
Numerical Analysis Hilary Term 2020

Lectures 8–9: The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. 2

At least when A has eigenvalues of distinct modulus |λ1| > |λ2| > · · · > |λn|, this basic QR

algorithm can be shown to work (Ak converges to a diagonal matrix as k →∞, the diagonal

entries of which are the eigenvalues). To see this, we make the following observations.

Lemma.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) = Q(k)R(k) (1)

is the QR factorization of Ak, and

Ak = (Q(k))TAQ(k). (2)

Proof. (2) follows from a repeated application of the above proposition.

We use induction for (1): k = 1 trivial. Suppose Ak−1 = Q(k−1)R(k−1). Then Ak =

Rk−1Qk−1 = (Q(k−1))TAQ(k−1), and

(Q(k−1))TAQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k),

giving (1). �
The lemma shows in particular that the first column q1 of Q(k) is the result of power

method applied k times to the initial vector e1 = [1, 0, . . . , 0]T (verify). It then follows that
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q1 converges to the dominant eigenvector. The second vector then starts converging to the

2nd dominant eigenvector, and so on. Once the columns of Q(k) converge to eigenvectors

(note that they are orthogonal by design), (2) shows that Ak converge to a diagonal matrix

of eigenvalues.

However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =


× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×


then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]
(as A = AT) and

w =

[
0

ŵ

]
where H(ŵ)u =


α

0
...

0

 ,
it follows that

H(w)A =


γ uT

α × ... ×
...

...
...

...

0 × ... ×

 ,
i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =


γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),
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which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations: if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =



× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×


(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

RJ(1, 2)TJ(2, 3)T · · · J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T

replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. 2

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.
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The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

Why does introducing shifts help? To understand this, we recall (1), and take the

inverse:

A−k = (R(k))−1(Q(k))T ,

and take the transpose:

(A−k)T (= A−k) = Q(k)(R(k))−T .

Noting that (R(k))−T is lower triangular, this shows that the final column of Q(k) is the

result of power method applied to en = [0, 0, . . . , 0, 1]T now with the inverse A−1. Thus

the last column Q(k) is converging to the eigenvector for the smallest eigenvalue λn, with

convergence factor | λn
λn−1
|; Q(k) is converging not only from the first, but (more significantly)

from the last column(s).

Finally, the introduction of shift changes the factor to | λσ(n)−µ
λσ(n−1)−µ

|, where σ is a permu-

tation such that |λσ(1) − µ| ≥ |λσ(2) − µ| ≥ · · · ≥ |λσ(n) − µ|. If µ is close to an eigen-

value, this implies (potentially very) fast convergence; in fact it can be shown that (proof

omitted and non-examinable) rather than linear convergence, am,m−1 converges cubically:

|am,m−1,k+1| = O(|am,m−1,k|3).
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,m ∗ I)

A = R ∗Q+ am,m ∗ I
end while

record eigenvalue λm = am,m
A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1

Lectures 8–9 pg 4 of 5



Computing roots of polynomials via eigenvalues Let us describe a nice application

of computing eigenvalues (by the QR algorithm). Let p(x) =
∑n

i=0 cix
i be a degree-n

polynomial so that cn 6= 0, and suppose we want to find its roots, i.e., values of λ for

which p(λ) = 0; there are n of them in C. For example, p(x) might be an approximant to

data, obtained by Lagrange interpolation from the first lecture. Why roots? For example,

you might be interested in the minimum of p; this can be obtained by differentiating and

setting to zero p′(x) = 0, which is again a polynomial rootfinding problem (for p′).

How do we solve p(x) = 0? Recall that eigenvalues of A are the roots of its characteristic

polynomial. Here we take the opposite direction—construct a matrix whose characteristic

polynomial is p.

Consider the following matrix, which is called the companion matrix (the blank

elements are all 0) for the polynomial p(x) =
∑n

i=0 cix
i:

C =


− cn−1

cn
− cn−2

cn
· · · − c1

cn
− c0
cn

1

1
. . .

1 0

 . (3)

Then direct calculation shows that if p(λ) = 0 then Cx = λx with x = [λn−1, λn−2, . . . , λ, 1]T .

Indeed one can show that the characteristic polynomial is det(λI−C) = p(λ)/cn (nonexam-

inable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely

the roots of p, counting multiplicities.

Thus to compute roots of polynomials, one can compute eigenvalues of the companion

matrix via the QR algorithm—this turns out to be a very powerful idea!
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