
A1 Differential Equations I: MT 2019/20: Sheet 1.

Material on uniformly convergent sequences and series, needed in this course and covered in
Prelims is summarised in questions 1 and 2. These should be revision and should be done
before the lectures. Questions 3, 4, and 5 are based on material in lectures.

1.1 Let [a, b] be a closed and bounded interval of the real line and let {yn}n≥0 be a sequence
of real-valued functions, each of which is defined on [a, b]. What does it mean to say
that the sequence converges uniformly on [a, b] to a limit function y? If each
yn is continuous on [a, b] show that the uniform limit y is continuous on [a, b] and
that, when n → ∞,

∫ b

a
|yn(x)− y(x)|dx → 0,

∫ b

a
yn(x)dx →

∫ b

a
y(x)dx.

If [a, b] = [0, 1] and yn(x) = nxe−nx2

show that, for each x ∈ [0, 1], yn(x) → 0 but
∫

1

0

yn(x)dx →
1

2
. Thus the convergence must be non-uniform. Show that

max
0≤x≤1

yn(x) =

√

n

2e

and sketch the graph of yn(x) versus x.

1.2 Let
∞
∑

n=0

un be a series of real-valued functions defined on [a, b]. State the Weierstrass

M-test for the uniform convergence of the series.

Show that the series
∞
∑

n=0

(−1)n
cos nx

1 + n2
converges uniformly on [−π, π].

ODEs and Picard’s Theorem:

1.3 Consider the initial-value problems

y′ = x2 + y2, y(0) = 0, (1)
y′ = (1− 2x)y, y(0) = 1. (2)

In each case find y0, y1, y2, y3, where {yn}n≥0 is the sequence of Picard approximations.

By considering the behaviour of x2+y2 on the square {(x, y) : |x| ≤ 1√
2
, |y| ≤ 1√

2
} and

appealing to Picard’s theorem show that in case (1) the sequence converges uniformly
for |x| ≤ 1√

2
.

In case (2), use Picard’s theorem to show that the problem has a unique solution for
all x. Now find the solution explicitly and, by expanding as a series, show that the
sequence {yn}n≥0 converges to the solution.

P.T.O.
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1.4 Consider the initial-value problem

y′ = xy1/3, y(0) = b,

a) (i) Does the function F (x, y) = xy1/3 satisfy a Lipschitz condition on the rectangle
{(x, y) : |x| ≤ h, |y| ≤ k}, where h > 0 and k > 0?

(ii) If b > 0 use Picard’s theorem to show that there is a unique solution on an interval
[−h, h], for a suitable h > 0 which you should specify (you must check carefully that
the assumptions of Picard’s theorem are satisfied).

iii) If b = 0, show that for any c > 0 there is a solution y which is identically zero on
[−c, c] and positive when |x| > c.

b) [Optional] Now return to the case b > 0. Consider the set R = {(x, y) : y ≥ b, |x| ≤
h}. By working in this R, and adapting the proof of Picard’s theorem, prove that in
fact there is a unique solution of the problem on |x| ≤ h for any h and hence that
there is global existence of solutions.

1.5 Suppose that f : [a, b] → R and K : [a, b] × [a, b] → R are continuous. Consider the
integral equation for y(x)

y(x) = f(x) +

∫ x

a
K(x, t)y(t)dt, x ∈ [a, b].

For x ∈ [a, b] define

y0(x) = f(x)

yn+1(x) = f(x) +

∫ x

a
K(x, t)yn(t)dt.

Adapt the proof of Picard’s theorem to show that yn converges uniformly to a solution
of the integral equation for all x ∈ [a, b]. [You may assume that if y : [a, b] → R is
continuous then so too is f(x) +

∫ x
a K(x, t)y(t)dt for x ∈ [a, b].]

Now show that the solution is unique.

Prove also that the solution depends continuously on f . [You will need to decide what
this means.]
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