
Numerical Analysis Hilary Term 2020

Lecture 1: Lagrange Interpolation

These lecture notes are adapted from the numerical analysis textbook by Süli and Mayers.

This first lecture comes from Chapter 6 of the book.

Notation: Πn = {real polynomials of degree ≤ n}
Setup: Given data fi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we

find a polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the

data, and (as we shall see) can approximate f at other values of x if f is smooth enough.

This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n = 1 quadratic n = 2

Theorem. ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof. Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then Ln,k(xi) = δik, that is,

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =
n∑

k=0

fkLn,k(x) ∈ Πn (2)

=⇒
pn(xi) =

n∑
k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. 2

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree ≤ n is unique.

Proof. Consider two interpolating polynomials pn, qn ∈ Πn. Their difference dn = pn−qn ∈
Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n. i.e., dn is a polynomial of degree at most n but

has at least n+ 1 distinct roots. Algebra =⇒ dn ≡ 0 =⇒ pn = qn. 2

Matlab:
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>> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the

given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);
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>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);
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Data from an underlying smooth function: Suppose that f(x) has at least n + 1

smooth derivatives in the interval (x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn
be the Lagrange interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: How large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem. For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
, (3)
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where f (n+1) is the (n+ 1)-st derivative of f .

Proof. Trivial for x = xk, k = 0, 1, . . . , n as e(x) = 0 by construction. So suppose x 6= xk.

Let

φ(t)
def
= e(t)− e(x)

π(x)
π(t),

where
π(t)

def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 −
(

n∑
i=0

xi

)
tn + · · · (−1)n+1x0x1 · · · xn

∈ Πn+1.

Now note that φ vanishes at n + 2 points x and xk, k = 0, 1, . . . , n. =⇒ φ′ vanishes at

n + 1 points ξ0, . . . , ξn between these points =⇒ φ′′ vanishes at n points between these

new points, and so on until φ(n+1) vanishes at an (unknown) point ξ in (x0, xn). But

φ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+1. The result then

follows immediately from this identity since φ(n+1)(ξ) = 0.

2

Example: f(x) = log(1 +x) on [0, 1]. Here, |f (n+1)(ξ)| = n!/(1 + ξ)n+1 < n! on (0, 1). So

|e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1) since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n, in

[0, 1] =⇒ |π(x)| ≤ 1. This is probably pessimistic for many x, e.g. for x = 1
2
, π( 1

2
) ≤ 2−(n+1)

as | 1
2
− xk| ≤ 1

2
.

This shows the important fact that the error can be large at the end points when samples

{xk} are equispaced points, an effect known as the “Runge phenomena” (Carl Runge,

1901). There is a famous example due to Runge, where the error from the interpolating

polynomial approximation to f(x) = (1 + x2)−1 for n+ 1 equally-spaced points on [−5, 5]

diverges near ±5 as n tends to infinity: try this example with lagrange from the website

in Matlab1

Building Lagrange interpolating polynomials from lower degree ones.

Notation: Let Qi,j be the Lagrange interpolating polynomial at xk, k = i, . . . , j.

Theorem.

Qi,j(x) =
(x− xi)Qi+1,j(x)− (x− xj)Qi,j−1(x)

xj − xi
(4)

Proof. Let s(x) denote the right-hand side of (4). Because of uniqueness, we simply wish

to show that s(xk) = fk. For k = i+ 1, . . . , j − 1, Qi+1,j(xk) = fk = Qi,j−1(xk), and hence

s(xk) =
(xk − xi)Qi+1,j(xk)− (xk − xj)Qi,j−1(xk)

xj − xi
= fk.

1There is a beautiful solution to this issue, Chebyshev interpolation: choose {xk} cleverly, essentially to minimise

maxx∈[x0,xn] |(x − x0)(x − x1) · · · (x − xn)| in (3). This results in taking more points near the endpoints. See

Trefethen’s book Approximation Theory and Approximation Practices, SIAM.
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We also have that Qi+1,j(xj) = fj and Qi,j−1(xi) = fi, and hence

s(xi) = Qi,j−1(xi) = fi and s(xj) = Qi+1,j(xj) = fj.
2

Comment: This can be used as the basis for constructing interpolating polynomials. In

books: may find topics such as the Newton form and divided differences.

Generalisation: Given data fi and gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 <

· · · < xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi? (i.e., interpolate

derivatives in addition to values)

Theorem. There is a unique polynomial p2n+1 ∈ Π2n+1 such that p2n+1(xi) = fi and

p′2n+1(xi) = gi for i = 0, 1, . . . , n.

Construction: Given Ln,k(x) in (1), let

Hn,k(x) = [Ln,k(x)]2(1− 2(x− xk)L′n,k(xk))

and Kn,k(x) = [Ln,k(x)]2(x− xk).

Then

p2n+1(x) =
n∑

k=0

[fkHn,k(x) + gkKn,k(x)] (5)

interpolates the data as required. The polynomial (5) is called the Hermite interpolating

polynomial. Note that Hn,k(xi) = δik and H ′n,k(xi) = 0, and Kn,k(xi) = 0, K ′n,k(xi) = δik.

Theorem. Let p2n+1 be the Hermite interpolating polynomial in the case where fi = f(xi)

and gi = f ′(xi) and f has at least 2n+2 smooth derivatives. Then, for every x ∈ [x0, xn],

f(x)− p2n+1(x) = [(x− x0)(x− x1) · · · (x− xn)]2
f (2n+2)(ξ)

(2n+ 2)!
,

where ξ ∈ (x0, xn) and f (2n+2) is the (2n+ 2)nd derivative of f .

Proof (non-examinable): see Süli and Mayers, Theorem 6.4. 2

We note that as xk → 0 in (3), we essentialy recover Taylor’s theorem with pn(x)

equal to the first n + 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as

a special case of Lagrange interpolation where we interpolate high-order derivatives at a

single point.
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Numerical Analysis Hilary Term 2020

Lecture 2: Newton–Cotes Quadrature

See Chapter 7 of Süli and Mayers.

Terminology: Quadrature ≡ numerical integration

Setup: given f(xk) at n+ 1 equally spaced points xk = x0 + k · h, k = 0, 1, . . . , n, where

h = (xn − x0)/n. Suppose that pn(x) interpolates this data.

Idea: Approximate and Integrate. Having obtained the polynomial pn from data

{(xk, f(xk))}nk=0 by Lagrange interpolation, we can compute the integral
∫ xn
x0
pn(x) dx.

Question: ∫ xn

x0
f(x) dx ≈

∫ xn

x0
pn(x) dx? (1)

We investigate the error in such an approximation below, but note that∫ xn

x0
pn(x) dx =

∫ xn

x0

n∑
k=0

f(xk) · Ln,k(x) dx

=
n∑
k=0

f(xk) ·
∫ xn

x0
Ln,k(x) dx

=
n∑
k=0

wkf(xk),

(2)

where the coefficients

wk =
∫ xn

x0
Ln,k(x) dx (3)

k = 0, 1, . . . , n, are independent of f . A formula∫ b

a
f(x) dx ≈

n∑
k=0

wkf(xk)

with xk ∈ [a, b] and wk independent of f for k = 0, 1, . . . , n is called a quadrature

formula; the coefficients wk are known as weights. The specific form (1)–(3), based on

equally spaced points, is called a Newton–Cotes formula of order n.

Examples:

Trapezium Rule: n = 1 (also known as the trapezoid or trapezoidal rule):

f

p1

x0 x1h

∫ x1

x0
f(x) dx ≈ h

2
[f(x0) + f(x1)]

Proof.

∫ x1

x0
p1(x) dx = f(x0)

L1,0(x)∫ x1

x0

︷ ︸︸ ︷
x− x1
x0 − x1

dx +f(x1)

L1,1(x)∫ x1

x0

︷ ︸︸ ︷
x− x0
x1 − x0

dx

= f(x0)
(x1 − x0)

2
+ f(x1)

(x1 − x0)
2
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Simpson’s Rule: n = 2:

x0 x1h x2h

f

p2

∫ x2

x0
f(x) dx ≈ h

3
[f(x0) + 4f(x1) + f(x2)]

Note: The trapezium rule is exact if f ∈ Π1, since if f ∈ Π1 =⇒ p1 = f . Similarly,

Simpson’s Rule is exact if f ∈ Π2, since if f ∈ Π2 =⇒ p2 = f . The highest degree of

polynomial exactly integrated by a quadrature rule is called the (polynomial) degree of

accuracy (or degree of exactness).

Error: we can use the error in interpolation directly to obtain∫ xn

x0
[f(x)− pn(x)] dx =

∫ xn

x0

π(x)

(n+ 1)!
f (n+1)(ξ(x)) dx

so that ∣∣∣∣∫ xn

x0
[f(x)− pn(x)] dx

∣∣∣∣ ≤ 1

(n+ 1)!
max

ξ∈[x0,xn]
|f (n+1)(ξ)|

∫ xn

x0
|π(x)| dx, (4)

which, e.g., for the trapezium rule, n = 1, gives∣∣∣∣∣
∫ x1

x0
f(x) dx− (x1 − x0)

2
[f(x0) + f(x1)]

∣∣∣∣∣ ≤ (x1 − x0)3

12
max

ξ∈[x0,x1]
|f ′′(ξ)|.

In fact, we can prove a tighter result using the Integral Mean-Value Theorem1:

Theorem.
∫ x1

x0
f(x) dx − (x1 − x0)

2
[f(x0) + f(x1)] = −(x1 − x0)3

12
f ′′(ξ) for some ξ ∈

(x0, x1).

Proof. See problem sheet. 2

For n > 1, (4) gives pessimistic bounds. But one can prove better results such as:

Theorem. Error in Simpson’s Rule: if f ′′′′ is continuous on (x0, x2), then∣∣∣∣∣
∫ x2

x0
f(x) dx− (x2 − x0)

6
[f(x0) + 4f(x1) + f(x2)]

∣∣∣∣∣ ≤ (x2 − x0)5

720
max

ξ∈[x0,x2]
|f ′′′′(ξ)|.

