
Numerical Analysis Hilary Term 2020

Lecture 7: Matrix Eigenvalues

We are concerned with eigenvalue problems Ax = λx, where A ∈ Rn×n or A ∈ Cn×n,

λ ∈ C, and x(6= 0) ∈ Cn.

Background: An important result from analysis (not proved or examinable!), which will

be useful.

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the

entries. That is, suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n} are the eigenvalues

of A ∈ Rn×n and A + B ∈ Rn×n respectively. Given any ε > 0, there is a δ > 0 such that

|λi − µi| < ε whenever maxi,j |bij| < δ, where B = {bij}1≤i,j≤n.

Noteworthy properties related to eigenvalues:

• A has n eigenvalues (counting multiplicities), equal to the roots of the characteristic

polynomial pA(λ) = det(λI − A).

• If Axi = λixi for i = 1, . . . , n and xi are linearly independent so that [x1, x2, . . . , xn] =:

X is nonsingular, then A has the eigenvalue decomposition A = XΛX−1. This

usually, but not always, exist. The most general form is the Jordan canonical form

(which we don’t treat much in this course).

• Any square matrix has a Schur decomposition A = QTQ∗ where Q is unitary

QQ∗ = Q∗Q = In, and T triangular.

• For a normal matrix s.t. A∗A = AA∗, the Schur decomposition shows T is diagonal

(proof: examine diagonal elements of A∗A and AA∗), i.e., A can be diagonalized by a

unitary similarity transformation: A = QΛQ∗, where Λ = diag(λ1, . . . , λn). Most of

the structured matrices we treat are normal, including symmetric (λ ∈ R), orthogonal

(|λ| = 1), and skew-symmetric (λ ∈ iR).

Aim: estimate the eigenvalues of a matrix.

Theorem. Gerschgorin’s theorem: Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an

eigenvalue of A. Then, λ lies in the union of the Gerschgorin discs

Di =

z ∈ C |aii − z| ≤
n∑

j 6=i
j=1

|aij|

 , i = 1, . . . , n.

Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector x ∈ Rn with

Ax = λx, x 6= 0, i.e.,
n∑

j=1

aijxj = λxi, i = 1, . . . , n.

Suppose that |xk| ≥ |x`|, ` = 1, . . . , n, i.e.,

“xk is the largest entry”. (1)
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Then certainly
n∑

j=1

akjxj = λxk, or

(akk − λ)xk = −
n∑

j 6=k
j=1

akjxj.

Dividing by xk, (which, we know, is 6= 0) and taking absolute values,

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j 6=k
j=1

akj
xj
xk

∣∣∣∣∣∣∣∣ ≤
n∑

j 6=k
j=1

|akj|
∣∣∣∣xjxk
∣∣∣∣ ≤ n∑

j 6=k
j=1

|akj|

by (1). 2

Example.

A =

 9 1 2

−3 1 1

1 2 −1



-4 -2 0 2 4 6 8 10 12

-5

0

5

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem. Gerschgorin’s 2nd theorem: If any union of ` (say) discs is disjoint from

the other discs, then it contains ` eigenvalues.

Proof. Consider B(θ) = θA + (1 − θ)D, where D = diag(A), the diagonal matrix whose

diagonal entries are those from A. As θ varies from 0 to 1, B(θ) has entries that vary

continuously from B(0) = D to B(1) = A. Hence the eigenvalues λ(θ) vary continuously

by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal

entries), which are clearly the eigenvalues of D. As θ increases the Gerschgorin discs of

B(θ) increase in radius about these same points as centres. Thus if A = B(1) has a

disjoint set of ` Gerschgorin discs by continuity of the eigenvalues it must contain exactly

` eigenvalues (as they can’t jump!). 2

Iterative Methods: methods such as LU or QR factorizations are direct : they compute a
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certain number of operations and then finish with “the answer”. Another class of methods

are iterative:

- construct a sequence;

- truncate that sequence “after convergence”;

- typically concerned with fast convergence rate (rather than operation count).

Note that unlike LU, QR or linear systems Ax = b, algorithms for eigenvalues are

necessarily iterative: By Galois theory, no finite algorithm can compute eigenvalues of

n × n(≥ 5) matrices exactly in a finite number of operations. We still have an incredibly

reliable algorithm to compute them, essentially to full accuracy (for symmetric matrices;

for nonsymmetric matrices, in a “backward stable” manner; this is outside the scope).

Notation: for x ∈ Rn, ‖x‖ =
√
xTx is the (Euclidean) length of x.

Notation: in iterative methods, xk usually means the vector x at the kth iteration (rather

than kth entry of vector x). Some sources use xk or x(k) instead.

Power Iteration: a simple method for calculating a single (largest) eigenvalue of a

square matrix A (and its associated eigenvector). For arbitrary y ∈ Rn, set x0 = y/‖y‖ to

calculate an initial vector, and then for k = 0, 1, . . .

Compute yk = Axk
and set xk+1 = yk/‖yk‖.

This is the Power Method or Iteration, and computes unit vectors in the direction of

x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Suppose that A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Then we can write

x0 =
n∑

i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n, so

Akx0 = Ak

n∑
i=1

αivi =
n∑

i=1

αiA
kvi.

However, since Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2i vi, inductively Akvi = λki vi.

So

Akx0 =
n∑

i=1

αiλ
k
i vi = λk1

[
α1v1 +

n∑
i=2

αi

(
λi
λ1

)k

vi

]
.

Since (λi/λ1)
k → 0 as k → ∞, Akx0 tends to look like λk1α1v1 as k gets large. The result

is that by normalizing to be a unit vector

Akx0
‖Akx0‖

→ ±v1 and
‖Akx0‖
‖Ak−1x0‖

≈
∣∣∣∣ λk1α1

λk−11 α1

∣∣∣∣ = |λ1|
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as k →∞, and the sign of λ1 is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.

Essentially the same argument works when we normalize at each step: the Power

Iteration may be seen to compute yk = βkA
kx0 for some βk. Then, from the above,

xk+1 =
yk
‖yk‖

=
βk
|βk|
· Akx0
‖Akx0‖

→ ±v1.

Similarly, yk−1 = βk−1A
k−1x0 for some βk−1. Thus

xk =
βk−1
|βk−1|

· Ak−1x0
‖Ak−1x0‖

and hence yk = Axk =
βk−1
|βk−1|

· Akx0
‖Ak−1x0‖

.

Therefore, as above,

‖yk‖ =
‖Akx0‖
‖Ak−1x0‖

≈ |λ1|,

and the sign of λ1 may be identified by looking at, e.g., (xk+1)1/(xk)1.

Hence the largest eigenvalue (and its eigenvector) can be found.

Note: it is unlikely but possible for a chosen vector x0 that α1 = 0, but rounding errors

in the computation generally introduce a small component in v1, so that in practice this

is not a concern!

This simplified method for eigenvalue computation is the basis for effective methods, but

the current state of the art is the QR Algorithm which was invented by John Francis in

London in 1959/60. For simplicity we consider the QR Algorithm only in the case when

A is symmetric, but the algorithm is applicable also to nonsymmetric matrices.
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