (isolated) zeros of the function g, so that F is meromorphic.
For convenience, we assume that we have translated the plane so as to
ensure the pole of F we are interested in is at a = 0. Let g(z) =

∑
n≥0 cnz

n

be the power series for g, which will converge to g(z) on any B(0, r) such
that B̄(0, r) ⊆ U . Since g(0) = 0, and this zero is isolated, there is a k > 0
minimal with ck 6= 0, and hence

g(z) = ckz
k(1 +

∑
n≥1

anz
n),

where an = cn+k/ck. Now if we let h(z) =
∑∞

n=1 anz
n−1 then h(z) is holo-

morphic in B(0, r) – since h(z) = (g(z)− ckzk)/(ckzk+1) – and moreover
1

g(z)
=

1

ckzk
(
1 + zh(z)

)−1
,
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Now as h is continuous, it is bounded on B̄(0, r), say |h(z)| < M for all
z ∈ B̄(0, r). But then we have, for |z| ≤ δ = min{r, 1/(2M)},

1

g(z)
=

1

ckzk
( ∞∑
n=0

(−1)nznh(z)n
)
,

where by the Weierstrass M -test, the above series converges uniformly on
B̄(0, δ). Moreover, for any n, the series

∑
m≥n(−1)mzmh(z)m is a holo-

morphic function which vanishes to order at least n at z = 0, so that
1

ckzk

∑
n≥k(−1)nznh(z)n is holmorphic. It follows that the principal part

of the Laurent series of 1/g(z) is equal to the principal part of the function

1

ckzk

k∑
n=1

(−1)k−1zkh(z)k.

Since we know the power series for h(z), this allows us to compute the prin-
cipal part of 1

g(z) as claimed. Finally, the principal part P0(F ) of F = f/g at
z = 0 is just the P0(f.P0(g)), the principal part of the function f(z).P0(g),
which again is straight-forward to compute if we know the power series
expansion of f(z) at 0 (indeed we only need the first k terms of it). The best
way to digest this analysis is by means of examples. We consider one next,
and will examine another in the next section on summation of series.

Example 22.12. Consider f(z) = 1/(z2 sinh(z)3). Now sinh(z) = (ez −
e−z)/2 vanishes on πiZ, and these zeros are all simple since d

dz (sinh(z)) =
cosh(z) has cosh(nπi) = (−1)n 6= 0. Thus f(z) has a pole or order 5 at zero,
and poles of order 3 at πin for each n ∈ Z\{0}. Let us calculate the principal
part of f at z = 0 using the above technique. We will write O(zk) for the
vector space of holomorphic functions which vanish to order k at 0.

z2 sinh(z)3 = z2(z +
z3

3!
+
z5

5!
+O(z7))3 = z5(1 +

z2

3!
+
z4

5!
+O(z6))3

= z5(1 +
3z2

3!
+

3z4

(3!)2
+

3z4

5!
+O(z6))

= z5(1 +
z2

2
+

13z4

120
+O(z6))

= z5

(
1 + z

(z
2

+
13z3

120
+O(z5)

))
Thus, in the notation of the above discussion, h(z) = z

2 + 13z3

120 +O(z5), and
so, as h vanishes to first order at z = 0, in order to obtain the principal
part we just need to consider the first two terms in the geometric series
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(1 + zh(z))−1 =
∑∞

n=0(−1)nznh(z)n:

1/z2 sinh(z)3 = z−5
(
1 + z(

z

2
+

13z3

120
+O(z5))

)−1

= z−5
(
1− z(z

2
+

13z3

120
) + z2 z2

(2!)2
+O(z5)

)
= z−5

(
1− z2

2
+ (

1

4
− 13

120
)z4 +O(z5)

)
=

1

z5
− 1

2z3
+

17

120z
+O(z).

Thus the principal part of f(z) at 0 is P0(f) = 1
z5
− 1

2z3
+ 17

120z , and Res0(f) =
17/120.

There are other variants on the above method which we could have used:
For example, by the binomial theorem for an arbitrary exponent we know
that if |z| < 1 then (1 + z)−3 =

∑
n≥0

(−3
n

)
zn = 1− 3z + 6z2 + . . .. Arguing

as above, it follows that for small enough z we have

sinh(z)−3 = z−3.(1 +
z2

3!
+
z4

5!
+O(z6))−3

= z−3

(
1 + (−3)

(z2

3!
+
z4

5!

)
+ 6
(z2

3!
+
z4

5!

)2
+O(z6)

)
= z−3

(
1− z2

2
+
(−3

5!
+

6

(3!)2

)
z4 +O(z6)

)
= z−3

(
1− z2

2
+

17z4

120
+O(z6)

)
yielding the same result for the principal part of 1/z2 sinh(z)3.

22.4. Summation of infinite series. Residue calculus can also be a use-
ful tool in calculating infinite sums, as we now show. For this we use the
function f(z) = cot(πz). Note that since sin(πz) vanishes precisely at the
integers, f(z) is meromorphic with poles at each integer n ∈ Z. Moreover,
since f is periodic with period 1, in order to understand the poles of f it
suffices to calculate the principal part of f at z = 0. We can use the method
of the previous section to do this:

We have sin(z) = z − z3

3! + z5

5! + O(z7), so that sin(z) vanishes with
multiplicity 1 at z = 0 and we may write sin(z) = z(1 − zh(z)) where
h(z) = z/3!− z3/5! +O(z5) is holomorphic at z = 0. Then

1

sin(z)
=

1

z
(1− zh(z))−1 =

1

z

(
1 +

∑
n≥1

znh(z)n
)

=
1

z
+ h(z) +O(z2).

Multiplying by cos(z) we see that the principal part of cot(z) is the same
as that of 1

z cos(z) which, using the Taylor expansion of cos(z), is clearly 1
z

again. By periodicity, it follows that cot(πz) has a simple pole with residue
1/π at each integer n ∈ Z.
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We can also use this strategyto find further terms of the Laurent series of
cot(z): Since our h(z) actually vanishes at z = 0, the terms h(z)nzn vanish
to order 2n. It follows that we obtain all the terms of the Laurent series of
cot(z) at 0 up to order 3, say, just by considering the first two terms of the
series 1 +

∑
n≥1 z

nh(z)n, that is, 1 + zh(z). Since cos(z) = 1− z2/2! + z4/4!,
it follows that cot(z) has a Laurent series

cot(z) = (1− z2

2!
+O(z4)).

(1

z
+ (

z

3!
− z3

5!
+O(z5))

)
=

1

z
− z

3
+O(z3)

The fact that f(z) has simple poles at each integer will allow us to sum
infinite series with the help of the following:

Lemma 22.13. Let f(z) = cot(πz) and let ΓN denotes the square path with
vertices (N + 1/2)(±1 ± i). There is a constant C independent of N such that
|f(z)| ≤ C for all z ∈ Γ∗N .

Proof. We need to consider the horizontal and vertical sides of the square
separately. Note that cot(πz) = (eiπz + e−iπz)/(eiπz − e−iπz). Thus on the
horizontal sides of ΓN where z = x ± (N + 1/2)i and −(N + 1/2) ≤ x ≤
(N + 1/2) we have

| cot(πz)| =

∣∣∣∣∣eiπ(x±(N+1/2)i) + e−iπ(x±(N+1/2)i)

eiπ(x±(N+1/2)i − e−iπ(x±(N+1/2)i)

∣∣∣∣∣
≤ eπ(N+1/2) + e−π(N+1/2)

eπ(N+1/2) − e−π(N+1/2)

= coth(π(N + 1/2)).

Now since coth(x) is a decreasing function for x ≥ 0 it follows that on the
horizontal sides of ΓN we have | cot(πz)| ≤ coth(3π/2).

On the vertical sides we have z = ±(N + 1/2) + iy, where −N − 1/2 ≤
y ≤ N + 1/2. Observing that cot(z + Nπ) = cot(z) for any integer N and
that cot(z + π/2) = − tan(z), we find that if z = ±(N + 1/2) + iy for any
y ∈ R then

| cot(πz)| = | − tan(iy)| = | − tanh(y)| ≤ 1.

Thus we may set C = max{1, coth(3π/2)}. �

We now show how this can be used to sum an infinite series:

Example 22.14. Let g(z) = cot(πz)/z2. By our discussion of the poles of
cot(πz) above it follows that g(z) has simple poles with residues 1

πn2 at
each non-zero integer n and residue −π/3 at z = 0.

Consider now the integral of g(z) around the paths ΓN : By Lemma 22.13
we know |g(z)| ≤ C/|z|2 for z ∈ Γ∗N , and for all N ≥ 1. Thus by the
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estimation lemma we see that(∫
ΓN

g(z)dz

)
≤ C.(4N + 2)/(N + 1/2)2 → 0,

as N →∞. But by the residue theorem we know that∫
ΓN

g(z)dz = −π/3 +
∑
n 6=0,

−N≤n≤N

1

πn2
.

It therefore follows that
∞∑
n=1

1

n2
= π2/6

Remark 22.15. Notice that the contours ΓN and the function cot(πz) clearly
allows us to sum other infinite series in a similar way – for example if we
wished to calculate the sum of the infinite series

∑
n≥1

1
n2+1

then we would
consider the integrals of g(z) = cot(πz)/(1 + z2) over the contours ΓN .