Proof. Recall
∫ x2

x0
p2(x) dx = 1

3
h[f(x0) + 4f(x1) + f(x2)], where h = x2 − x1 = x1 − x0.

Consider f(x0) − 2f(x1) + f(x2) = f(x1 − h) − 2f(x1) + f(x1 + h). Then, by Taylor’s

Theorem,

f(x1 − h) f(x1)− hf ′(x1) + 1
2
h2f ′′(x1)− 1

6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ1)

−2f(x1) = −2f(x1) +

+f(x1 + h) f(x1) + hf ′(x1) + 1
2
h2f ′′(x1) + 1

6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ2)

1Integral Mean-Value Theorem: if f and g are continuous on [a, b] and g(x) ≥ 0 on this interval, then there

exists an η ∈ (a, b) for which

∫ b

a

f(x)g(x) dx = f(η)

∫ b

a

g(x) dx (see problem sheet).
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for some ξ1 ∈ (x0, x1) and ξ2 ∈ (x1, x2), and hence

f(x0)− 2f(x1) + f(x2) = h2f ′′(x1) + 1
24
h4[f ′′′′(ξ1) + f ′′′′(ξ2)]

= h2f ′′(x1) + 1
12
h4f ′′′′(ξ3),

(5)

the last result following from the Intermediate-Value Theorem2 for some ξ3 ∈ (ξ1, ξ2) ⊂
(x0, x2). Now for any x ∈ [x0, x2], we may use Taylor’s Theorem again to deduce∫ x2

x0
f(x) dx = f(x1)

∫ x1+h

x1−h
dx+ f ′(x1)

∫ x1+h

x1−h
(x− x1) dx

+ 1
2
f ′′(x1)

∫ x1−h

x1−h
(x− x1)2 dx+ 1

6
f ′′′(x1)

∫ x1+h

x1−h
(x− x1)3 dx

+ 1
24

∫ x1+h

x1−h
f ′′′′(η1(x))(x− x1)4 dx

= 2hf(x1) + 1
3
h3f ′′(x1) + 1

60
h5f ′′′′(η2)

= 1
3
h[f(x0) + 4f(x1) + f(x2)] + 1

60
h5f ′′′′(η2)− 1

36
h5f ′′′′(ξ3)

=
∫ x2

x0
p2(x) dx+

1

180

(
x2 − x0

2

)5

(3f ′′′′(η2)− 5f ′′′′(ξ3))

where η1(x) and η2 ∈ (x0, x2), using the Integral Mean-Value Theorem and (5). Thus,

taking moduli, ∣∣∣∣∫ x2

x0
[f(x)− p2(x)] dx

∣∣∣∣ ≤ 8

25 · 180
(x2 − x0)5 max

ξ∈[x0,x2]
|f ′′′′(ξ)|

as required. 2

Note: Simpson’s Rule is exact if f ∈ Π3 since then f ′′′′ ≡ 0.

In fact, it is possible to compute a slightly stronger bound.

Theorem. Error in Simpson’s Rule II: if f ′′′′ is continuous on (x0, x2), then∫ x2

x0
f(x) dx =

x2 − x0
6

[f(x0) + 4f(x1) + f(x2)]−
(x2 − x0)5

2880
f ′′′′(ξ)

for some ξ ∈ (x0, x2).

Proof. See Süli and Mayers, Thm. 7.2. 2

2Intermediate-Value Theorem: if f is continuous on a closed interval [a, b], and c is any number between

f(a) and f(b) inclusive, then there is at least one number ξ in the closed interval such that f(ξ) = c. In particular,

since c = (df(a)+ ef(b))/(d+ e) lies between f(a) and f(b) for any positive d and e, there is a value ξ in the closed

interval for which d · f(a) + e · f(b) = (d+ e) · f(ξ).
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Numerical Analysis Hilary Term 2020

Lecture 3: Newton-Cotes Quadrature (continued)

See Chapter 7 of Süli and Mayers.

Motivation: we’ve seen oscillations in polynomial interpolation—the Runge phenomenon–

for high-degree polynomials.

Idea: split a required integration interval [a, b] = [x0, xn] into n equal intervals [xi−1, xi]

for i = 1, . . . , n. Then use a composite rule:∫ b

a
f(x) dx =

∫ xn

x0

f(x) dx =
n∑

i=1

∫ xi

xi−1

f(x) dx

in which each
∫ xi

xi−1

f(x) dx is approximated by quadrature.

Thus rather than increasing the degree of the polynomials to attain high accuracy, instead

increase the number of intervals.

Trapezium Rule: ∫ xi

xi−1

f(x) dx =
h

2
[f(xi−1) + f(xi)]−

h3

12
f ′′(ξi)

for some ξi ∈ (xi−1, xi)

Composite Trapezium Rule:∫ xn

x0

f(x) dx =
n∑

i=1

[
h

2
[f(xi−1) + f(xi)]−

h3

12
f ′′(ξi)

]

=
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)] + eTh

where ξi ∈ (xi−1, xi) and h = xi−xi−1 = (xn−x0)/n = (b−a)/n, and the error eTh is given

by

eTh = −h
3

12

n∑
i=1

f ′′(ξi) = −nh
3

12
f ′′(ξ) = −(b− a)

h2

12
f ′′(ξ)

for some ξ ∈ (a, b), using the Intermediate-Value Theorem n times. Note that if we halve

the stepsize h by introducing a new point halfway between each current pair (xi−1, xi), the

factor h2 in the error should decrease by four.

Another composite rule: if [a, b] = [x0, x2n],∫ b

a
f(x) dx =

∫ x2n

x0

f(x) dx =
n∑

i=1

∫ x2i

x2i−2

f(x) dx

in which each
∫ x2i

x2i−2

f(x) dx is approximated by quadrature.

Simpson’s Rule:∫ x2i

x2i−2

f(x) dx =
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]−

(2h)5

2880
f ′′′′(ξi)
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for some ξi ∈ (x2i−2, x2i).

Composite Simpson’s Rule:∫ x2n

x0

f(x) dx =
n∑

i=1

[
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]−

(2h)5

2880
f ′′′′(ξi)

]

=
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·
+ 2f(x2n−2) + 4f(x2n−1) + f(x2n)] + eSh

where ξi ∈ (x2i−2, x2i) and h = xi − xi−1 = (x2n − x0)/2n = (b− a)/2n, and the error eSh is

given by

eSh = −(2h)5

2880

n∑
i=1

f ′′′′(ξi) = −n(2h)5

2880
f ′′′′(ξ) = −(b− a)

h4

180
f ′′′′(ξ)

for some ξ ∈ (a, b), using the Intermediate-Value Theorem n times. Note that if we halve

the stepsize h by introducing a new point half way between each current pair (xi−1, xi),

the factor h4 in the error should decrease by sixteen (assuming f is smooth enough).

Adaptive (or automatic) procedure: if Sh is the value given by Simpson’s rule with

a stepsize h, then

Sh − S 1
2
h ≈ −

15

16
eSh.

This suggests that if we wish to compute
∫ b

a
f(x) dx with an absolute error ε, we should

compute the sequence Sh, S 1
2
h, S 1

4
h, . . . and stop when the difference, in absolute value,

between two consecutive values is smaller than 16
15
ε. That will ensure that (approximately)

|eSh| ≤ ε.

Sometimes much better accuracy may be obtained: for example, as might happen when

computing Fourier coefficients, if f is periodic with period b−a so that f(a+x) = f(b+x)

for all x.

Matlab:

>> help adaptive_simpson

ADAPTIVE_SIMPSON Adaptive quadrature with Simpson’s rule

S = ADAPTIVE_SIMPSON(F, A, B, TOL, NMAX) computes an approximation

to the integral of F on the interval [A, B] . It will take a

maximum of NMAX steps and will attempt to determine the integral

to a tolerance of TOL. If omitted, NMAX will default to 100.

The function uses an adaptive Simpson’s rule, as described

in lectures.

>> format long g % see more than 5 digits

>> f = @(x) sin(x);

>> s = adaptive_simpson(f, 0, pi, 1e-7)

Step 1 integral is 2.0943951024.

Step 2 integral is 2.0045597550, with error estimate 0.089835.

Step 3 integral is 2.0002691699, with error estimate 0.0042906.
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Step 4 integral is 2.0000165910, with error estimate 0.00025258.

Step 5 integral is 2.0000010334, with error estimate 1.5558e-05.

Step 6 integral is 2.0000000645, with error estimate 9.6884e-07.

Step 7 integral is 2.0000000040, with error estimate 6.0498e-08.

Successful termination at iteration 7.

s =

2.00000000403226

>> g = @(x) sin(sin(x));

>> fplot(g, [0 pi])
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>> s = adaptive_simpson(g, 0, pi, 1e-7)

Step 1 integral is 1.7623727094.

Step 2 integral is 1.8011896009, with error estimate 0.038817.

Step 3 integral is 1.7870879453, with error estimate 0.014102.

Step 4 integral is 1.7865214631, with error estimate 0.00056648.

Step 5 integral is 1.7864895607, with error estimate 3.1902e-05.

Step 6 integral is 1.7864876112, with error estimate 1.9495e-06.

Step 7 integral is 1.7864874900, with error estimate 1.2118e-07.

Step 8 integral is 1.7864874825, with error estimate 7.5634e-09.

Successful termination at iteration 8.

s =

1.7864874824541

>> s = adaptive_simpson(g, 0, pi, 1e-7, 3)

Step 1 integral is 1.7623727094.

Step 2 integral is 1.8011896009, with error estimate 0.038817.

Step 3 integral is 1.7870879453, with error estimate 0.014102.

*** Unsuccessful termination: maximum iterations exceeded ***

The integral *might* be 1.7870879453.

s =

1.78708794526495
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Lecture 4: Gaussian Elimination

Setup: given a square n by n matrix A and vector with n components b, find x such that

Ax = b.

