Numerical Analysis Hilary Term 2020 Lectures 8–9: The Symmetric QR Algorithm We consider only the case where A is symmetric. **Recall:** a symmetric matrix A is similar to B if there is a nonsingular matrix P for which $A = P^{-1}BP$. Similar matrices have the same eigenvalues, since if $A = P^{-1}BP$, $$0 = \det(A - \lambda I) = \det(P^{-1}(B - \lambda I)P) = \det(P^{-1})\det(P)\det(B - \lambda I),$$ so $det(A - \lambda I) = 0$ if, and only if, $det(B - \lambda I) = 0$. The basic **QR** algorithm is: Set $$A_1=A$$. for $k=1,2,\ldots$ form the QR factorization $A_k=Q_kR_k$ and set $A_{k+1}=R_kQ_k$ end **Proposition.** The symmetric matrices $A_1, A_2, \ldots, A_k, \ldots$ are all similar and thus have the same eigenvalues. **Proof.** Since $$A_{k+1} = R_k Q_k = (Q_k^\mathrm{T} Q_k) R_k Q_k = Q_k^\mathrm{T} (Q_k R_k) Q_k = Q_k^\mathrm{T} A_k Q_k = Q_k^{-1} A_k Q_k,$$ A_{k+1} is symmetric if A_k is, and is similar to A_k . At least when A has eigenvalues of distinct modulus $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$, this basic QR algorithm can be shown to work (A_k converges to a diagonal matrix as $k \to \infty$, the diagonal entries of which are the eigenvalues). To see this, we make the following observations. Lemma. $$A^{k} = (Q_{1} \cdots Q_{k})(R_{k} \cdots R_{1}) = Q^{(k)}R^{(k)}$$ (1) is the QR factorization of A^k , and $$A_k = (Q^{(k)})^T A Q^{(k)}. (2)$$ **Proof.** (2) follows from a repeated application of the above proposition. We use induction for (1): k = 1 trivial. Suppose $A^{k-1} = Q^{(k-1)}R^{(k-1)}$. Then $A_k = R_{k-1}Q_{k-1} = (Q^{(k-1)})^T A Q^{(k-1)}$, and $$(Q^{(k-1)})^T A Q^{(k-1)} = Q_k R_k.$$ Then $AQ^{(k-1)} = Q^{(k-1)}Q_kR_k$, and so $$A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_{k}R_{k}R^{(k-1)} = Q^{(k)}R^{(k)},$$ giving (1). The lemma shows in particular that the first column q_1 of $Q^{(k)}$ is the result of power method applied k times to the initial vector $e_1 = [1, 0, ..., 0]^T$ (verify). It then follows that q_1 converges to the dominant eigenvector. The second vector then starts converging to the 2nd dominant eigenvector, and so on. Once the columns of $Q^{(k)}$ converge to eigenvectors (note that they are orthogonal by design), (2) shows that A_k converge to a diagonal matrix of eigenvalues. However, a really practical, fast algorithm is based on some refinements. **Reduction to tridiagonal form:** the idea is to apply explicit similarity transformations $QAQ^{-1} = QAQ^{T}$, with Q orthogonal, so that QAQ^{T} is tridiagonal. Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible. If $$H(w)A = \begin{bmatrix} \times & \times & \cdots & \times \\ 0 & \times & \cdots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \times & \cdots & \times \end{bmatrix}$$ then $H(w)AH(w)^{T}$ is generally full, i.e., all zeros created by pre-multiplication are destroyed by the post-multiplication. However, if $$A = \left[\begin{array}{cc} \gamma & u^{\mathrm{T}} \\ u & C \end{array} \right]$$ (as $A = A^{\mathrm{T}}$) and $$w = \begin{bmatrix} 0 \\ \hat{w} \end{bmatrix} \text{ where } H(\hat{w})u = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$ it follows that $$H(w)A = \begin{bmatrix} \gamma & u^{\mathrm{T}} \\ \alpha & \times & \vdots & \times \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \times & \vdots & \times \end{bmatrix},$$ i.e., the u^{T} part of the first row of A is unchanged. However, then $$H(w)AH(w)^{-1} = H(w)AH(w)^{T} = H(w)AH(w) = \begin{bmatrix} \gamma & \alpha & 0 & \cdots & 0 \\ \hline \alpha & & & & \\ 0 & & & & \\ \vdots & & & B & \\ 0 & & & & \end{bmatrix},$$ where $B = H(\hat{w})CH^{T}(\hat{w})$, as $u^{T}H(\hat{w})^{T} = (\alpha, 0, \cdots, 0)$; note that $H(w)AH(w)^{T}$ is symmetric as A is. Now we inductively apply this to the smaller matrix B, as described for the QR factorization but using post- as well as pre-multiplications. The result of n-2 such Householder similarity transformations is the matrix $$H(w_{n-2})\cdots H(w_2)H(w)AH(w)H(w_2)\cdots H(w_{n-2}),$$ which is tridiagonal. The QR factorization of a tridiagonal matrix can now easily be achieved with n-1 Givens rotations: if A is tridiagonal $$\underbrace{J(n-1,n)\cdots J(2,3)J(1,2)}_{Q^{\mathrm{T}}}A=R, \quad \text{upper triangular}.$$ Precisely, R has a diagonal and 2 super-diagonals, $$R = \begin{bmatrix} \times & \times & \times & 0 & 0 & 0 & \cdots & 0 \\ 0 & \times & \times & \times & 0 & 0 & \cdots & 0 \\ 0 & 0 & \times & \times & \times & 0 & \cdots & 0 \\ \vdots & \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & \times & \times & \times & 0 \\ 0 & 0 & 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \times \end{bmatrix}$$ (exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ. **Lemma.** In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry and tridiagonal form are preserved when Givens rotations are used. **Proof.** We have already shown that if $A_k = QR$ is symmetric, then so is $A_{k+1} = RQ$. If $A_k = QR = J(1,2)^T J(2,3)^T \cdots J(n-1,n)^T R$ is tridiagonal, then $A_{k+1} = RQ = RJ(1,2)^T J(2,3)^T \cdots J(n-1,n)^T$. Recall that post-multiplication of a matrix by $J(i,i+1)^T$ replaces columns i and i+1 by linear combinations of the pair of columns, while leaving columns $j=1,2,\ldots,i-1,i+2,\ldots,n$ alone. Thus, since R is upper triangular, the only subdiagonal entry in $RJ(1,2)^T$ is in position (2,1). Similarly, the only subdiagonal entries in $RJ(1,2)^TJ(2,3)^T=(RJ(1,2)^T)J(2,3)^T$ are in positions (2,1) and (3,2). Inductively, the only subdiagonal entries in $$RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}}\cdots J(i-2,i-1)^{\mathrm{T}}J(i-1,i)^{\mathrm{T}}$$ = $(RJ(1,2)^{\mathrm{T}}J(2,3)^{\mathrm{T}}\cdots J(i-2,i-1)^{\mathrm{T}})J(i-1,i)^{\mathrm{T}}$ are in positions (j, j-1), j=2,...i. So, the lower triangular part of A_{k+1} only has nonzeros on its first subdiagonal. However, then since A_{k+1} is symmetric, it must be tridiagonal. Using shifts. One further and final step in making an efficient algorithm is the use of shifts: ``` for k=1,2,\ldots form the QR factorization of A_k-\mu_k I=Q_k R_k and set A_{k+1}=R_k Q_k+\mu_k I end ``` For any chosen sequence of values of $\mu_k \in \mathbb{R}$, $\{A_k\}_{k=1}^{\infty}$ are symmetric and tridiagonal if A_1 has these properties, and similar to A_1 . The simplest shift to use is $a_{n,n}$, which leads rapidly in almost all cases to $$A_k = \left[\begin{array}{c|c} T_k & 0 \\ \hline 0^T & \lambda \end{array} \right],$$ where T_k is n-1 by n-1 and tridiagonal, and λ is an eigenvalue of A_1 . Inductively, once this form has been found, the QR algorithm with shift $a_{n-1,n-1}$ can be concentrated only on the n-1 by n-1 leading submatrix T_k . This process is called **deflation**. Why does introducing shifts help? To understand this, we recall (1), and take the inverse: $$A^{-k} = (R^{(k)})^{-1} (Q^{(k)})^T,$$ and take the transpose: $$(A^{-k})^T (= A^{-k}) = Q^{(k)} (R^{(k)})^{-T}.