Remark 22.16. (Non-examinable – for interest only!): Note that taking g(z) =
(1/z2k) cot(πz) for any positive integer k, the above strategy gives a method
for computing

∑∞
n=1 1/n2k (check that you see why we need to take even

powers of n). The analysis for the case k = 1 goes through in general, we
just need to compute more and more of the Laurent series of cot(πz) the
larger we take k to be.

One can show that ζ(s) =
∑∞

n=1 1/ns converges to a holomorphic func-
tion of s for any s ∈ C with<(s) > 1 (as usual, we define ns = exp(s. log(n))
where log is the ordinary real logarithm). As s → 1 it can be checked that
ζ(s) → ∞, however it can be shown that ζ(s) extends to a meromorphic
function on all of C\{1}. The identity theorem shows that this extension is
unique if it exists50. (This uniqueness is known as the principle of “analytic
continuation”.) The location of the zeros of the ζ-function is the famous Rie-
mann hypothesis: apart from the “trivial zeros” at negative even integers,
they are conjectured to all lie on the line <(z) = 1/2. Its values at special
points however are also of interest: Euler was the first to calculate ζ(2k)
for positive integers k, but the values ζ(2k + 1) (for k a positive integer)
remain mysterious – it was only shown in 1978 by Roger Apéry that ζ(3) is
irrational for example. Our analysis above is sufficient to determine ζ(2k)
once one succeeds in computing explicitly the Laurent series for cot(πz) or
equivalently the Taylor series of z cot(πz) = iz+ 2iz/(e2iz − 1). See Appen-
dix IV for more details.

50It is this uniqueness and the fact that one can readily compute that ζ(−1) = −1/12
that results in the rather outrageous formula

∑∞
n=1 n = −1/12.
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FIGURE 5. A keyhole contour.

22.5. Keyhole contours. There are many ingenious paths which can be
used to calculate integrals via residue theory. One common contour is
known (for obvious reasons) as a keyhole contour. It is constructed from
two circular paths of radius ε and R, where we let R become arbitrarily
large, and ε arbitrarily small, and we join the two circles by line segments
with a narrow neck in between. Explicitly, if 0 < ε < R are given, pick a
δ > 0 small, and set η+(t) = t+ iδ, η−(t) = (R− t)− iδ, where in each case
t runs over the closed intervals with endpoints such that the endpoints of
η± lie on the circles of radius ε and R about the origin. Let γR be the pos-
itively oriented path on the circle of radius R joining the endpoints of η+

and η− on that circle (thus traversing the “long” arc of the circle between
the two points) and similarly let γε the path on the circle of radius ε which
is negatively oriented and joins the endpoints of γ± on the circle of radius ε.
Then we set ΓR,ε = η+ ? γR ? η− ? γε (see Figure 5). The keyhole contour can
sometimes be useful to evaluate real integrals where the integrand is multi-
valued as a function on the complex plane, as the next example shows:

Example 22.17. Consider the integral
∫∞

0
x1/2

1+x2
dx. Let f(z) = z1/2/(1 + z2),

where we use the branch of the square root function which is continuous
on C\R>0, that is, if z = reit with t ∈ [0, 2π) then z1/2 = r1/2eit/2.

We use the keyhole contour ΓR,ε. On the circle of radius R, we have
|f(z)| ≤ R1/2/(R2 − 1), so by the estimation lemma, this contribution to
the integral of f over ΓR,ε tends to zero as R → ∞. Similarly, |f(z)| is
bounded by ε1/2/(1− ε2) on the circle of radius ε, thus again by the estima-
tion lemma this contribution to the integral of f over ΓR,ε tends to zero as
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ε → 0. Finally, the discontinuity of our branch of z1/2 on R>0 ensures that
the contributions of the two line segments of the contour do not cancel but
rather both tend to

∫∞
0

x1/2

1+x2
dx as δ and ε tend to zero.

To compute
∫∞

0
x1/2

1+x2
dx we evaluate the integral

∫
ΓR,ε

f(z)dz using the
residue theorem: The function f(z) clearly has simple poles at z = ±i, and
their residues are 1

2e
−πi/4 and 1

2e
5πi/4 respectively. It follows that∫

ΓR,ε

f(z)dz = 2πi

(
1

2
e−πi/4 +

1

2
e5πi/4

)
= π
√

2.

Taking the limit as R → ∞ and ε → 0 we see that 2
∫∞

0
x1/2

1+x2
dx = π

√
2, so

that ∫ ∞
0

x1/2dx

1 + x2
=

π√
2
.

23. CONFORMAL TRANSFORMATIONS

Another important feature of the stereographic projection map is that
it is conformal, meaning that it preserves angles. The following definition
helps us to formalize what this means:

Definition 23.1. If γ : [−1, 1] → C is a C1 path which has γ′(t) 6= 0 for all
t, then we say that the line {γ(t) + sγ′(t) : s ∈ R} is the tangent line to γ at
γ(t), and the vector γ′(t) is a tangent vector at γ(t) ∈ C.

Remark 23.2. Note that this definition gives us a notion of tangent vectors
at points on subsets of Rn, since the notion of a C1 path extends readily
to paths in Rn (we just require all n component functions are continuously
differentiable). In particular, if S is the unit sphere in R3 as above, a C1 path
on S is simply a path γ : [a, b]→ R3 whose image lies in S. It is easy to check
that the tangent vectors at a point p ∈ S all lie in the plane perpendicular
to p – simply differentiate the identity f(γ(t)) = 1 where f(x, y, z) = x2 +
y2 + z2 using the chain rule.

We can now state what we mean by a conformal map:

Definition 23.3. Let U be an open subset of C and suppose that T : U →
C (or S) is continuously differentiable in the real sense (so all its partial
derivatives exist and are continuous). If γ1, γ2 : [−1, 1] → U are two paths
with z0 = γ1(0) = γ2(0) then γ′1(0) and γ′2(0) are two tangent vectors at z0,
and we may consider the angle between them (formally speaking this is the
difference of their arguments). By our assumption on T , the compositions
T ◦γ1 and T ◦γ2 areC1-paths through T (z0), thus we obtain a pair of tangent
vectors at T (z0). We say that T is conformal at z0 if for every pair of C1 paths
γ1, γ2 through z0, the angle between their tangent vectors at z0 is equal to
the angle between the tangent vectors at T (z0) given by the C1 paths T ◦ γ1

and T ◦γ2. We say that T is conformal on U if it is conformal at every z ∈ U .
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One of the main reasons we focus on conformal maps here is because
holomorphic functions give us a way of producing many examples of them,
as the following result shows.

Proposition 23.4. Let f : U → C be a holomorphic map and let z0 ∈ U be such
that f ′(z0) 6= 0. Then f is conformal at z0. In particular, if f : U → C is has
nonvanishing derivative on all of U , it is conformal on all of U (and locally a
biholomorphism).

Proof. We need to show that f preserves angles at z0. Let γ1 and γ2 be C1-
paths with γ1(0) = γ2(0) = z0. Then we obtain paths η1, η2 through f(z0)
where η1(t) = f(γ1(t)) and η2(t) = f(γ2(t)). By the Chain Rule (see Lemma
26.7) we see that η′1(t) = Dfz0(γ′1(t)) and η′2(t) = Dfz0(γ′2(t)), and moreover
if f ′(z0) = ρ.eiθ, then

Dfz0 = ρ.

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
,

(since the linear map given by multiplication by f ′(z0) is precisely scaling
by ρ and rotating by θ). It follows that if φ1 and φ2 are the arguments
of γ′1(0) and γ′2(0), then the arguments of η′1(0) and η′2(0) are φ1 + θ and
φ2 + θ respectively. It follows that the difference between the two pairs of
arguments, that is, the angles between the curves at z0 and f(z0), are the
same.

For the final part, note that if f ′(z0) 6= 0 then by the definition of the de-
gree of vanishing, the function f(z) is locally biholomorphic (see the proof
of the inverse function theorem). �

Example 23.5. The function f(z) = z2 has f ′(z) nonzero everywhere except
the origin. It follows f is a conformal map from C× to itself. Note that the
condition that f ′(z) is non-zero is necessary – if we consider the function
f(z) = z2 at z = 0, f ′(z) = 2z which vanishes precisely at z = 0, and it is
easy to check that at the origin f in fact doubles the angles between tangent
vectors.

Lemma 23.6. The sterographic projection map S : C→ S is conformal.