Equivalently find x = (x1, x2, . . . , xn)T for which

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn.

(1)

Lower-triangular matrices: the matrix A is lower triangular if aij = 0 for all

1 ≤ i < j ≤ n. The system (1) is easy to solve if A is lower triangular.

a11x1 = b1 =⇒ x1 =
b1
a11

⇓

a21x1 + a22x2 = b2 =⇒ x2 =
b2 − a21x1

a22
⇓

... ⇓

ai1x1 + ai2x2 + · · ·+ aiixi = bi =⇒ xi =

bi −
i−1∑
j=1

aijxj

aii
⇓

... ⇓

This works if, and only if, aii 6= 0 for each i. The procedure is known as forward

substitution.

Computational work estimate: one floating-point operation (flop) is one scalar mul-

tiply/division/addition/subtraction as in y = a ∗ x where a, x and y are computer repre-

sentations of real scalars.1

Hence the work in forward substitution is 1 flop to compute x1 plus 3 flops to compute

x2 plus . . . plus 2i − 1 flops to compute xi plus . . . plus 2n − 1 flops to compute xn, or in

total

n∑
i=1

(2i− 1) = 2

(
n∑

i=1

i

)
− n = 2 ( 1

2
n(n + 1))− n = n2 + lower order terms

flops. We sometimes write this as n2 + O(n) flops or more crudely O(n2) flops.

Upper-triangular matrices: the matrix A is upper triangular if aij = 0 for all

1 ≤ j < i ≤ n. Once again, the system (1) is easy to solve if A is upper triangular.

1This is an abstraction: e.g., some hardware can do y = a ∗ x+ b in one FMA flop (“Fused Multiply and Add”)

but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the “Fast

inverse square root” as used in the source code of the video game “Quake III Arena”.
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... ⇑

aiixi + · · ·+ ain−1xn−1 + a1nxn = bi =⇒ xi =

bi −
n∑

j=i+1

aijxj

aii
⇑

... ⇑

an−1n−1xn−1 + an−1nxn = bn−1 =⇒ xn−1 =
bn−1 − an−1nxn

an−1n−1

⇑

annxn = bn =⇒ xn =
bn
ann

. ⇑

Again, this works if, and only if, aii 6= 0 for each i. The procedure is known as backward

or back substitution. This also takes approximately n2 flops.

For computation, we need a reliable, systematic technique for reducing Ax = b to Ux = c

with the same solution x but with U (upper) triangular =⇒ Gauss elimination.

Example [
3 −1

1 2

] [
x1

x2

]
=

[
12

11

]
.

Multiply first equation by 1/3 and subtract from the second =⇒[
3 −1

0 7
3

] [
x1

x2

]
=

[
12

7

]
.

Gauss(ian) Elimination (GE): this is most easily described in terms of overwriting

the matrix A = {aij} and vector b. At each stage, it is a systematic way of introducing

zeros into the lower triangular part of A by subtracting multiples of previous equations

(i.e., rows); such (elementary row) operations do not change the solution.
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for columns j = 1, 2, . . . , n− 1

for rows i = j + 1, j + 2, . . . , n

row i ← row i− aij
ajj
∗ row j

bi ← bi −
aij
ajj
∗ bj

end

end

Example. 3 −1 2

1 2 3

2 −2 −1


 x1

x2

x3

 =

 12

11

2

 : represent as

 3 −1 2 | 12

1 2 3 | 11

2 −2 −1 | 2



=⇒ row 2← row 2− 1
3
row 1

row 3← row 3− 2
3
row 1

 3 −1 2 | 12

0 7
3

7
3
| 7

0 −4
3
−7

3
| −6



=⇒
row 3← row 3 + 4

7
row 2

 3 −1 2 | 12

0 7
3

7
3
| 7

0 0 −1 | −2


Back substitution:

x3 = 2

x2 =
7− 7

3
(2)

7
3

= 1

x1 =
12− (−1)(1)− 2(2)

3
= 3.

Cost of Gaussian Elimination: note, row i← row i− aij
ajj
∗ row j is

for columns k = j + 1, j + 2, . . . , n

aik ← aik −
aij
ajj

ajk

end

This is approximately 2(n− j) flops as the multiplier aij/ajj is calculated with just one

flop; ajj is called the pivot. Overall therefore, the cost of GE is approximately

n−1∑
j=1

2(n− j)2 = 2
n−1∑
l=1

l2 = 2
n(n− 1)(2n− 1)

6
=

2

3
n3 + O(n2)

flops. The calculations involving b are

n−1∑
j=1

2(n− j) = 2
n−1∑
l=1

l = 2
n(n− 1)

2
= n2 + O(n)

flops, just as for the triangular substitution.
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Lecture 5: LU Factorization

The basic operation of Gaussian Elimination, row i ← row i + λ ∗ row j, can be achieved

by pre-multiplication by a special lower-triangular matrix

M(i, j, λ) = I +

 0 0 0

0 λ 0

0 0 0

← i

↑
j

where I is the identity matrix.

Example: n = 4,

M(3, 2, λ) =


1 0 0 0

0 1 0 0

0 λ 1 0

0 0 0 1

 and M(3, 2, λ)


a

b

c

d

 =


a

b

λb+ c

d

 ,

i.e., M(3, 2, λ)A performs: row 3 of A ← row 3 of A + λ∗ row 2 of A and similarly

M(i, j, λ)A performs: row i of A← row i of A+ λ∗ row j of A.

So GE for e.g., n = 3 is

M(3, 2,−l32) · M(3, 1,−l31) · M(2, 1,−l21) · A = U = ( ) .

l32 =
a32
a22

l31 =
a31
a11

l21 =
a21
a11

(upper triangular)

The lij are called the multipliers.

Be careful: each multiplier lij uses the data aij and aii that results from the transforma-

tions already applied, not data from the original matrix. So l32 uses a32 and a22 that result

from the previous transformations M(2, 1,−l21) and M(3, 1,−l31).
Lemma. If i 6= j, (M(i, j, λ))−1 = M(i, j,−λ).

Proof. Exercise.

Outcome: for n = 3, A = M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) · U , where

M(2, 1, l21) ·M(3, 1, l31) ·M(3, 2, l32) =

 1 0 0

l21 1 0

l31 l32 1

 = L = ( ) .

(lower triangular)

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU , where U = ( )

is upper triangular resulting from GE, and L = ( ) is unit lower triangular (lower
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triangular with ones on the diagonal) with lij = multiplier used to create the zero in the

(i, j)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize A = LU (≈ 1
3
n3 adds + ≈ 1

3
n3 mults)

and then solve Ax = b

by solving Ly = b (forward substitution)

and then Ux = y (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same

A.

Pivoting: GE or LU can fail if the pivot aii = 0. For example, if

A =

[
0 1

1 0

]
,

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

0 · x1 + 1 · x2 = 1

1 · x1 + 0 · x2 = 2
and

1 · x1 + 0 · x2 = 2

0 · x1 + 1 · x2 = 1

are the same, but their matrices [
0 1

1 0

]
and

[
1 0

0 1

]

have had their rows reordered: GE fails for the first but succeeds for the second =⇒ better

to interchange the rows and then apply GE.

Partial pivoting: when creating the zeros in the jth column, find

|akj| = max(|ajj|, |aj+1j|, . . . , |anj|),

then swap (interchange) rows j and k.

For example,

a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 anj · · · ann


→



a11 · a1j−1 a1j · · · a1n
0 · · · · · · ·
0 · aj−1j−1 aj−1j · · · aj−1n

0 · 0 akj · · · akn
0 · 0 · · · · ·
0 · 0 ajj · · · ajn
0 · 0 · · · · ·
0 · 0 anj · · · ann


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Property: GE with partial pivoting cannot fail if A is nonsingular.

Proof. If A is the first matrix above at the jth stage,

det[A] = a11 · · · aj−1j−1 · det


ajj · · · ajn
· · · · ·
akj · · · akn
· · · · ·
anj · · · ann

 .

Hence det[A] = 0 if ajj = · · · = akj = · · · = anj = 0. Thus if the pivot ak,j is zero, A is

singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually ann can be

zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be

represented by a permutation matrix P .

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted

order. So

PA = LU

represents the factorization—equivalent to GE with partial pivoting. E.g., 0 1 0

0 0 1

1 0 0

A
has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Matlab example:

1 >> A = rand (5,5)

2 A =

3 0.69483 0.38156 0.44559 0.6797 0.95974

4 0.3171 0.76552 0.64631 0.6551 0.34039

5 0.95022 0.7952 0.70936 0.16261 0.58527

6 0.034446 0.18687 0.75469 0.119 0.22381

7 0.43874 0.48976 0.27603 0.49836 0.75127

8 >> exactx = ones (5,1); b = A*exactx;

9 >> [LL , UU] = lu(A) % note "psychologically lower triangular" LL

10 LL =

11 0.73123 -0.39971 0.15111 1 0

12 0.33371 1 0 0 0

13 1 0 0 0 0

14 0.036251 0.316 1 0 0

15 0.46173 0.24512 -0.25337 0.31574 1

16 UU =

17 0.95022 0.7952 0.70936 0.16261 0.58527

18 0 0.50015 0.40959 0.60083 0.14508

19 0 0 0.59954 -0.076759 0.15675

20 0 0 0 0.81255 0.56608
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21 0 0 0 0 0.30645

22

23 >> [L, U, P] = lu(A)

24 L =

25 1 0 0 0 0

26 0.33371 1 0 0 0

27 0.036251 0.316 1 0 0

28 0.73123 -0.39971 0.15111 1 0

29 0.46173 0.24512 -0.25337 0.31574 1

30 U =

31 0.95022 0.7952 0.70936 0.16261 0.58527

32 0 0.50015 0.40959 0.60083 0.14508

33 0 0 0.59954 -0.076759 0.15675

34 0 0 0 0.81255 0.56608

35 0 0 0 0 0.30645

36 P =

37 0 0 1 0 0

38 0 1 0 0 0

39 0 0 0 1 0

40 1 0 0 0 0

41 0 0 0 0 1

42

43 >> max(max(P’*L - LL))) % we see LL is P’*L

44 ans =

45 0

46

47 >> y = L \ (P*b); % now to solve Ax = b...