$$ Noting that $(R^{(k)})^{-T}$ is lower triangular, this shows that the **final** column of $Q^{(k)}$ is the result of power method applied to $e_n = [0, 0, \dots, 0, 1]^T$ now with the **inverse** A^{-1} . Thus the last column $Q^{(k)}$ is converging to the eigenvector for the smallest eigenvalue λ_n , with convergence factor $|\frac{\lambda_n}{\lambda_{n-1}}|$; $Q^{(k)}$ is converging not only from the first, but (more significantly) from the last column(s). Finally, the introduction of shift changes the factor to $|\frac{\lambda_{\sigma(n)}-\mu}{\lambda_{\sigma(n-1)}-\mu}|$, where σ is a permutation such that $|\lambda_{\sigma(1)}-\mu| \geq |\lambda_{\sigma(2)}-\mu| \geq \cdots \geq |\lambda_{\sigma(n)}-\mu|$. If μ is close to an eigenvalue, this implies (potentially very) fast convergence; in fact it can be shown that (proof omitted and non-examinable) rather than linear convergence, $a_{m,m-1}$ converges cubically: $|a_{m,m-1,k+1}| = O(|a_{m,m-1,k}|^3)$. The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix: reduce A to tridiagonal form by orthogonal (Householder) similarity transformations. ``` for m=n,n-1,\dots 2 while a_{m-1,m}> tol [Q,R]=\operatorname{qr}(A-a_{m,m}*I) A=R*Q+a_{m,m}*I end while \operatorname{record\ eigenvalue\ }\lambda_m=a_{m,m} A\leftarrow leading m-1 by m-1 submatrix of A end \operatorname{record\ eigenvalue\ }\lambda_1=a_{1,1} ``` Computing roots of polynomials via eigenvalues Let us describe a nice application of computing eigenvalues (by the QR algorithm). Let $p(x) = \sum_{i=0}^{n} c_i x^i$ be a degree-n polynomial so that $c_n \neq 0$, and suppose we want to find its roots, i.e., values of λ for which $p(\lambda) = 0$; there are n of them in \mathbb{C} . For example, p(x) might be an approximant to data, obtained by Lagrange interpolation from the first lecture. Why roots? For example, you might be interested in the minimum of p; this can be obtained by differentiating and setting to zero p'(x) = 0, which is again a polynomial rootfinding problem (for p'). How do we solve p(x) = 0? Recall that eigenvalues of A are the roots of its characteristic polynomial. Here we take the opposite direction—construct a matrix whose characteristic polynomial is p. Consider the following matrix, which is called the **companion matrix** (the blank elements are all 0) for the polynomial $p(x) = \sum_{i=0}^{n} c_i x^i$: $$C = \begin{bmatrix} -\frac{c_{n-1}}{c_n} & -\frac{c_{n-2}}{c_n} & \cdots & -\frac{c_1}{c_n} & -\frac{c_0}{c_n} \\ 1 & & & & \\ & & 1 & & \\ & & & \ddots & & \\ & & & 1 & 0 \end{bmatrix} .$$ (3) Then direct calculation shows that if $p(\lambda) = 0$ then $Cx = \lambda x$ with $x = [\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1]^T$. Indeed one can show that the characteristic polynomial is $\det(\lambda I - C) = p(\lambda)/c_n$ (nonexaminable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely the roots of p, counting multiplicities. Thus to compute roots of polynomials, one can compute eigenvalues of the companion matrix via the QR algorithm—this turns out to be a very powerful idea!