Proof. Let z0 be a point in C, and suppose that γ1(t) = z0 + tv1 and γ2(t) =

z0 + tv2 are two paths51 having tangents v1 and v2 at z0 = γ1(0) = γ2(0).
Then the lines L1 and L2 they describe, together with the point N , deter-
mine planes H1 and H2 in R3, and moreover the image of the lines under
stereographic projection is the intersection of these planes with S. Since
the intersection of S with any plane is either empty or a circle, it follows
that the paths γ1 and γ2 get sent to two circles C1 and C2 passing through
P = S(z0) and N . Now by symmetry, these circles meet at the same angle
at N as they do at P . Now the tangent lines of C1 and C2 at N are just the
intersections of H1 and H2 with the plane tangent to S at N . But this means

51with domain [−1, 1] say – or even the whole real line, except that it is non-compact.
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the angle between them will be the same as that between the intersection of
H1 and H2 with the complex plane, since it is parallel to the tangent plane
of S at N . Thus the angles between C1 and C2 at P and L1 and L2 at z0

coincide as required. �

Although it follows easily from what we have already done, it is worth
high-lighting the following:

Lemma 23.7. Mobius transformations are conformal.

Proof. As we have already shown, any holomorphic map is conformal wher-
ever its derivative is nonzero. Since a Mobius transformation f is invertible
everywhere with holomorphic inverse, its derivative must be nonzero ev-
erywhere and we are done.

One can also give a more explicit proof: If f(z) = az+b
cz+d then it is easy to

check that

f ′(z) =
ad− bc

(cz + d)2
6= 0,

for all z 6= −d/c, thus f is conformal at each z ∈ C\{−d/c}. Checking at
z = ∞,−d/c is similar: indeed at∞ = [1 : 0] we use the map i∞ : C → P1

given by w 7→ [1 : w] to obtain f∞(w) = a+bw
c+dw and f ′∞(w) = bc−ad

(c+dw)2
, which

is certainly nonzero at w = 0 (and i∞(0) =∞). �

Since a Mobius map is given by the four entries of a 2 × 2 matrix, up to
simultaneus rescaling, the following result is perhaps not too surprising.

Proposition 23.8. If z1, z2, z3 and w1, w2, w3 are triples of pairwise distinct com-
plex numbers, then there is a unique Mobius transformation f such that f(zi) =
wi for each i = 1, 2, 3.

Proof. It is enough to show that, given any triple (z1, z2, z3) of complex
numbers, we can find a Mobius transformations which takes z1, z2, z3 to
0, 1,∞ respectively. Indeed if f1 is such a transformation, and f2 takes
0, 1,∞ to w1, w2, w3 respectively, then clearly f2 ◦ f−1

1 is a Mobius trans-
formation which takes zi to wi for each i.

Now consider

f(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

It is easy to check that f(z1) = 0, f(z2) = 1, f(z3) = ∞, and clearly f is a
Mobius transformation as required. If any of z1, z2 or z3 is∞, then one can
find a similar transformation (for example by letting zi → ∞ in the above
formula). Indeed if z1 = ∞ then we set f(z) = z2−z3

z−z3 ; if z2 = ∞, we take
f(z) = z−z1

z−z3 ; and finally if z3 =∞ take f(z) = z−z1
z2−z1 .

To see the f is unique, suppose f1 and f2 both took z1, z2, z3 to w1, w2, w3.
Then taking Mobius transformations g, h sending z1, z2, z3 andw1, w2, w3 to
0, 1,∞ the transformations hf1g

−1 and hf2g
−1 both take (0, 1,∞) to (0, 1,∞).

But suppose T (z) = az+b
cz+d is any Mobius transformation with T (0) = 0,
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T (1) = 1 and T (∞) =∞. Since T fixes∞ it follows c = 0. Since T (0) = 0 it
follows that b/d = 0 hence b = 0, thus T (z) = a/d.z, and since T (1) = 1 it
follows a/d = 1 and hence T (z) = z. Thus we see that hf1g

−1 = hf2g
−1 =

id are all the identity, and so f1 = f2 as required. �

Example 23.9. The above lemma shows that we can use Mobius transfor-
mations as a source of conformal maps. For example, suppose we wish to
find a conformal transformation which takes the upper half plane H = {z ∈
C : =(z) > 0} to the unit disk B(0, 1). The boundary of H is the real line,
and we know Mobius transformations take lines to lines or circles, and in
the latter case this means the point∞ ∈ C∞ is sent to a finite complex num-
ber. Now any circle is uniquely determined by three points lying on it, and
we know Mobius transformations allow us to take any three points to any
other three points. Thus if we take f the Mobius map which sends 0 7→ −i,
and 1 7→ 1,∞ 7→ i the real axis will be sent to the unit circle. Now we have

f(z) =
iz + 1

z + i

(one can find f in a similar fashion to the proof of Proposition 23.8).
So far, we have found a Mobius transformation which takes the real line

to the unit circle. Since C\R has two connected components, the upper
and lower half planes, H and iH, and similarly C\S1 has two connected
components, B(0, 1) and C\B̄(0, 1). Since a Mobius transformation is con-
tinuous, it maps connected sets to connected sets, thus to check whether
f(H) = B(0, 1) it is enough to know which component of C\S1 a single
point in H is sent to. But f(i) = 0 ∈ B(0, 1), so we must have f(H) = B(0, 1)
as required.

Note that if we had taken g(z) = (z + i)/(iz + 1) for example, then g

also maps R to the unit circle S1, but g(−i) = 0, so52 g maps the lower
half plane to B(0, 1). If we had used this transformation, then it would
be easy to “correct” it to get what we wanted: In fact there are (at least)
two simple things one could do: First, one could note that the map R(z) =
−z (a rotation by π) sends the upper half plane to the lower half place, so
that the composition g ◦ R is a Mobius transformation taking H to B(0, 1).
Alternatively, the inversion j(z) = 1/z sends C\B̄(0, 1) to B(0, 1), so that
j ◦ g also sends H to B(0, 1). Explicitly, we have

g ◦R(z) =
z − i
iz − 1

=
−i(iz + 1)

i(z + i)
= −f(z), j ◦ g(z) =

iz + 1

z + i
= f(z).

52A Mobius map is a continuous function on C∞, and if we remove a circle from C∞
the complement is a disjoint union of two connected components, just the same as when
we remove a line or a circle from the plane, thus the connectedness argument works just as
well when we include the point at infinity.
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Note in particular that f is far from unique – indeed if f is any Mobius
transformation which takes H to B(0, 1) then composing it with any Mo-
bius transformation which preserves B(0, 1) will give another such map.
Thus for example eiθ.f will be another such transformation.

Exercise 23.10. Every Mobius transformation gives a biholomorphic map
from C∞ to itself, but they may not preserve the distance function dS on P1.
What is the subgroup of Mob which are isometries of P1 with respect to the
distance function dS?

Given two domains D1, D2 in the complex plane, one can ask if there
is a conformal transformation f : D1 → D2. Since a conformal transfor-
mation is in particular a homeomorphism, this is clearly not possible for
completely arbitrary domains. However if we restrict to simply-connected
domains (that is, domains in which any path can be continuously deformed
to any other path with the same end-points), the following remarkable the-
orem shows that the answer to this question is yes! Since it will play a
distinguished role later, we will write D for the unit disc B(0, 1).

Theorem 23.11. (Riemann’s mapping theorem): Let U be an open connected and
simply-connected proper subset of C. Then for any z0 ∈ U there is a unique
bijective conformal transformation f : U → D such that f(z0) = 0, f ′(z0) > 0.

Remark 23.12. The proof of this theorem is beyond the scope of this course,
but it is a beautiful and fundamental result. The proof in fact only uses the
fact that on a simply-connected domain any holomorphic function has a
primitive, and hence it in fact shows that such domains are simply-connected
in the topological sense (since a conformal transformation is in particular a
homeomorphism, and the disc in simply-connected). It relies crucially on
Montel’s theorem on families of holomorphic functions, see for example the
text of Shakarchi and Stein53 for an exposition of the argument.

Note that it follows immediately from Liouville’s theorem that there can
be no bijective conformal transformation taking C to B(0, 1), so the whole
complex plane is indeed an exception. The uniqueness statement of the
theorem reduces to the question of understanding the conformal transfor-
mations of the disk D to itself.

Of course knowing that a conformal transformation between two do-
mainsD1 andD2 exists still leaves the challenge of constructing one. As we
will see in the next section on harmonic maps, this is an important question.
In simple cases one can often do so by hand, as we now show.

In addition to Mobius transformations, it is often useful to use the ex-
ponential function and branches of the multifunction [zα] (away from the
origin) when constructing conformal maps. We give an example of the kind
of constructions one can do:

53Complex Analysis, Princeton Lecture in Analysis II, E. M. Stein & R. Shakarchi. P.U.P.
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Example 23.13. Let D1 = B(0, 1) and D2 = {z ∈ C : |z| < 1,=(z) >
0}. Since these domains are both convex, they are simply-connected, so
Riemann’s mapping theorem ensure that there is a conformal map sending
D2 to D1. To construct such a map, note that the domain is defined by the
two curves γ(0, 1) and the real axis. It can be convenient to map the two
points of intersection of these curves,±1 to 0 and∞. We can readily do this
with a Mobius transformation:

f(z) =
z − 1

z + 1
,

Now since f is a Mobius transformation, it follows that f1(R) and f1(γ(0, 1))
are lines (since they contain∞) passing through the origin. Indeed f(R) =
R, and since f had inverse f−1 = z+1

z−1 it follows that the image of γ(0, 1)

is {w ∈ C : |w − 1| = |w + 1|}, that is, the imaginary axis. Since f(i/2) =
(−3 + 4i)/5 it follows by connectedness that f(D1) is the second quadrant
Q = {w ∈ C : <(z) < 0,=(z) > 0}.