48 >> x = U \ y

49 x =

50 1

51 1

52 1

53 1

54 1

55

56 >> norm(x - exactx , 2) % within roundoff error of exact soln

57 ans =

58 3.5786e-15
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Lecture 6: QR Factorization

Definition: a square real matrix Q is orthogonal if QT = Q−1. This is true if, and only

if, QTQ = I = QQT.

Example: the permutation matrices P in LU factorization with partial pivoting are

orthogonal.

Proposition. The product of orthogonal matrices is an orthogonal matrix.

Proof. If S and T are orthogonal, (ST )T = TTST so

(ST )T(ST ) = TTSTST = TT(STS)T = TTT = I.

Definition: The scalar (dot)(inner) product of two vectors

x =


x1
x2
...

xn

 and y =


y1
y2
...

yn


in Rn is

xTy = yTx =
n∑

i=1

xiyi ∈ R

Definition: Two vectors x, y ∈ Rn are orthogonal if xTy = 0. A set of vectors

{u1, u2, . . . , ur} is an orthogonal set if uTi uj = 0 for all i, j ∈ {1, 2, . . . , r} such that

i 6= j.

Lemma. The columns of an orthogonal matrixQ form an orthogonal set, which is moreover

an orthonormal basis for Rn.

Proof. Suppose that Q = [q1 q2
... qn], i.e., qj is the jth column of Q. Then

QTQ = I =


qT1
qT2
· · ·
qTn

 [q1 q2
... qn] =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .
Comparing the (i, j)th entries yields

qTi qj =

{
0 i 6= j

1 i = j.

Note that the columns of an orthogonal matrix are of length 1 as qTi qi = 1, so they

form an orthonormal set ⇐⇒ they are linearly independent (check!) =⇒ they form an
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orthonormal basis for Rn as there are n of them. 2

Lemma. If u ∈ Rn, P is n-by-n orthogonal and v = Pu, then uTu = vTv.

Proof. See problem sheet.

Definition: The outer product of two vectors x and y ∈ Rn is

xyT =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
...

. . .
...

xny1 xny2 · · · xnyn

 ,
an n-by-n matrix (notation: xyT ∈ Rn×n). More usefully, if z ∈ Rn, then

(xyT)z = xyTz = x(yTz) =

(
n∑

i=1

yizi

)
x.

Definition: For w ∈ Rn, w 6= 0, the Householder matrix H(w) ∈ Rn×n is the matrix

H(w) = I − 2

wTw
wwT.

Proposition. H(w) is an orthogonal matrix.

Proof.

H(w)H(w)T =

(
I − 2

wTw
wwT

)(
I − 2

wTw
wwT

)
= I − 4

wTw
wwT +

4

(wTw)2
w(wTw)wT

= I. 2

Lemma. Given u ∈ Rn, there exists a w ∈ Rn such that

H(w)u =


α

0
...

0

 ≡ v,

say, where α = ±
√
uTu.

Remark: Since H(w) is an orthogonal matrix for any w ∈ R, w 6= 0, it is necessary for

the validity of the equality H(w)u = v that vTv = uTu, i.e., α2 = uTu; hence our choice

of α = ±
√
uTu.

Proof. Take w = γ(u− v), where γ 6= 0. Recall that uTu = vTv. Thus,

wTw = γ2(u− v)T(u− v) = γ2(uTu− 2uTv + vTv)

= γ2(uTu− 2uTv + uTu) = 2γuT(γ(u− v))

= 2γwTu.
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So

H(w)u =

(
I − 2

wTw
wwT

)
u = u− 2wTu

wTw
w = u− 1

γ
w = u− (u− v) = v.

2

Now if u is the first column of the n-by-n matrix A,

H(w)A =


α × · · · ×
0
...

0

B

 , where × = general entry.

Similarly for B, we can find ŵ ∈ Rn−1 such that

H(ŵ)B =


β × · · · ×
0
...

0

C


and then 

1 0 · · · 0

0
...

0

H(ŵ)

H(w)A =



α × × · · · ×
0 β × · · · ×
0

0
...

0

0

0
...

0

C


.

Note [
1 0

0 H(ŵ)

]
= H(w2), where w2 =

[
0

ŵ

]
.

Thus if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)︸ ︷︷ ︸
QT

A =


α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ

 = ( ) .

The matrix QT is orthogonal as it is the product of orthogonal (Householder) matrices, so

we have constructively proved that

Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper

triangular matrix R such that

A = QR

Notes: 1. This could also be established using the Gram–Schmidt Process.

2. If u is already of the form (α, 0, · · · , 0)T, we just take H = I.
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3. It is not necessary that A is square: if A ∈ Rm×n, then we need the product of (a) m−1

Householder matrices if m ≤ n =⇒

( ) = A = QR = ( )( )

or (b) n Householder matrices if m > n =⇒( )
= A = QR =

( )( )
.

Another useful family of orthogonal matrices are the Givens rotation matrices:

J(i, j, θ) =



1

·
c s

·
−s c

·
1


↑ ↑
i j

← ith row

← jth row

where c = cos θ and s = sin θ.

Exercise: Prove that J(i, j, θ)J(i, j, θ)T = I— obvious though, since the columns form

an orthonormal basis.

Note that if x = (x1, x2, . . . , xn)T and y = J(i, j, θ)x, then

yk = xk for k 6= i, j

yi = cxi + sxj
yj = −sxi + cxj

and so we can ensure that yj = 0 by choosing xi sin θ = xj cos θ, i.e.,

tan θ =
xj
xi

or equivalently s =
xj√
x2i + x2j

and c =
xi√
x2i + x2j

. (1)

Thus, unlike the Householder matrices, which introduce lots of zeros by pre-multiplication,

the Givens matrices introduce a single zero in a chosen position by pre-multiplication. Since

(1) can always be satisfied, we only ever think of Givens matrices J(i, j) for a specific

vector or column with the angle chosen to make a zero in the jth position, e.g., J(1, 2)x

tacitly implies that we choose θ = tan−1 x2/x1 so that the second entry of J(1, 2)x is zero.

Similarly, for a matrix A ∈ Rm×n, J(i, j)A := J(i, j, θ)A, where θ = tan−1 aji/aii, i.e., it is

the ith column of A that is used to define θ so that (J(i, j)A)ji = 0.

We shall return to these in a later lecture.
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Lecture 7: Matrix Eigenvalues

We are concerned with eigenvalue problems Ax = λx, where A ∈ Rn×n or A ∈ Cn×n,

λ ∈ C, and x(6= 0) ∈ Cn.

Background: An important result from analysis (not proved or examinable!), which will

be useful.

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the

entries. That is, suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n} are the eigenvalues

of A ∈ Rn×n and A + B ∈ Rn×n respectively. Given any ε > 0, there is a δ > 0 such that

|λi − µi| < ε whenever maxi,j |bij| < δ, where B = {bij}1≤i,j≤n.

Noteworthy properties related to eigenvalues:

• A has n eigenvalues (counting multiplicities), equal to the roots of the characteristic

polynomial pA(λ) = det(λI − A).

• If Axi = λixi for i = 1, . . . , n and xi are linearly independent so that [x1, x2, . . . , xn] =:

X is nonsingular, then A has the eigenvalue decomposition A = XΛX−1. This

usually, but not always, exist. The most general form is the Jordan canonical form

(which we don’t treat much in this course).

• Any square matrix has a Schur decomposition A = QTQ∗ where Q is unitary

QQ∗ = Q∗Q = In, and T triangular.

• For a normal matrix s.t. A∗A = AA∗, the Schur decomposition shows T is diagonal

(proof: examine diagonal elements of A∗A and AA∗), i.e., A can be diagonalized by a

unitary similarity transformation: A = QΛQ∗, where Λ = diag(λ1, . . . , λn). Most of

the structured matrices we treat are normal, including symmetric (λ ∈ R), orthogonal

(|λ| = 1), and skew-symmetric (λ ∈ iR).

Aim: estimate the eigenvalues of a matrix.

Theorem. Gerschgorin’s theorem: Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an

eigenvalue of A. Then, λ lies in the union of the Gerschgorin discs

Di =

z ∈ C |aii − z| ≤
n∑

j 6=i
j=1

|aij|

 , i = 1, . . . , n.

Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector x ∈ Rn with

Ax = λx, x 6= 0, i.e.,
n∑

j=1

aijxj = λxi, i = 1, . . . , n.

Suppose that |xk| ≥ |x`|, ` = 1, . . . , n, i.e.,

“xk is the largest entry”. (1)
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Then certainly
n∑

j=1

akjxj = λxk, or

(akk − λ)xk = −
n∑

j 6=k
j=1

akjxj.

Dividing by xk, (which, we know, is 6= 0) and taking absolute values,

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j 6=k
j=1

akj
xj
xk

∣∣∣∣∣∣∣∣ ≤
n∑

j 6=k
j=1

|akj|
∣∣∣∣xjxk
∣∣∣∣ ≤ n∑

j 6=k
j=1

|akj|

by (1). 2

Example.

A =

 9 1 2

−3 1 1

1 2 −1



-4 -2 0 2 4 6 8 10 12

-5

0

5

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem. Gerschgorin’s 2nd theorem: If any union of ` (say) discs is disjoint from

the other discs, then it contains ` eigenvalues.