Now the squaring map s : C→ C given by z 7→ z2 maps Q bijectively to
the half-plane H = {w ∈ C : =(w) < 0}, and is conformal except at z = 0
(which is on the boundary, not in the interior, of Q). We may then use a
Mobius map to take this half-plane to the unit disc: indeed in Example 23.9
we have already seen that the Mobius transformation g(z) = z+i

iz+1 takes the
lower-half plane to the upper-half plane.

Putting everything together, we see that F = g ◦ s ◦ f is a conformal
transformation taking D1 to D2 as required. Calculating explicitly we find
that

F (z) = i

(
z2 + 2iz + 1

z2 − 2iz + 1

)
Remark 23.14. Note that there are couple of general principles one should
keep in mind when constructing conformal transformations between two
domains D1 and D2. Often if the boundary of D1 has distinguished points
(such as ±1 in the above example) it is convenient to move these to “stan-
dard” points such as 0 and ∞, which one can do with a Mobius transfor-
mation. The fact that Mobius transformations are three-transitive and takes
lines and circles to lines and circles and moreover act transitively on such
means that we can always use Mobius transformations to match up those
parts of the boundary ofD1 andD2 given by line segments or arcs of circles.
However these will not be sufficient in general: indeed in the above exam-
ple, the fact that the boundary of D1 is a union of a semicircle and a line
segment, while that ofD2 is just a circle implies there is no Mobius transfor-
mation taking D1 to D2, as it would have to take ∂D1 to ∂D2, which would
mean that its inverse would not take the unit circle to either a line or a cir-
cle. Branches of fractional power maps [zα] are often useful as they allow
us to change the angle at the points of intersection of arcs of the boundary
(being conformal on the interior of the domain but not on its boundary).
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23.1. Conformal transformations and the Laplace equation. In this sec-
tion we will use the term conformal map or conformal transformation some-
what abusively to mean a holomorphic function whose derivative is nowhere
vanishing on its domain of definition. (We have seen already that this im-
plies the function is conformal in the sense of the previous section.) If there
is a bijective conformal transformation between two domains U and V we
say they are conformally equivalent.

Recall that a function v : R2 → R is said to be harmonic if it is twice differ-
entiable and ∂2

xv + ∂2
yv = 0. Often one seeks to find solutions to this equa-

tion on a domain U ⊂ R2 where we specify the values of v on the boundary
∂U ofU . This problem is known as the Dirichlet problem, and makes sense in
any dimension (using the appropriate Laplacian). In dimension 2, complex
analysis and in particular conformal maps are a powerful tool by which
one can study this problem, as the following lemma show.

Lemma 23.15. Suppose that U ⊂ C is a simply-connected open subset of C and
v : U → R is twice continuously differentiable and harmonic. Then there is a
holomorphic function f : U → C such that <(f) = v. In particular, any such
function v is analytic.

Proof. (Sketch): Consider the function g(z) = ∂xv − i∂yv. Then since v is
twice continuously differentiable, the partial derivatives of g are continu-
ous and

∂2
xv = −∂2

yv; ∂y∂xv = ∂x∂yv,

so that g satisfies the Cauchy-Riemann equations. It follows from Theorem
14.9 that g is holomorphic. Now sinceU is simply-connected, it follows that
g has a primitive G : U → C. But then it follows that if G = a(z) + ib(z) we
have ∂zG = ∂xa − i∂ya = g(z) = ∂xv − i∂yv, hence the partial derivatives
of a and v agree on all of U . But then if z0, z ∈ U and γ is a path between
then, the chain rule54 shows that∫

γ
(∂xv + i∂yv)dz =

∫ 1

0
(∂x(v(γ(t)) + i∂yv(γ(t)))γ′(t)dt

=

∫ 1

0

d

dt
(v(γ(t)))dt = v(z)− v(z0),

Similarly, we see that the same path integral is also equal to a(z) − a(z0).
It follows that a(z) = v(z) + (a(z0) − v(z0)), thus if we set f(z) = G(z) −
(G(z0) − v(z0)) we obtain a holomorphic function on U whose real part is
equal to v as required.

Since we know that any holomorphic function is analytic, it follows that
v is analytic (and in particular, infinitely differentiable). �

54This uses the chain rule for a composition g ◦ f of real-differentiable functions f : R→
R2 and g : R2 → R, applied to the real and imaginary parts of the integrand. This follows
in exactly the same way as the proof of Lemma 26.7. See the remark after the proof of that
lemma.
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The previous Lemma shows that, at least locally (in a disk say) harmonic
functions and holomorphic functions are in correspondence – given a holo-
morphic function f we obtain a harmonic function by taking its real part,
while if u is harmonic the previous lemma shows we can associate to it a
holomorphic function f whose real part equals u (and in fact examining the
proof, we see that f is actually unique up to a purely imaginary constant).
Thus if we are seeking a harmonic function on an open set U whose values
are a given function g on ∂U , then it suffices to find a holomorphic function
f on U such that <(f) = g on the boundary ∂U .

Now if H : U → V was a bijective conformal transformation which ex-
tends to a homeomorphism H̄ : Ū → V̄ which thus takes ∂U homeomor-
phically to ∂V , then if f : V → C is holomorphic, so is f ◦ H . Thus in
particular <(f ◦ H) is a harmonic function on U . It follows that we can
use conformal transformations to transport solutions of Laplace’s equation
from one domain to another: if we can use a conformal transformation H
to take a domain U to a domain V where we already have a supply of holo-
morphic functions satisfying various boundary conditions, the conformal
transformation H gives us a corresponding set of holomorphic (and hence
harmonic) functions on U . We state this a bit more formally as follow:

Lemma 23.16. If U and V are domains and G : U → V is a conformal transfor-
mation, then if u : V → R is a harmonic function on V , the composition u ◦ G is
harmonic on U .

Proof. To see that u ◦ G is harmonic we need only check this in a disk
B(z0, r) ⊆ U about any point z0 ∈ U . If w0 = G(z0), the continuity of
G ensures we can find δ, ε > 0 such that G(B(z0, δ)) ⊆ B(w0, ε) ⊆ V . But
now since B(w0, ε) is simply-connected we know by Lemma 23.15 we can
find a holomorphic function f(z) with u = <(f). But then on B(z0, δ) we
have u ◦G = <(f ◦G), and by the chain rule f ◦G is holomorphic, so that
its real part is harmonic as required. �

Remark 23.17. You can also give a more direct computational proof of the
above Lemma. Note also that we only need G to be holomorphic – the fact
that it is a conformal equivalence is not necessary. On the other hand if we
are trying to produce harmonic functions with prescribed boundary values,
then we will need to use carefully chosen conformal transformations.

This strategy for studying harmonic functions might appear over-optimistic,
in that the domains one can obtain from a simple open set like B(0, 1) or
the upper-half plane H might consist of only a small subset of the open sets
one might be interested in. However, the Riemann mapping theorem (The-
orem 23.11) show that every domain which is simply connected, other than
the whole complex plane itself, is in fact conformally equivalent to B(0, 1).
Thus a solution to the Dirichlet problem for the disk at least in principal
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comes close55 to solving the same problem for any simply-connected do-
main! For convenience, we will write D for the open disk B(0, 1) of radius
1 centred at 0.

In the course so far, the main examples of conformal transformations we
have are the following:

(1) The exponential function is conformal everywhere, since it is its
own derivative and it is everywhere nonzero.

(2) Mobius transformations understood as maps on the extended com-
plex plane are everywhere conformal.

(3) Fractional exponents: In cut planes the functions z 7→ zα for α ∈ C
are conformal (the cut removes the origin, where the derivative may
vanish).

Let us see how to use these transformations to obtain solutions of the
Laplace equation. First notice that Cauchy’s integral formula suggests a
way to produce solutions to Laplace’s equation in the disk: Suppose that u
is a harmonic function defined on B(0, r) for some r > 1. Then by Lemma
23.15 we know there is a holomorphic function f : B(0, r) → C such that
u = <(f). By Cauchy’s integral formula, if γ is a parametrization of the
positively oriented unit circle, then for all w ∈ B(0, 1) we have f(w) =

1
2πi

∫
γ f(z)/(z − w)dz, and so

u(z) = <
( 1

2πi

∫
γ

f(z)dz

z − w
)
.

Since the integrand uses only the values of f on the boundary circle, we
have almost recovered the function u from its values on the boundary. (Al-
most, because we appear to need the values of it harmonic conjugate). The
next lemma resolves this:

Lemma 23.18. If u is harmonic on B(0, r) for r > 1 then for all w ∈ B(0, 1) we
have

u(w) =
1

2π

∫ 2π

0
f(eiθ)

1− |w|2

|eiθ − w|2
dθ =

1

2π

∫ 2π

0
u(eiθ)<

(eiθ + w

eiθ − w
)
dθ.

Proof. (Sketch.) Take, as before, f(z) holomorphic with <(f) = u on B(0, r).
Then letting γ be a parametrization of the positively oriented unit circle we
have

f(w) =
1

2πi

∫
γ

f(z)dz

z − w
− 1

2πi

∫
γ

f(z)dz

z − w̄−1

where the first term is f(w) by the integral formula and the second term is
zero because f(z)/(z− w̄−1) is holomorphic inside all of B(0, 1). Gathering
the terms, this becomes

f(w) =
1

2π

∫
γ
f(z)

1− |w|2

|z − w|2
dz

iz
=

1

2π

∫ 2π

0
f(eiθ)

1− |w|2

|eiθ − w|2
dθ.

55The issue is whether the conformal equivalence behaves well enough at the
boundaries.
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The advantage of this last form is that the real and imaginary parts are now
easy to extract, and we see that

u(z) =

∫ 2π

0
u(eiθ)

1− |w|2

|eiθ − w|2
dθ.

Finally for the second integral expression note that if |z| = 1 then

z + w

z − w
=

(z + w)(z̄ − w̄)

|z − w|2
=

1− |w|2 + (z̄w − zw̄)

|z − w|2
.

from which one readily sees the real part agrees with the corresponding
factor in our first expression. �

Now the idea to solve the Dirichlet problem for the diskB(0, 1) is to turn
this previous result on its head: Notice that it tells us the values of u inside
the disk B(0, 1) in terms of the values of u on the boundary. Thus if we
are given the boundary values, say a (periodic) function G(eiθ) we might
reasonably hope that the integral

g(w) =
1

2π

∫ 2π

0
G(eiθ)

1− |w|2

|eiθ − w|2
dθ,

would define a harmonic function with the required boundary values. In-
deed it follows from the proof of the lemma that the integral is the real part
of the integral

1

2πi

∫
γ
G(z)

1

z − w
dz,

which we know from Proposition 17.7 is holomorphic in w, thus g(w) is
certainly harmonic. It turns out that if w → w0 ∈ ∂B(0, 1) then provided
G is continuous at w0 then g(w) → G(w0), hence g is in fact a harmonic
function with the required boundary value.



METRIC SPACES AND COMPLEX ANALYSIS. 121

24. APPENDIX I: SET THEORY

In this appendix we review some elementary set theory.

If X is a set and {Ai : i ∈ I} is a collection of subsets of X indexed by a
set I , then we define⋃

i∈I
Ai = {x ∈ X : ∃i ∈ I such that x ∈ Ai};⋂

i∈I
Ai = {x ∈ X : ∀i ∈ I, x ∈ Ai}.

Note that in particular this implies that if I is the empty set, then the empty
intersection is X , while the empty union is the empty set.

If A ⊆ X then we write Ac for the complement of A in X , that is, Ac =
{x ∈ X;x /∈ A}. De Morgan’s Laws state that(⋃

i∈I
Ai
)c

=
⋂
i∈I

Aci ;
(⋂
i∈I

Ai
)c

=
⋃
i∈I

Aci .

If : X → Y is any function, then there is an induced map f−1 : P(Y ) →
P(X), where P(X) denotes the power set of X , that is, the set of all subsets
of X . If A ⊆ Y then f−1(A) = {x ∈ X : f(x) ∈ A}. We call f−1(A) the
preimage of A in X . The preimage map f−1 is compatible with unions and
intersections: If {Ci : i ∈ I} is a collection of subsets of Y then

f−1

(⋃
i∈I

Ci

)
=
⋃
i∈I

f−1(Ci); f−1

(⋂
i∈I

Ci

)
=
⋂
i∈I

f−1(Ci).
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25. APPENDIX II: ON THE CONNECTED SUBSETS OF R

In this appendix we give an alternative approach to the classification of
connected subsets of R:

Definition 25.1. Let E ⊆ R be a subset of the real line. We say that E has
property I if, whenever x < y both lie in E, we have [x, y] ⊆ I .

Proposition 25.2. A subset E ⊆ R of the real line is connected if and only if it
has property I .

Proof. First suppose thatE is connected and that x, y ∈ E. By symmetry we
may assume that x < y. If [x, y] is not entirely contained in E, we may find
c ∈ (x, y) such that c /∈ E. But thenE ⊆ (−∞, c)∪(c,∞) and x ∈ E∩(−∞, c)
and y ∈ E ∩ (c,∞) so that E is not contained entirely in one or other of the
disjoint open sets (−∞, c), (c,∞). Thus E is disconnected.

Next suppose that E has property I , and suppose E ⊆ U ∪ V where U
and V are ope subsets of R with E ∩ U ∩ V = ∅, and, for the sake of a
contradiction, that E∩U and E∩V are both non-empty. Then we may pick
x ∈ E ∩U and y ∈ E ∩V , and by symmetry assume that x < y. Since E has
property I , the interval [x, y] is entirely contained in E.

Now as [x, y] is bounded and x ∈ U , if we let S = {z ∈ [x, y] : z ∈ U},
then S is non-empty and bounded and so c = sup(S) exists, and clearly
c ∈ [x, y]. If c ∈ U then c 6= y and. as U is open, there is some ε1 > 0
such that B(c, ε1) ⊆ U . Thus if we set δ = min{ε1/2, (y − c)/2} > 0 we
have c+ δ ∈ U ∩ [x, y] contradicting the fact that c is an upper bound for S.
Similarly if c ∈ V then there is an ε2 > 0 such that B(c, ε2) ⊆ V . But then
∅ = (c − ε2, c] ∩ U ⊇ (c − ε2, c] ∩ S, so that c − ε2 is an upper bound for S,
contradiction the fact that c is the least upper bound of S. It follows that
we must have E ⊆ U or E ⊆ V , and hence E is connected as required. �

Corollary 25.3. (The Intermediate Value Theorem): If f : [a, b] → R is continu-
ous and c lies in the closed interval with endpoints f(a), f(b), then there is some
x ∈ [a, b] with f(x) = c.

Proof. Clearly [a, b] has property I , hence it is connected. Since f is con-
tinuous, f([a, b]) is connected and hence also has property I , thus since
f(a), f(b) ∈ f([a, b]) the entire interval between f(a) and f(b) is in the im-
age of f as required. �

Lemma 25.4. If E ⊆ R has property I , then E is either R, a half-line, or an
interval.

Proof. Let us write l = inf(E) ∈ {−∞} ∪ R and u = sup(E) ∈ R ∪ {+∞}.
We claim that

(l, u) ⊆ E ⊆ [l, u],

(where if u or l is infinite, then the bracket being open or closed should be
taken to mean the same thing). To establish the claim not first the right-
hand inclusion is immediate from the definitions. For the left-hand inclu-
sion, suppose that z ∈ (l, u). The since l < z the approximation property
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shows that there is some y ∈ E with l ≤ y < z, and similarly since z < u
there is some y ∈ E with z < y ≤ u. It follows z ∈ [x, y] ⊆ I by property I ,
and so we are done. It is easy to see that the claim immediately implies the
statement of the Lemma. �

Combining the above results we obtain a classification of the connected
subsets of R.

Theorem 25.5. The connected subsets of R are precisely R itself, all half-lines
[a,∞], (a,∞),(−∞, a),(−∞, a] and all bounded intervals (a, b), (a.b], [a, b), (a, b)
for a, b ∈ R with a ≤ b.
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26. APPENDIX III: SOME RESULTS FROM REAL ANALYSIS.

In this appendix we review some notions from multivariable calculus.
While we give careful proofs, only the statements are examinable.

26.1. Properties of the Limit Superior. We collect here some basic facts
about the lim sup of a sequence of real numbers. Recall the definition:

Definition 26.1. Let (an) be a sequence which is bounded above (if it is
not, by convention we set lim supn(an) = +∞). Then for each n we may
set sn = sup{ak : k ≥ n}. Clearly the sequence (sn) is decreasing, and
so if it is bounded below it has a limit, which we denote by lim supn(an).
If the sequence sn is not bounded below, it tends to −∞, and we write
lim supn(an) = −∞. Note that lim supn(an) = −∞ if and only if an → −∞
as n→ −∞.

The following Lemma is helpful in understanding what the properties
of the lim sup are.

Lemma 26.2. Let (an) be a sequence of real numbers which is bounded above and
let s = lim supn(an). If (ank) is any convergent subsequence of (an) with limit `
then ` ≤ s. Moreover, there exists a subsequence of (an) which converges to s, so
that lim supn(an) is the maximum value of the limit of a subsequence of (an).

Proof. For the first part, note that by definition clearly ank ≤ snk , and since
(sn) tends to s it follows the subsequence (snk) does also, hence since limits
preserve weak inequalities, limk(ank) = l ≤ s as required.

Let An = {am : m ≥ n ∈ N} be the set of values of the n-th tail of the
sequence (an). Then it is clear that sm is in Ān for each m ≥ n, and so
s ∈ Ān for all n. If s is a limit point of any An then it is easy to see that s is
a limit of a subsequence of the associated tail (ak)k≥n. If, for all n, we have
s /∈ A′n, then we must have s ∈ Ān\A′n ⊆ An for all n, hence s = am for
infinitely many m. It follows that there is a subsequence of (an) which is
constant and equal to s, so certainly it converges to s.