Proof. Consider B(θ) = θA + (1 − θ)D, where D = diag(A), the diagonal matrix whose

diagonal entries are those from A. As θ varies from 0 to 1, B(θ) has entries that vary

continuously from B(0) = D to B(1) = A. Hence the eigenvalues λ(θ) vary continuously

by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal

entries), which are clearly the eigenvalues of D. As θ increases the Gerschgorin discs of

B(θ) increase in radius about these same points as centres. Thus if A = B(1) has a

disjoint set of ` Gerschgorin discs by continuity of the eigenvalues it must contain exactly

` eigenvalues (as they can’t jump!). 2

Iterative Methods: methods such as LU or QR factorizations are direct : they compute a
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certain number of operations and then finish with “the answer”. Another class of methods

are iterative:

- construct a sequence;

- truncate that sequence “after convergence”;

- typically concerned with fast convergence rate (rather than operation count).

Note that unlike LU, QR or linear systems Ax = b, algorithms for eigenvalues are

necessarily iterative: By Galois theory, no finite algorithm can compute eigenvalues of

n × n(≥ 5) matrices exactly in a finite number of operations. We still have an incredibly

reliable algorithm to compute them, essentially to full accuracy (for symmetric matrices;

for nonsymmetric matrices, in a “backward stable” manner; this is outside the scope).

Notation: for x ∈ Rn, ‖x‖ =
√
xTx is the (Euclidean) length of x.

Notation: in iterative methods, xk usually means the vector x at the kth iteration (rather

than kth entry of vector x). Some sources use xk or x(k) instead.

Power Iteration: a simple method for calculating a single (largest) eigenvalue of a

square matrix A (and its associated eigenvector). For arbitrary y ∈ Rn, set x0 = y/‖y‖ to

calculate an initial vector, and then for k = 0, 1, . . .

Compute yk = Axk
and set xk+1 = yk/‖yk‖.

This is the Power Method or Iteration, and computes unit vectors in the direction of

x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Suppose that A is diagonalizable so that there is a basis of eigenvectors of A:

{v1, v2, . . . , vn}

with Avi = λivi and ‖vi‖ = 1, i = 1, 2, . . . , n, and assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|.

Then we can write

x0 =
n∑

i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n, so

Akx0 = Ak

n∑
i=1

αivi =
n∑

i=1

αiA
kvi.

However, since Avi = λivi =⇒ A2vi = A(Avi) = λiAvi = λ2i vi, inductively Akvi = λki vi.

So

Akx0 =
n∑

i=1

αiλ
k
i vi = λk1

[
α1v1 +

n∑
i=2

αi

(
λi
λ1

)k

vi

]
.

Since (λi/λ1)
k → 0 as k → ∞, Akx0 tends to look like λk1α1v1 as k gets large. The result

is that by normalizing to be a unit vector

Akx0
‖Akx0‖

→ ±v1 and
‖Akx0‖
‖Ak−1x0‖

≈
∣∣∣∣ λk1α1

λk−11 α1

∣∣∣∣ = |λ1|
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as k →∞, and the sign of λ1 is identified by looking at, e.g., (Akx0)1/(A
k−1x0)1.

Essentially the same argument works when we normalize at each step: the Power

Iteration may be seen to compute yk = βkA
kx0 for some βk. Then, from the above,

xk+1 =
yk
‖yk‖

=
βk
|βk|
· Akx0
‖Akx0‖

→ ±v1.

Similarly, yk−1 = βk−1A
k−1x0 for some βk−1. Thus

xk =
βk−1
|βk−1|

· Ak−1x0
‖Ak−1x0‖

and hence yk = Axk =
βk−1
|βk−1|

· Akx0
‖Ak−1x0‖

.

Therefore, as above,

‖yk‖ =
‖Akx0‖
‖Ak−1x0‖

≈ |λ1|,

and the sign of λ1 may be identified by looking at, e.g., (xk+1)1/(xk)1.

Hence the largest eigenvalue (and its eigenvector) can be found.

Note: it is unlikely but possible for a chosen vector x0 that α1 = 0, but rounding errors

in the computation generally introduce a small component in v1, so that in practice this

is not a concern!

This simplified method for eigenvalue computation is the basis for effective methods, but

the current state of the art is the QR Algorithm which was invented by John Francis in

London in 1959/60. For simplicity we consider the QR Algorithm only in the case when

A is symmetric, but the algorithm is applicable also to nonsymmetric matrices.
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Lectures 8–9: The Symmetric QR Algorithm

We consider only the case where A is symmetric.

Recall: a symmetric matrix A is similar to B if there is a nonsingular matrix P for which

A = P−1BP . Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

The basic QR algorithm is:

Set A1 = A.

for k = 1, 2, . . .

form the QR factorization Ak = QkRk

and set Ak+1 = RkQk

end

Proposition. The symmetric matrices A1, A2, . . . , Ak, . . . are all similar and thus have the

same eigenvalues.

Proof. Since

Ak+1 = RkQk = (QT
kQk)RkQk = QT

k (QkRk)Qk = QT
kAkQk = Q−1k AkQk,

Ak+1 is symmetric if Ak is, and is similar to Ak. 2

At least when A has eigenvalues of distinct modulus |λ1| > |λ2| > · · · > |λn|, this basic QR

algorithm can be shown to work (Ak converges to a diagonal matrix as k →∞, the diagonal

entries of which are the eigenvalues). To see this, we make the following observations.

Lemma.

Ak = (Q1 · · ·Qk)(Rk · · ·R1) = Q(k)R(k) (1)

is the QR factorization of Ak, and

Ak = (Q(k))TAQ(k). (2)

Proof. (2) follows from a repeated application of the above proposition.

We use induction for (1): k = 1 trivial. Suppose Ak−1 = Q(k−1)R(k−1). Then Ak =

Rk−1Qk−1 = (Q(k−1))TAQ(k−1), and

(Q(k−1))TAQ(k−1) = QkRk.

Then AQ(k−1) = Q(k−1)QkRk, and so

Ak = AQ(k−1)R(k−1) = Q(k−1)QkRkR
(k−1) = Q(k)R(k),

giving (1). �
The lemma shows in particular that the first column q1 of Q(k) is the result of power

method applied k times to the initial vector e1 = [1, 0, . . . , 0]T (verify). It then follows that
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q1 converges to the dominant eigenvector. The second vector then starts converging to the

2nd dominant eigenvector, and so on. Once the columns of Q(k) converge to eigenvectors

(note that they are orthogonal by design), (2) shows that Ak converge to a diagonal matrix

of eigenvalues.

However, a really practical, fast algorithm is based on some refinements.

Reduction to tridiagonal form: the idea is to apply explicit similarity transformations

QAQ−1 = QAQT, with Q orthogonal, so that QAQT is tridiagonal.

Note: direct reduction to triangular form would reveal the eigenvalues, but is not possible.

If

H(w)A =


× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×


then H(w)AH(w)T is generally full, i.e., all zeros created by pre-multiplication are de-

stroyed by the post-multiplication. However, if

A =

[
γ uT

u C

]
(as A = AT) and

w =

[
0

ŵ

]
where H(ŵ)u =


α

0
...

0

 ,
it follows that

H(w)A =


γ uT

α × ... ×
...

...
...

...

0 × ... ×

 ,
i.e., the uT part of the first row of A is unchanged. However, then

H(w)AH(w)−1 = H(w)AH(w)T = H(w)AH(w) =


γ α 0 · · · 0

α

0
...

0

B

 ,

where B = H(ŵ)CHT(ŵ), as uTH(ŵ)T = (α, 0, · · · , 0); note that H(w)AH(w)T is

symmetric as A is.

Now we inductively apply this to the smaller matrix B, as described for the QR factoriza-

tion but using post- as well as pre-multiplications. The result of n − 2 such Householder

similarity transformations is the matrix

H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),
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which is tridiagonal.

The QR factorization of a tridiagonal matrix can now easily be achieved with n−1 Givens

rotations: if A is tridiagonal

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
QT

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =



× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×


(exercise: check!). In the QR algorithm, the next matrix in the sequence is RQ.

Lemma. In the QR algorithm applied to a symmetric tridiagonal matrix, the symmetry

and tridiagonal form are preserved when Givens rotations are used.

Proof. We have already shown that if Ak = QR is symmetric, then so is Ak+1 = RQ.

If Ak = QR = J(1, 2)TJ(2, 3)T · · · J(n − 1, n)TR is tridiagonal, then Ak+1 = RQ =

RJ(1, 2)TJ(2, 3)T · · · J(n−1, n)T. Recall that post-multiplication of a matrix by J(i, i+1)T

replaces columns i and i + 1 by linear combinations of the pair of columns, while leaving

columns j = 1, 2, . . . , i− 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only

subdiagonal entry in RJ(1, 2)T is in position (2, 1). Similarly, the only subdiagonal entries

in RJ(1, 2)TJ(2, 3)T = (RJ(1, 2)T)J(2, 3)T are in positions (2, 1) and (3, 2). Inductively,

the only subdiagonal entries in

RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)TJ(i− 1, i)T

= (RJ(1, 2)TJ(2, 3)T · · · J(i− 2, i− 1)T)J(i− 1, i)T

are in positions (j, j − 1), j = 2, . . . i. So, the lower triangular part of Ak+1 only has

nonzeros on its first subdiagonal. However, then since Ak+1 is symmetric, it must be

tridiagonal. 2

Using shifts. One further and final step in making an efficient algorithm is the use of

shifts:

for k = 1, 2, . . .

form the QR factorization of Ak − µkI = QkRk

and set Ak+1 = RkQk + µkI

end

For any chosen sequence of values of µk ∈ R, {Ak}∞k=1 are symmetric and tridiagonal if A1

has these properties, and similar to A1.
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The simplest shift to use is an,n, which leads rapidly in almost all cases to

Ak =

[
Tk 0

0T λ

]
,

where Tk is n− 1 by n− 1 and tridiagonal, and λ is an eigenvalue of A1. Inductively, once

this form has been found, the QR algorithm with shift an−1,n−1 can be concentrated only

on the n− 1 by n− 1 leading submatrix Tk. This process is called deflation.

Why does introducing shifts help? To understand this, we recall (1), and take the

inverse:

A−k = (R(k))−1(Q(k))T ,

and take the transpose:

(A−k)T (= A−k) = Q(k)(R(k))−T .