�

We have the following basic property of lim sup, which we used in the
discussion of differentiation of power series:

Lemma 26.3. Suppose that (an) is a bounded sequence of real numbers. Then if
(cn) is a sequence which converges to c ≥ 0 then lim supn(cnan) = c. lim supn an.

Proof. If (ank) is any subsequence of (an) which converges to ` ∈ R, then
clearly cnkank → c.` as n → ∞. Since c ≥ 0 it follows the result follows
from the previous lemma which shows that lim supn(cnan) is the maximum
value of the limit of a subsequence of (cnan). �

Remark 26.4. For sequences which are bounded below one may consider
ln = inf{ak : k ≥ n}. Clearly (ln) forms an increasing sequence and one sets
lim infn(an) = limn ln. It is easy to see that lim supn(an) = − lim infn(−an).
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26.2. Partial derivatives and the total derivative.

Theorem 26.5. Suppose that F : U → R2 is a function defined on an open subset
of R2, whose partial derivatives exist and are continuous on U . Then for all z ∈ U
the function F is real-differentiable, with derivative Dfz given by the matrix of
partial derivative.

Proof. Working component by component, you can check that it is in fact
enough to show that a function f : U → R with continuous partial deriva-
tives ∂xf and ∂yf has total derivative given by (∂xf, ∂yf) at each z ∈ U .
That is, if z = (x, y) then

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ ∂yf(x, y)k + ‖(h, k)‖.ε(h, k),

where ε(h, k) → 0 as (h, k) → 0. But now since the function x 7→ f(x, y) is
differentiable at x with derivative ∂xf(x, y) we have

f(x+ h, y) = f(x, y) + ∂xf(x, y)h+ hε1(h)

where ε1(h) → 0 as h → 0. Now by the mean value theorem applied the
function to y 7→ f(x+ h, y) we have

f(x+ h, y + k) = f(x+ h, y) + ∂yf(x+ h, y + θ2k)k,

for some θ2 ∈ (0, 1). Thus using the definition of ∂xf(x, y) it follows that

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ hε1(h) + ∂yf(x+ h, y + θ2k)k.

Thus we have

f(x+ h, y + k) = f(x, y) + ∂xf(x, y)h+ ∂yf(x, y)k + ‖(h, k)‖ε(h, k),

where

ε(h, k) =
h√

h2 + k2
ε1(h) +

k√
h2 + k2

(∂yf(x+ h, y + θ2k)− ∂yf(x, y)).

Thus since 0 ≤ h/
√
h2 + k2, k/

√
h2 + k2 ≤ 1, the fact that ε1(h) → 0 as

h→ 0 and the continuity of ∂yf at (x, y) imply that ε(h, k)→ 0 as (h, k)→ 0
as required. �

Remark 26.6. Note that in fact the proof didn’t use the full strength of the
hypothesis of the theorem – we only actually needed the existence of the
partial derivatives and the continuity of one of them at (x, y) to conclude
that f is real-differentiable at (x, y).

26.3. The Chain Rule. We establish a version of the chain rule which is
needed for the proof that the existence of a primitive for a function f : U →
C implies that

∫
γ f(z)dz = 0 for every closed curve γ in U . The proof

requires one to use the fact that if dF/dt = f on U then f(γ(t))γ′(t) is the
derivative of F (γ(t)). This is of course formally exactly what one would
expect using the formula for the normal version of the chain rule, but one
should be slightly careful: F : C → C is a function of a complex variable,
while γ : [a, b] → C is a function of real variable, so we are mixing real and
complex differentiability.
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That said, we have seen that a complex differentiable function is also dif-
ferentiable in the real sense, with its derivative being the linear map given
by multiplication by the complex number which is its complex derivative.
Thus the result we need follows from a version of the chain rule for real-
differentiable functions:

Lemma 26.7. LetU be an open subset of R2 and let F : U → R2 be a differentiable
function. If γ : [a, b]→ R is a (piecewise) C1-path with image in U , then F (γ(t))
is a differentiable function with

d

dt
(F (γ(t))) = DFγ(t)(γ

′(t))

Proof. Let t0 ∈ [a, b] and let z0 = γ(t0) ∈ U . Then by definition, there is a
function ε(z) such that

F (z) = F (z0) +DFz0(z − z0) + |z − z0|ε(z),

where ε(z)→ 0 = ε(z0) as z → z0. But then

F (γ(t))− F (γ(t0))

t− t0
= DFz0(

γ(t)− γ(t0)

t− t0
) + ε(γ(t)).

|γ(t)− γ(t0)|
t− t0

.

But now consider the two terms on the right-hand side of this expression:
for the first term, note that a linear map is continuous, so since (γ(t) −
γ(t0))/(t−t0)→ γ′(t0) as t→ t0 we see thatDFz0(γ(t)−γ(t0)

t−t0 )→ DFz0(γ′(t0))

as t → t0. On the other hand, for the second term, since γ(t)−γ(t0)
t−t0 tends

to γ′(t0) as t tends to t0, we see that |γ(t) − γ(t0)|/(t − t0) is bounded as
t → t0, while since γ(t) is continuous at t0 since it is differentiable there
ε(γ(t)) → ε(γ(t0)) = ε(z0) = 0. It follows that the second term tends to
zero, so that the left-hand side tends to Dfγ(t0)(γ

′(t0)) as required. �

Remark 26.8. Notice that the proof above works in precisely the same way if
F is a function from R2 to R. Indeed a slight modification of the argument
proves that if F : Rn → Rm and G : Rm → Rp then if F and G are differen-
tiable, their compositeG◦F is differentiable with derivativeDGF (x) ◦DFx.

An easy application of the chain rule is the following constancy theorem.
For the proof it is convenient to introduce some terminology:

Definition 26.9. We say a function f : X → Y between metric spaces is
locally constant if for any z ∈ X there is an r > 0 such that f is constant on
B(z, r).

Remark 26.10. Clearly a locally constant function is continuous, and more-
over for such a function, the pre-image of any point in its image is an open
set. Since for any continuous function the pre-image of a point is a closed
set, it follows the pre-image of a point in the range of a locally-constant
function is both open and closed. Thus if X is connected and f is locally
constant, then f is in fact constant.
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Proposition 26.11. Suppose that f : U → R2 is a function defined on a connected
open subset of R2. Then if Dfz = 0 for all z ∈ U the function f is constant.

Proof. By the preceding remarks it suffices to show that f is locally constant.
To see this, let z0 ∈ U and fix r > 0 such that B(z0, r) ⊆ U . Then for any
z ∈ B(z0, r) we may consider the function F (t) = f(z0 + t(z − z0)), where
t ∈ [0, 1]. Note that F = f ◦ γ where γ(t) = z0 + t(z − z0) is the straight
line-segment from z0 to z which lies entirely in B(z0, r) as z does. Hence
applying the chain rule we have F ′(t) = Dfz0+t(z−z0)(z − z0) = 0 by our
assumption on Dfz . It follows from the Fundamental Theorem of Calculus
that

f(z)− f(z0) = F (1)− F (0) =

∫ 1

0
F ′(t)dt = 0,

hence f is constant on B(z0, r) as required. (The integral of the function
F ′(t) = (u′(t), v′(t)) is taken component-wise.)

�

26.4. Symmetry of mixed partial derivatives. We used in the proof that
the real and imaginary parts of a holomorphic function are harmonic the
fact that partial derivatives commute on twice continuously differentiable
functions. We give a proof of this for completeness. The key to the proof
will be to use difference operators:

Definition 26.12. Let f : U → R be a function defined on an open set U ⊂
R2. Then if s, t ∈ R\{0} let ∆s

1(f),∆t
2(f) be the function given by

∆s
1(f)(x, y) =

f(x+ s, y)− f(x, y)

s
, ∆t

2(f)(x, y) =
f(x, y + t)− f(x, y)

t

Note that if f is differentiable at (x, y) then ∂xf(x, y) = lims→0 ∆s
1(f)(x, y)

and ∂yf(x, y) = limt→0 ∆t
2(f)(x, y).

It is straight-forward to check that

∆2
1(∆t

2(f))(x, y) = ∆t
2(∆s

1(f))(x, y)

=
f(x+ s, y + t)− f(x+ s, y)− f(x, y + t) + f(x, y)

st
.

That is, the two difference operators f 7→ ∆s
1(f) and f 7→ ∆t

2(f) commute
with each other. We wish to use this fact to deduce that the correspond-
ing partial differential operators also commute, but because of the limits
involved, this will not be automatic, and we will need to impose the ad-
ditional hypotheses that the second partial derivatives of f are continuous
functions.

Since the difference operator ∆s
1 and ∆t

2 are linear, they commute with
partial differentiation so that ∂y∆s

1(f)(x, y) = ∆s
1(∂yf)(x, y), and similarly

for ∂x and also for ∆t
2 and ∂x, ∂y.

We are now ready to prove that mixed partial derivatives are equal:
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Lemma 26.13. Suppose that f : U → R is twice continuously differentiable, so
that all its second partial derivatives exist and are continuous on U . Then

∂x∂yf = ∂y∂xf

on U .

Proof. Fix (x, y) ∈ U . Since U is open, there are ε, δ > 0 such that ∆s
1(f)

and ∆t
2(f) are defined on B((x, y), ε) for all s, t with |s|, |t| < δ. Now by

definition we have

∂x∂yf(x, y) = ∂x(lim
t→0

∆t
2(f))(x, y) = lim

s→0
lim
t→0

∆s
1∆t

2(f)(x, y)

But now using the mean value theorem for ∆t
2(f) in the first variable, we

see that
∆s

1∆t
2(f)(x, y) = ∂x∆t

2f(x+ s1, y),

where s1 lies between 0 and s. But ∂x∆t
2(f)(x + s1, y) = ∆t

2∂xf(x + s1, y),
and using the mean value theorem for ∂xf(x+ s1, y) in the second variable
we see that ∆t

2∂xf(x + s1, y) = ∂y∂xf(x + s1, y + t1) where t1 lies between
0 and t (and note that t1 depends both on t and s1).

But now

∂x∂yf(x, y) = lim
s→0

lim
t→0

∂y∂xf(x+ s1, y + t1) = ∂y∂xf(x, y),

by the continuity of the second partial derivatives, so we are done.
�

Example 26.14. Let ∆ = ∂2
x + ∂2

y be the (two-dimensional) Laplacian. Pro-
vided we are only interested in acting on twice-continuously differentiable
functions u = u(x, y) so that ∂x∂y(u) = ∂y∂x(u), we can factorize ∆ as

∆ = (∂x − i∂y)(∂x + i∂y).

This is the key to the relationship between holomorphic and harmonic
functions.
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27. APPENDIX IV: POWER SERIES

In this appendix we give a proof of the following Theorem, which was
established in Prelims Analysis I.

Proposition 27.1. Let s(z) =
∑

k≥0 akz
k be a power series, let S be the domain

on which it converges, and let R be its radius of convergence. Then power series
t(z) =

∑∞
k=1 kakz

k−1 also has radius of convergenceR and onB(0, R) the power
series s is complex differentiable with s′(z) = t(z). In particular, it follows that a
power series is infinitely complex differentiable within its radius of convergence.

Proof. First note that the power series
∑∞

k=1 kakz
k−1 clearly has the same

radius of convergence as
∑∞

k=1 kakz
k, and by Lemma 14.20 this has radius

of convergence56

lim sup
k
|kak|1/k = lim

k
(k1/k) lim sup

k
|ak|1/k = lim sup |ak|1/k = R,

since limk→∞ k
1/k = 1. Thus s(z) =

∑∞
k=0 akz

k and t(z) =
∑∞

k=1 kakz
k−1

have the same radius of convergence. To see that s(z) is complex differen-
tiable with derivative t(z), consider the sequence of polynomials fn in two
complex variables:

fn(z, w) = an(
n−1∑
i=0

ziwn−1−i), (n ≥ 1).

Fix ρ < R, then for (z, w) with |z|, |w| ≤ ρ we have

|fn(z, w)| =
∣∣an n−1∑

i=0

ziwn−i
∣∣ ≤ |an| n−1∑

i=0

|z|i|w|n−i ≤ |an|nρn−1

It therefore follows from the WeierstrassM -test with57 Mn = |an|nρn−1 that
the series

∑
n≥0 fn(z, w) converges uniformly (and absolutely) on {(z, w) :

|z|, |w| ≤ ρ} to a function F (z, w). In particular, it follows that F (z, w)
is continuous. But since

∑n
k=1 fk(z, z) =

∑n
k=1 kakz

k−1, it follows that
F (z, z) = t(z). On the other hand, for z 6= w we have

∑k−1
i=0 z

iwk−i = zk−wk
z−w ,

so that

F (z, w) =
∞∑
k=0

ak
zk − wk

z − w
=
s(z)− s(w)

z − w
,

hence it follows by the continuity of F that if we fix z with |z| < ρ then

lim
z→w

s(z)− s(w)

z − w
= F (z, z) = t(z).

56This uses a standard property of lim sup which is proved for completeness in Lemma
26.3 in Appendix I.

57We know
∑
n≥0 Mn = |an|nρn−1 converges since ρ < R and t(z) has radius of con-

vergence R.
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Since ρ < R was arbitrary, we see that s(z) is differentiable on B(0, R) with
derivative t(z).

Finally, since we have shown that any power series is differentiable within
its radius of convergence and its derivative is again a power series with the
same radius of convergence, it follows by induction that any power series
is in fact infinitely differentiable within its radius of convergence. �
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FIGURE 6. Dissecting the homotopy

28. APPENDIX V: ON THE HOMOTOPY AND HOMOLOGY VERSIONS OF
CAUCHY’S THEOREM

In this appendix we give proofs of the homotopy and homology versions
of Cauchy’s theorem which are stated in the body of the notes. These proofs
are non-examinable, but are included for the sake of completeness.

Theorem 28.1. Let U be a domain in C and a, b ∈ U . Suppose that γ and η
are paths from a to b which are homotopic in U and f : U → C is a holomorphic
function. Then ∫

γ
f(z)dz =

∫
η
f(z)dz.

Proof. The key to the proof of this theorem is to show that the integrals of f
along two paths from a to b which “stay close to each other” are equal. We
show this by covering both paths by finitely many open disks and using
the existence of a primitive for f in each of the disks.

More precisely, suppose that h : [0, 1]×[0, 1] is a homotopy between γ and
η. Let us write K = h([0, 1] × [0, 1]) be the image of the map h, a compact
subset of U . By Lemma 11.6 there is an ε > 0 such that B(z, ε) ⊆ U for all
z ∈ K.

Next we use the fact that, since [0, 1] × [0, 1] is compact, h is uniformly
continuous. Thus we may find a δ > 0 such that |h(t1, s1) − h(t2, w2)| < ε
whenever ‖(t1, s1)− (t2, s2)‖ < δ. Now pick N ∈ N such that 1/N < δ and
dissect the square [0, 1] × [0, 1] into N2 small squares of side length 1/N .
For convenience, we will write ti = i/N for i ∈ {0, 1, . . . , N}
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For each k ∈ {1, 2, . . . , N − 1}, let νk be the piecewise linear path which
connects the point h(tj , k/N) to h(tj+1, k/N) for each j ∈ {0, 1, . . . , N). Ex-
plicitly, for t ∈ [tj , tj+1], we set

νk(t) = h(tj , k/N)(1−Nt− j) + h(tj+1, k/N)(Nt− j)

We claim that

∫
γ
f(z)dz =

∫
ν1

f(z)dz =

∫
ν2

f(z)dz = . . . =

∫
νN−1

f(z)dz =

∫
η
f(z)dz

which will prove the theorem. In fact, we will only show that
∫
γ f(z)dz =∫

ν1
f(z)dz, since the other cases are almost identical.

We may assume the numbering of our squares Si is such that S1, . . . , SN
list the bottom row of our N2 squares from left to right. Let mi be the
centre of the square Si and let pi = h(mi). Then h(Si) ⊆ B(pi, ε) so that
γ([ti, ti+1]) ⊆ B(pi, ε) and ν1([ti, ti+1]) ⊆ B(pi, ε) (since B(pi, ε) is convex
and by assumption contains ν1(ti) and ν1(ti+1)). Since B(pi, ε) is convex, f
has primitive Fi on each B(pi, ε). Moreover, as primitives of f on a domain
are unique up to a constant, it follows that Fi and Fi+1 differ by a constant
on B(pi, ε) ∩ B(pi+1, ε), where they are both defined. In particular, since
γ(ti), ν1(ti) ∈ B(pi, ε) ∩B(pi+1, ε), (1 ≤ i ≤ N − 1), we have

(28.1) Fi(γ(ti))− Fi+1(γ(ti)) = Fi(ν1(ti))− Fi+1(ν1(ti)).

Now by the Fundamental Theorem we have

∫
γ|[ti,ti+1]

f(z)dz = Fi(γ(ti+1))− Fi(γ1(ti)),∫
ν1|[ti,ti+1]

f(z)dz = Fi(ν1(ti+1))− Fi(ν1(ti))
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Combining we find that:∫
γ
f(z)dz =

N−1∑
i=0

∫
γ|[ti,ti+1]

f(z)dz

=
N−1∑
i=0

(
Fi+1(γ(ti+1))− Fi+1(γ(ti))

)
= FN (γ(tN ))− F1(γ(0)) +

N−1∑
i=1

(
Fi(γ(ti))− Fi+1(γ(ti))

)
= FN (b)− F0(a) +

(N−1∑
i=0

(Fi(ν1(ti+1))− Fi+1(ν1(ti+1)
)

=

N−1∑
i=0

(
(Fi+1(ν1(ti+1))− Fi+1(ν1(ti))

)
=

N−1∑
i=0

∫
ν1|[ti,ti+1]

f(z)dz =

∫
ν1

f(z)dz

where in the fourth equality we used Equation (28.1).
�

Remark 28.2. The use of the piecewise linear paths νk might seem unnatural
– it might seem simpler to use the paths given by the homotopy, that is
the paths γk(t) = h(t, k/N). The reason we did not do this is because we
only assume that h is continuous, so we do not know that the path γk is
piecewise C1 which we need in order to be able to integrate along it.