Noting that (R(k))−T is lower triangular, this shows that the final column of Q(k) is the

result of power method applied to en = [0, 0, . . . , 0, 1]T now with the inverse A−1. Thus

the last column Q(k) is converging to the eigenvector for the smallest eigenvalue λn, with

convergence factor | λn
λn−1
|; Q(k) is converging not only from the first, but (more significantly)

from the last column(s).

Finally, the introduction of shift changes the factor to | λσ(n)−µ
λσ(n−1)−µ

|, where σ is a permu-

tation such that |λσ(1) − µ| ≥ |λσ(2) − µ| ≥ · · · ≥ |λσ(n) − µ|. If µ is close to an eigen-

value, this implies (potentially very) fast convergence; in fact it can be shown that (proof

omitted and non-examinable) rather than linear convergence, am,m−1 converges cubically:

|am,m−1,k+1| = O(|am,m−1,k|3).
The overall algorithm for calculating the eigenvalues of an n by n symmetric matrix:

reduce A to tridiagonal form by orthogonal

(Householder) similarity transformations.

for m = n, n− 1, . . . 2

while am−1,m > tol

[Q,R] = qr(A− am,m ∗ I)

A = R ∗Q+ am,m ∗ I
end while

record eigenvalue λm = am,m
A← leading m− 1 by m− 1 submatrix of A

end

record eigenvalue λ1 = a1,1

Lectures 8–9 pg 4 of 5



Computing roots of polynomials via eigenvalues Let us describe a nice application

of computing eigenvalues (by the QR algorithm). Let p(x) =
∑n

i=0 cix
i be a degree-n

polynomial so that cn 6= 0, and suppose we want to find its roots, i.e., values of λ for

which p(λ) = 0; there are n of them in C. For example, p(x) might be an approximant to

data, obtained by Lagrange interpolation from the first lecture. Why roots? For example,

you might be interested in the minimum of p; this can be obtained by differentiating and

setting to zero p′(x) = 0, which is again a polynomial rootfinding problem (for p′).

How do we solve p(x) = 0? Recall that eigenvalues of A are the roots of its characteristic

polynomial. Here we take the opposite direction—construct a matrix whose characteristic

polynomial is p.

Consider the following matrix, which is called the companion matrix (the blank

elements are all 0) for the polynomial p(x) =
∑n

i=0 cix
i:

C =


− cn−1

cn
− cn−2

cn
· · · − c1

cn
− c0
cn

1

1
. . .

1 0

 . (3)

Then direct calculation shows that if p(λ) = 0 then Cx = λx with x = [λn−1, λn−2, . . . , λ, 1]T .

Indeed one can show that the characteristic polynomial is det(λI−C) = p(λ)/cn (nonexam-

inable), so this implication is necessary and sufficient, so the eigenvalues of C are precisely

the roots of p, counting multiplicities.

Thus to compute roots of polynomials, one can compute eigenvalues of the companion

matrix via the QR algorithm—this turns out to be a very powerful idea!
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Lecture 10: Best Approximation in Inner-Product Spaces

Best approximation of functions: given a function f on [a, b], find the “closest”

polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated

Fourier series).

Norms: are used to measure the size of/distance between elements of a vector space.

Given a vector space V over the field R of real numbers, the mapping ‖ · ‖ : V → R is a

norm on V if it satisfies the following axioms:

(i) ‖f‖ ≥ 0 for all f ∈ V , with ‖f‖ = 0 if, and only if, f = 0 ∈ V ;

(ii) ‖λf‖ = |λ|‖f‖ for all λ ∈ R and all f ∈ V ; and

(iii) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ V (the triangle inequality).

Examples: 1. For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)T,

‖x‖ ≡ ‖x‖2 = (x21 + x22 + · · ·+ x2n)
1
2 =
√
xTx

is the `2- or vector two-norm.

2. For continuous functions on [a, b],

‖f‖ ≡ ‖f‖∞ = max
x∈[a,b]

|f(x)|

is the L∞- or ∞-norm.

3. For integrable functions on (a, b),

‖f‖ ≡ ‖f‖1 =

∫ b

a

|f(x)| dx

is the L1- or one-norm.

4. For functions in

V = L2
w(a, b) ≡ {f : [a, b]→ R |

∫ b

a

w(x)[f(x)]2 dx <∞}

for some given weight function w(x) > 0 (this certainly includes continuous functions on

[a, b], and piecewise continuous functions on [a, b] with a finite number of jump-discontinuities),

‖f‖ ≡ ‖f‖2 =

(∫ b

a

w(x)[f(x)]2 dx

) 1
2

is the L2- or two-norm—the space L2(a, b) is a common abbreviation for L2
w(a, b) for the

case w(x) ≡ 1.

Note: ‖f‖2 = 0 =⇒ f = 0 almost everywhere on [a, b]. We say that a certain property P holds

almost everywhere (a.e.) on [a, b] if property P holds at each point of [a, b] except perhaps on a

subset S ⊂ [a, b] of zero measure. We say that a set S ⊂ R has zero measure (or that it is of

measure zero) if for any ε > 0 there exists a sequence {(αi, βi)}∞i=1 of subintervals of R such that
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S ⊂ ∪∞i=1(αi, βi) and
∑∞

i=1(βi − αi) < ε. Trivially, the empty set ∅(⊂ R) has zero measure. Any

finite subset of R has zero measure. Any countable subset of R, such as the set of all natural

numbers N, the set of all integers Z, or the set of all rational numbers Q, is of measure zero.

Least-squares polynomial approximation: aim to find the best polynomial approxi-

mation to f ∈ L2
w(a, b), i.e., find pn ∈ Πn for which

‖f − pn‖2 ≤ ‖f − q‖2 ∀q ∈ Πn.

Seeking pn in the form pn(x) =
n∑
k=0

αkx
k then results in the minimization problem

min
(α0,...,αn)

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx.

The unique minimizer can be found from the (linear) system

∂

∂αj

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx = 0 for each j = 0, 1, . . . , n,

but there is important additional structure here.

Inner-product spaces: a real inner-product space is a vector space V over R with a

mapping 〈·, ·〉 : V × V → R (the inner product) for which

(i) 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 if, and only if v = 0;

(ii) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ; and

(iii) 〈αu+ βv, z〉 = α〈u, z〉+ β〈v, z〉 for all u, v, z ∈ V and all α, β ∈ R.

Examples: 1. V = Rn,

〈x, y〉 = xTy =
n∑
i=1

xiyi,

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T.

2. V = L2
w(a, b) = {f : (a, b)→ R |

∫ b

a

w(x)[f(x)]2 dx <∞},

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx,

where f, g ∈ L2
w(a, b) and w is a weight-function, defined, positive and integrable on (a, b).

Notes: 1. Suppose that V is an inner product space, with inner product 〈·, ·〉. Then

〈v, v〉 12 defines a norm on V (see the final paragraph on the last page for a proof). In

Example 2 above, the norm defined by the inner product is the (weighted) L2-norm.

2. Suppose that V is an inner product space, with inner product 〈·, ·〉, and let ‖ · ‖ denote

the norm defined by the inner product via ‖v‖ = 〈v, v〉 12 , for v ∈ V . The angle θ between

u, v ∈ V is

θ = cos−1
(
〈u, v〉
‖u‖‖v‖

)
.
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Thus u and v are orthogonal in V ⇐⇒ 〈u, v〉 = 0.

E.g., x2 and 3
4
− x are orthogonal in L2(0, 1) with inner product 〈f, g〉 =

∫ 1

0

f(x)g(x) dx

as ∫ 1

0

x2
(
3
4
− x
)

dx = 1
4
− 1

4
= 0.

3. Pythagoras Theorem: Suppose that V is an inner-product space with inner product

〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V such that 〈u, v〉 = 0

we have

‖u± v‖2 = ‖u‖2 + ‖v‖2.
Proof.

‖u± v‖2 = 〈u± v, u± v〉 = 〈u, u± v〉 ± 〈v, u± v〉 [axiom (iii)]

= 〈u, u± v〉 ± 〈u± v, v〉 [axiom (ii)]

= 〈u, u〉 ± 〈u, v〉 ± 〈u, v〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉 [orthogonality]

= ‖u‖2 + ‖v‖2.

4. The Cauchy–Schwarz inequality: Suppose that V is an inner-product space with

inner product 〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

|〈u, v〉| ≤ ‖u‖‖v‖.
Proof. For every λ ∈ R,

0 ≤ 〈u− λv, u− λv〉 = ‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 = φ(λ),

which is a quadratic in λ. The minimizer of φ is at λ∗ = 〈u, v〉/‖v‖2, and thus since

φ(λ∗) ≥ 0, ‖u‖2 − 〈u, v〉2/‖v‖2 ≥ 0, which gives the required inequality. 2

5. The triangle inequality: Suppose that V is an inner-product space with inner product

〈·, ·〉 and norm ‖ · ‖ defined by this inner product. For any u, v ∈ V ,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.
Proof. Note that

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + 2〈u, v〉+ ‖v‖2.

Hence, by the Cauchy–Schwarz inequality,

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2 .

Taking square-roots yields

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

2

Note: The function ‖ · ‖ : V → R defined by ‖v‖ := 〈v, v〉 12 on the inner-product space

V , with inner product 〈·, ·〉, trivially satisfies the first two axioms of norm on V ; this is a

consequence of 〈·, ·〉 being an inner product on V . Result 5 above implies that ‖ · ‖ also

satisfies the third axiom of norm, the triangle inequality.
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Numerical Analysis Hilary Term 2020

Lecture 11: Least-Squares Approximation

For the problem of least-squares approximation, 〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx and ‖f‖22 =

〈f, f〉 where w(x) > 0 on (a, b).

Theorem. If f ∈ L2
w(a, b) and pn ∈ Πn is such that

〈f − pn, r〉 = 0 ∀r ∈ Πn, (1)

then

‖f − pn‖2 ≤ ‖f − r‖2 ∀r ∈ Πn,

i.e., pn is a best (weighted) least-squares approximation to f on [a, b].