The proof of the homology form of Cauchy’s theorem uses Liouville’s
theorem, which we proved using Cauchy’s theorem for a disc.

Theorem 28.3. Let f : U → C be a holomorphic function and let γ : [0, 1] → U
be a closed path whose inside lies entirely in U , that is I(γ, z) = 0 for all z /∈ U .
Then we have, for all z ∈ U\γ∗,∫

γ
f(ζ)dζ = 0;

∫
γ

f(ζ)

ζ − z
dζ = 2πiI(γ, z)f(z), ∀z ∈ U\γ∗.

Moreover, if U is simply-connected and γ : [a, b] → U is any closed path, then
I(γ, z) = 0 for any z /∈ U , so the above identities hold for all closed paths in such
U .

Proof. We first prove the general form of the integral formula. Note that
using the integral formula for the winding number and rearranging, we
wish to show that

F (z) =

∫
γ

f(ζ)− f(z)

ζ − z
dζ = 0
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for all z ∈ U\γ∗. Now if g(ζ, z) = (f(ζ)−f(z))/(ζ− z), then since f is com-
plex differentiable, g extends to a continuous function on U × U if we set
g(z, z) = f ′(z). Thus the function F is in fact defined for all z ∈ U . More-
over, if we fix ζ then, by standard properties of differentiable functions,
g(ζ, z) is clearly complex differentiable as a function of z everywhere except
at z = ζ. But since it extends to a continuous function at ζ, it is bounded
near ζ, hence by Riemann’s removable singularity theorem, z 7→ g(ζ, z) is
in fact holomorphic on all of U . It follows by Theorem 18.22 that

F (z) =

∫ 1

0
g(γ(t), z)γ′(t)dt

is a holomorphic function of z.
Now let ins(γ) = {z ∈ C : I(γ, z) 6= 0} be the inside of γ, so by assump-

tion we have ins(γ) ⊂ U , and let V = C\(γ∗∪ ins(γ)) be the complement of
γ∗ and its inside. If z ∈ U ∩ V , that is, z ∈ U but not inside γ or on γ∗, then

F (z) =

∫
γ

f(ζ)dζ

ζ − z
− f(z)

∫
γ

dζ

ζ − z

=

∫
γ

f(ζ)dζ

ζ − z
− f(z)I(γ, z)

=

∫
γ

f(ζ)dζ

ζ − z
= G(z)

since I(γ, z) = 0. Now G(z) is an integral which only involves the values
of f on γ∗ hence it is defined for all z /∈ γ∗, and by Theorem 18.22, G(z) is
holomorphic. In particular G defines a holomorphic function on V , which
agrees with F on all of U ∩ V , and thus gives an extension of F to a holo-
morphic function on all of C. (Note that by the above, F and G will in
general not agree on the inside of γ.) Indeed if we set H(z) = F (z) for all
z ∈ U and H(z) = G(z) for all z ∈ V then H is a well-defined holomorphic
function on all of C. We claim that |H| → 0 as |z| → ∞, so that by Liou-
ville’s theorem, H(z) = 0, and so F (z) = 0 as required. But since ins(γ) is
bounded, there is an R > 0 such that V ⊇ C\B(0, R), and so H(z) = G(z)
for |z| > R. But then setting M = supζ∈γ∗ |f(ζ)|we see

|H(z)| =
∣∣∣∣∫
γ

f(ζ)dζ

ζ − z

∣∣∣∣ ≤ `(γ).M

|z| −R
.

which clearly tends to zero as |z| → ∞, hence |H(z)| → 0 as |z| → ∞ as
required.

For the second formula, simply apply the integral formula to g(z) = (z−
w)f(z) for any w /∈ γ∗. Finally, to see that if U is simply-connected the
inside of γ always lies in U , note that ifw /∈ U then 1/(z−w) is holomorphic
on all of U , and so I(γ,w) =

∫
γ

dz
z−w = 0 by the homotopy form of Cauchy’s

theorem. �
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Remark 28.4. It is often easier to check a domain is simply-connected than
it is to compute the interior of a path. Note that the above proof uses Li-
ouville’s theorem, whose proof depends on Cauchy’s Integral Formula for
a circular path, which was a consequence of Cauchy’s theorem for a trian-
gle, but apart from the final part of the proof on simply-connectd regions,
we did not use the more sophisticated homotopy form of Cauchy’s theo-
rem. We have thus established the winding number and homotopy forms
of Cauchy’s theorem essentially independently of each other.



136 KEVIN MCGERTY.

29. APPENDIX VI: REMARK ON THE INVERSE FUNCTION THEOREM

In this appendix we supply58 the details for the claim made in the remark after
the proof of the holomorphic version of the inverse function theorem.

There is an enhancement of the Inverse Function Theorem in the holo-
morphic setting, which shows that the condition f ′(z) 6= 0 is automatic (in
contrast to the case of real differentiable functions, where it is essential as
one sees by considering the example of the function f(x) = x3 on the real
line). Indeed suppose that f : U → C is a holomorphic function on an open
subset U ⊂ C, and that we have z0 ∈ U such that f ′(z0) = 0.
Claim: In this case, f is at least 2 to 1 near z0, and hence is not injective.

Proof of Claim: If we let w0 = f(z0) and g(z) = f(z) − w0, it follows g has a
zero at z0, and thus it is either identically zero on the connected component
of U containing z0 (in which case it is very far from being injective!) or
we may write g(z) = (z − z0)kh(z) where h(z) is holomorphic on U and
h(z0) 6= 0. Our assumption that f ′(z0) = 0 implies that k, the multiplicity
of the zero of g at z0 is at least 2.

Now since h(z0) 6= 0, we have ε = |h(z0)| > 0 and hence by the conti-
nuity of h at z0 we may find a δ > 0 such that h(B(z0, δ)) ⊆ B(h(z0), ε).
But then by taking a cut along the ray {−t.h(z0) : t ∈ R>0} we can de-
fine a holomorphic branch of z 7→ z1/k on the whole of B(h(z0), ε). Now
let φ : B(z0, δ) → C be the holomorphic function given by φ(z) = (z −
z0).h(z)1/k (where by our choice of δ this is well-defined) so that φ′(z0) =

h(z0)1/k 6= 0. Then clearly f(z) = w0 +φ(z)k on B(z0, δ). Since φ(z) is holo-
morphic,the open mapping theorem ensures that φ(B(z0, δ)) is an open set,
which since it contains 0 = φ(z0), contains B(0, r) for some r > 0. But then
since z 7→ zk is k-to-1 as a map from B(0, r)\{0} → B(0, rk)\{0} it follows
that f takes every value in B(w0, r

k)\{w0} at least k times.

58For interest, not examination!
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30. APPENDIX VII: BERNOULLI NUMBERS AND THE ζ-FUNCTION

For interest only: non-examinable.
We define the Bernoulli numbers via the power series expansion ofB(z) =

z/(ez − 1) at the origin:

(30.1)
z

ez − 1
=
∞∑
n=0

Bn
n!
zn,

where since B(z) is defined in B(0, 2π), by Taylor’s theorem the power
series has radius of convergence 2π. Since (ez − 1)/z =

∑∞
n=0 z

n/(n + 1)!,
we can rewrite the definition as:( ∞∑

n=0

zn

(n+ 1)!

)( ∞∑
m=0

Bm
m!

zm

)
= 1.

It follows that B0 = 1 and for n ≥ 1 we have
n∑
k=0

1

k!(n− k + 1)!
Bk = 0,

or, in terms of binomial coefficients,
n∑
k=0

(
n+ 1

k

)
Bk = 0.

Thus we can recursively compute theBk: for exampleB0 = 1, B1 = −1/2, B2 =
1/6, B3 = 0, B4 = −1/30, B5 = 0. (In fact B2n+1 = 0 for all n > 1).

The reason we are interested in the Bernoulli numbers is that they arise
when one computes the value of the ζ-function ζ(s) =

∑∞
n=1 n

−s at s = 2k
a positive even integer. Using suitable square contours ΓN , we showed that
the value of ζ(2) is−π

2R1 whereR1 is the residue of cot(πz)/z2 at the origin
(since the residues of cot(πz)/z2 at the non-zero integers are 1

πn2 ). Exactly
the same strategy, using the function cot(πz)/z2k, shows that ζ(2k) is equal
to −π

2Rk where Rk is the coefficient of z2k−1 in the Laurent expansion of
cot(πz). But we have

cot(πz) =
cos(πz)

sin(πz)
= i

eiπz + e−iπz

eiπz − e−iπz
= i

e2iπz + 1

e2iπz − 1

= i

(
1 +

2

e2πiz − 1

)
= i+

1

πiz
B(2πiz)

= i+
∞∑
k=0

Bk
k!

(2i)k(πz)k−1,

thus it follows that

ζ(2k) = −π
2

Bk
k!

22k(−1)k(π)2k−1 = (−1)k+1 22k−1π2kB2k

(2k)!
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