Proof.

‖f − pn‖22 = 〈f − pn, f − pn〉
= 〈f − pn, f − r〉+ 〈f − pn, r − pn〉 ∀r ∈ Πn

Since r − pn ∈ Πn the assumption (1) implies that

= 〈f − pn, f − r〉
≤ ‖f − pn‖2‖f − r‖2 by the Cauchy–Schwarz inequality.

Dividing both sides by ‖f − pn‖2 gives the required result. 2

Remark: the converse is true too (see problem sheet 4).

This gives a direct way to calculate a best approximation: we want to find pn(x) =
n∑

k=0

αkx
k

such that ∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)
xi dx = 0 for i = 0, 1, . . . , n. (2)

[Note that (2) holds if, and only if,∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)(
n∑

i=0

βix
i

)
dx = 0 ∀q =

n∑
i=0

βix
i ∈ Πn.]

However, (2) implies that

n∑
k=0

(∫ b

a

w(x)xk+i dx

)
αk =

∫ b

a

w(x)f(x)xi dx for i = 0, 1, . . . , n

which is the component-wise statement of a matrix equation

Aα = ϕ, (3)

to determine the coefficients α = (α0, α1, . . . , αn)T, where A = {ai,k, i, k = 0, 1, . . . , n},
ϕ = (f0, f1, . . . , fn)T,

ai,k =

∫ b

a

w(x)xk+i dx and fi =

∫ b

a

w(x)f(x)xi dx.
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The system (3) are called the normal equations.

Example: the best least-squares approximation to ex on [0, 1] from Π1 in 〈f, g〉 =∫ b

a

f(x)g(x) dx. We want∫ 1

0

[ex − (α01 + α1x)]1 dx = 0 and

∫ 1

0

[ex − (α01 + α1x)]x dx = 0.

⇐⇒
α0

∫ 1

0

dx+ α1

∫ 1

0

x dx =

∫ 1

0

ex dx

α0

∫ 1

0

x dx+ α1

∫ 1

0

x2 dx =

∫ 1

0

exx dx

i.e., [
1 1

2

1
2

1
3

] [
α0

α1

]
=

[
e− 1

1

]
=⇒ α0 = 4e − 10 and α1 = 18 − 6e, so p1(x) := (18 − 6e)x + (4e − 10) is the best

approximation.

Proof that the coefficient matrix A is nonsingular will now establish existence and unique-

ness of (weighted) ‖ · ‖2 best-approximation.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose not =⇒ ∃α 6= 0 with Aα = 0 =⇒ αTAα = 0

⇐⇒
n∑

i=0

αi(Aα)i = 0 ⇐⇒
n∑

i=0

αi

n∑
k=0

aikαk = 0,

and using the definition aik =

∫ b

a

w(x)xkxi dx ,

⇐⇒
n∑

i=0

αi

n∑
k=0

(∫ b

a

w(x)xkxi dx

)
αk = 0.

Rearranging gives∫ b

a

w(x)

(
n∑

i=0

αix
i

)(
n∑

k=0

αkx
k

)
dx = 0 or

∫ b

a

w(x)

(
n∑

i=0

αix
i

)2

dx = 0

which implies that
n∑

i=0

αix
i = 0 and thus αi = 0 for i = 0, 1, . . . , n. This contradicts the

initial supposition, and thus A is nonsingular. 2

Remark: This result does not imply that the normal equations are usable in practice: the

method would need to be stable with respect to small perturbations. In fact, difficulties

arise from the “ill-conditioning” of the matrix A as n increases. The next lecture looks at

a fix.
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Lecture 12: Orthogonal Polynomials

Gram–Schmidt orthogonalization procedure: the solution of the normal equations

Aα = ϕ for best least-squares polynomial approximation would be easy if A were diagonal.

Instead of {1, x, x2, . . . , xn} as a basis for Πn, suppose we have a basis {φ0, φ1, . . . , φn}.

Then pn(x) =
n∑

k=0

βkφk(x), and the normal equations become

∫ b

a

w(x)

(
f(x)−

n∑
k=0

βkφk(x)

)
φi(x) dx = 0 for i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a

w(x)φk(x)φi(x) dx

)
βk =

∫ b

a

w(x)f(x)φi(x) dx, i = 0, . . . , n, i.e.,

Aβ = ϕ, (1)

where β = (β0, β1, . . . , βn)T, ϕ = (f1, f2, . . . , fn)T and now

ai,k =

∫ b

a

w(x)φk(x)φi(x) dx and fi =

∫ b

a

w(x)f(x)φi(x) dx.

So A is diagonal if

〈φi, φk〉 =

∫ b

a

w(x)φi(x)φk(x) dx

{
= 0 i 6= k and

6= 0 i = k.

We can create such a set of orthogonal polynomials

{φ0, φ1, . . . , φn, . . .},

with φi ∈ Πi for each i, by the Gram–Schmidt procedure, which is based on the following

lemma.

Lemma. Suppose that φ0, . . . , φk, with φi ∈ Πi for each i, are orthogonal with respect to

the inner product 〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx. Then,

φk+1(x) = xk+1 −
k∑

i=0

λiφi(x)

satisfies

〈φk+1, φj〉 =

∫ b

a

w(x)φk+1(x)φj(x) dx = 0, j = 0, 1, . . . , k, with

λj =
〈xk+1, φj〉
〈φj, φj〉

, j = 0, 1, . . . , k.
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Proof. For any j, 0 ≤ j ≤ k,

〈φk+1, φj〉 = 〈xk+1, φj〉 −
k∑

i=0

λi〈φi, φj〉

= 〈xk+1, φj〉 − λj〈φj, φj〉
by the orthogonality of φi and φj, i 6= j,

= 0 by definition of λj. 2

Notes: 1. The G–S procedure does this successively for k = 0, 1, . . . , n.

2. φk is always of exact degree k, so {φ0, . . . , φ`} is a basis for Π` ∀` ≥ 0.

3. φk can be normalised to satisfy 〈φk, φk〉 = 1 or to be monic, or . . .

Examples: 1. The inner product 〈f, g〉 =

∫ 1

−1
f(x)g(x) dx

gives orthogonal polynomials called the Legendre polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = x2 − 1
3
, φ3(x) = x3 − 3

5
x, . . .

2. The inner product 〈f, g〉 =

∫ 1

−1

f(x)g(x)√
1− x2

dx

gives orthogonal polynomials called the Chebyshev polynomials,

φ0(x) ≡ 1, φ1(x) = x, φ2(x) = 2x2 − 1, φ3(x) = 4x3 − 3x, . . .

3. The inner product 〈f, g〉 =

∫ ∞
0

e−xf(x)g(x) dx

gives orthogonal polynomials called the Laguerre polynomials,

φ0(x) ≡ 1, φ1(x) = 1− x, φ2(x) = 2− 4x+ x2,

φ3(x) = 6− 18x+ 9x2 − x3, . . .

Lemma. Suppose that {φ0, φ1, . . . , φk, . . .} are orthogonal polynomials for a given inner

product 〈·, ·〉. Then, 〈φk, q〉 = 0 whenever q ∈ Πk−1.

Proof. This follows since if q ∈ Πk−1, then q(x) =
k−1∑
i=0

σiφi(x) for some σi ∈ R, i =

0, 1, . . . , k − 1, so

〈φk, q〉 =
k−1∑
i=0

σi〈φk, φi〉 = 0.
2

Remark: note from the above argument that if q(x) =
k∑

i=0

σiφi(x) is of exact degree k

(so σk 6= 0), then 〈φk, q〉 = σk〈φk, φk〉 6= 0.

Theorem. Suppose that {φ0, φ1, . . . , φn, . . .} is a set of orthogonal polynomials. Then,

there exist sequences of real numbers (αk)∞k=1, (βk)∞k=1, (γk)∞k=1 such that a three-term

recurrence relation holds of the form

φk+1(x) = αk(x− βk)φk(x)− γkφk−1(x), k = 1, 2, . . . .
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Proof. The polynomial xφk ∈ Πk+1, so there exist real numbers

σk,0, σk,1, . . . , σk,k+1

such that

xφk(x) =
k+1∑
i=0

σk,iφi(x)

as {φ0, φ1, . . . , φk+1} is a basis for Πk+1. Now take the inner product on both sides with

φj where j ≤ k − 2. On the left-hand side, note xφj ∈ Πk−1 and thus

〈xφk, φj〉 =

∫ b

a

w(x)xφk(x)φj(x) dx =

∫ b

a

w(x)φk(x)xφj(x) dx = 〈φk, xφj〉 = 0,

by the above lemma for j ≤ k − 2. On the right-hand side〈
k+1∑
i=0

σk,iφi, φj

〉
=

k+1∑
i=0

σk,i〈φi, φj〉 = σk,j〈φj, φj〉

by the linearity of 〈·, ·〉 and orthogonality of φi and φj for i 6= j. Hence σk,j = 0 for

j ≤ k − 2, and so

xφk(x) = σk,k+1φk+1(x) + σk,kφk(x) + σk,k−1φk−1(x).

Almost there: taking the inner product with φk+1 reveals that

〈xφk, φk+1〉 = σk,k+1〈φk+1, φk+1〉,

so σk,k+1 6= 0 by the above remark as xφk is of exact degree k + 1 (e.g., from above

Gram–Schmidt notes). Thus,

φk+1(x) =
1

σk,k+1

(x− σk,k)φk(x)− σk,k−1
σk,k+1

φk−1(x),

which is of the given form, with

αk =
1

σk,k+1

, βk = σk,k, γk =
σk,k−1
σk,k+1

, k = 1, 2, . . . .

That completes the proof. 2

Example. The inner product 〈f, g〉 =

∫ ∞
−∞

e−x
2

f(x)g(x) dx

gives orthogonal polynomials called the Hermite polynomials,

φ0(x) ≡ 1, φ1(x) = 2x, φk+1(x) = 2xφk(x)− 2kφk−1(x) for k ≥ 1.
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Listing 1: hermite polys.m

1 %% Demonstrate Hermite Orthogonal Polynomials

2 lw = ’linewidth ’;

3 x = linspace (-2.2, 2.2, 256);

4 H_old = ones(size(x));

5 H = figure (1); clf;

6 plot(x, H_old , ’r-’, lw ,2)

7 set(get(H,’children ’), ’fontsize ’, 16);

8 hold on; pause

9

10 H = 2*x;

11 plot(x, H, lw ,2, ’color’ ,[0 0.75 0])

12 pause

13

14 for n = 1:4

15 % use the three -term recurrence

16 H_new = (2*x).*H - (2*n)*H_old;

17 plot(x, H_new , lw ,2, ’color’,rand (3,1))

18 pause;

19 H_old = H; H = H_new;

20 end

21 legend(’H_0(x)’, ’H_1(x)’, ’H_2(x)’, ’H_3(x)’, ’H_4(x)’, ’H_5(x)’)

22 xlabel(’x’); title(’Hermite orthogonal polynomials ’)
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Lecture 13: Gaussian quadrature

Suppose that w is a weight function, defined, positive and integrable on the open interval

(a, b) of R.

Lemma. Let {φ0, φ1, . . . , φn, . . .} be orthogonal polynomials for the inner product 〈f, g〉 =∫ b

a

w(x)f(x)g(x) dx. Then, for each k = 0, 1, . . . , φk has k distinct roots in the interval

(a, b).

Proof. Since φ0(x) ≡ const. 6= 0, the result is trivially true for k = 0. Suppose that k ≥ 1:

〈φk, φ0〉 =

∫ b

a

w(x)φk(x)φ0(x) dx = 0 with φ0 constant implies that

∫ b

a

w(x)φk(x) dx = 0

with w(x) > 0, x ∈ (a, b). Thus φk(x) must change sign in (a, b), i.e., φk has at least one

root in (a, b).

Suppose that there are ` points a < r1 < r2 < · · · < r` < b where φk changes sign for some

1 ≤ ` ≤ k. Then

q(x) =
∏̀
j=1

(x− rj)× the sign of φk on (r`, b)

has the same sign as φk on (a, b). Hence

〈φk, q〉 =

∫ b

a

w(x)φk(x)q(x) dx > 0,

and thus it follows from the previous lemma (cf. Lecture 12) that q, (which is of degree

`) must be of degree ≥ k, i.e., ` ≥ k. However, φk is of exact degree k, and therefore the

number of its distinct roots, `, must be ≤ k. Hence ` = k, and φk has k distinct roots in

(a, b). 2

Quadrature revisited. The above lemma leads to very efficient quadrature rules since

it answers the question: how should we choose the quadrature points x0, x1, . . . , xn in the

quadrature rule ∫ b

a

w(x)f(x) dx ≈
n∑

j=0

wjf(xj) (1)

so that the rule is exact for polynomials of degree as high as possible? (The case w(x) ≡ 1

is the most common.)

Recall: the Lagrange interpolating polynomial

pn =
n∑

j=0

f(xj)Ln,j ∈ Πn

is unique, so f ∈ Πn =⇒ pn ≡ f whatever interpolation points are used, and moreover∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)pn(x) dx =
n∑

j=0

wjf(xj),
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exactly, where

wj =

∫ b

a

w(x)Ln,j(x) dx. (2)

Theorem. Suppose that x0 < x1 < · · · < xn are the roots of the n+1-st degree orthogonal

polynomial φn+1 with respect to the inner product

〈g, h〉 =

∫ b

a

w(x)g(x)h(x) dx.

Then, the quadrature formula (1) with weights (2) is exact whenever f ∈ Π2n+1.

Proof. Let p ∈ Π2n+1. Then by the Division Algorithm p(x) = q(x)φn+1(x) + r(x) with

q, r ∈ Πn. So∫ b

a

w(x)p(x) dx =

∫ b

a

w(x)q(x)φn+1(x) dx+

∫ b

a

w(x)r(x) dx =
n∑

j=0

wjr(xj) (3)

since the integral involving q ∈ Πn is zero by the lemma above and the other is integrated

exactly since r ∈ Πn. Finally p(xj) = q(xj)φn+1(xj) + r(xj) = r(xj) for j = 0, 1, . . . , n as

the xj are the roots of φn+1. So (3) gives∫ b

a

w(x)p(x) dx =
n∑

j=0

wjp(xj),

where wj is given by (2) whenever p ∈ Π2n+1. 2

These quadrature rules are called Gaussian quadratures.

• w(x) ≡ 1, (a, b) = (−1, 1): Gauss–Legendre quadrature.

• w(x) = (1− x2)−1/2 and (a, b) = (−1, 1): Gauss–Chebyshev quadrature.

• w(x) = e−x and (a, b) = (0,∞): Gauss–Laguerre quadrature.

• w(x) = e−x
2

and (a, b) = (−∞,∞): Gauss–Hermite quadrature.

They give better accuracy than Newton–Cotes quadrature for the same number of function

evaluations.

Note when using quadrature on unbounded intervals, the integral should be of the form∫∞
0

e−xf(x) dx and only f is sampled at the nodes.

Note that by the linear change of variable t = (2x − a − b)/(b − a), which maps [a, b] →
[−1, 1], we can evaluate for example∫ b

a

f(x) dx =

∫ 1

−1
f

(
(b− a)t+ b+ a

2

)
b− a

2
dt ' b− a

2

n∑
j=0

wjf

(
b− a

2
tj +

b+ a

2

)
,

where ' denotes “quadrature” and the tj, j = 0, 1, . . . , n, are the roots of the n + 1-st

degree Legendre polynomial.
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Example. 2-point Gauss–Legendre quadrature: φ2(t) = t2 − 1
3

=⇒ t0 = − 1√
3
, t1 = 1√

3

and

w0 =

∫ 1

−1

t− 1√
3

− 1√
3
− 1√

3

dt = −
∫ 1

−1
(
√
3
2
t− 1

2
) dt = 1,

with w1 = 1, similarly. So e.g., changing variables x = (t+ 3)/2,∫ 2

1

1

x
dx =

1

2

∫ 1

−1

2

t+ 3
dt ' 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077 . . . .

Note that the trapezium rule (also two evaluations of the integrand) gives∫ 2

1

1

x
dx ' 1

2

[
1

2
+ 1

]
= 0.75,

whereas

∫ 2

1

1

x
dx = ln 2 = 0.6931472 . . . .

Theorem. Error in Gaussian quadrature: suppose that f (2n+2) is continuous on (a, b).

Then ∫ b

a

w(x)f(x) dx =
n∑

j=0

wjf(xj) +
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)
n∏

j=0

(x− xj)2 dx,

for some η ∈ (a, b).

Proof. The proof is based on the Hermite interpolating polynomialH2n+1 to f on x0, x1, . . . , xn.

[Recall that H2n+1(xj) = f(xj) and H ′2n+1(xj) = f ′(xj) for j = 0, 1, . . . , n.] The error in

Hermite interpolation is

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)2

for some η = η(x) ∈ (a, b). Now H2n+1 ∈ Π2n+1, so∫ b

a

w(x)H2n+1(x) dx =
n∑

j=0

wjH2n+1(xj) =
n∑

j=0

wjf(xj),

the first identity because Gaussian quadrature is exact for polynomials of this degree and

the second by interpolation. Thus∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =

∫ b

a

w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a

f (2n+2)(η(x))w(x)
n∏

j=0

(x− xj)2 dx,
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and hence the required result follows from the integral mean value theorem as

w(x)
∏n

j=0(x− xj)2 ≥ 0. 2

Remark: the “direct” approach of finding Gaussian quadrature formulae sometimes

works for small n, but more sophisticated algorithms are used for large n.1

Example. To find the two-point Gauss–Legendre rule w0f(x0)+w1f(x1) on (−1, 1) with

weight function w(x) ≡ 1, we need to be able to integrate any cubic polynomial exactly,

so

2 =

∫ 1

−1
1 dx = w0 + w1 (4)

0 =

∫ 1

−1
x dx = w0x0 + w1x1 (5)

2
3

=

∫ 1

−1
x2 dx = w0x

2
0 + w1x

2
1 (6)

0 =

∫ 1

−1
x3 dx = w0x

3
0 + w1x

3
1. (7)

These are four nonlinear equations in four unknowns w0, w1, x0 and x1. Equations (5) and

(7) give [
x0 x1
x30 x31

] [
w0

w1

]
=

[
0

0

]
,

which implies that

x0x
3
1 − x1x30 = 0

for w0, w1 6= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (5), either of which contradicts (6). Thus

x0 6= 0, and similarly x1 6= 0. If x1 = x0, (5) implies w1 = −w0, which contradicts (4). So

x1 = −x0, and hence (5) implies w1 = w0. But then (4) implies that w0 = w1 = 1 and (6)

gives

x0 = − 1√
3

and x1 = 1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

1See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Guass–Legendre and

Gauss–Jacobi quadrature nodes and weights” SIAM J. Sci. Comput. 2013.
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Table 1: Abscissas xj (zeros of Legendre polynomials) and weight factors wj for Gaussian

quadrature:

∫ 1

−1
f(x) dx '

n∑
j=0

wjf(xj) for n = 0 to 6.

xj wj

n = 0 0.000000000000000e+0 2.000000000000000e+0

n = 1 5.773502691896258e−1 1.000000000000000e+0

−5.773502691896258e−1 1.000000000000000e+0

7.745966692414834e−1 5.555555555555556e−1
n = 2 0.000000000000000e+0 8.888888888888889e−1

−7.745966692414834e−1 5.555555555555556e−1
8.611363115940526e−1 3.478548451374539e−1

n = 3 3.399810435848563e−1 6.521451548625461e−1
−3.399810435848563e−1 6.521451548625461e−1
−8.611363115940526e−1 3.478548451374539e−1
9.061798459386640e−1 2.369268850561891e−1
5.384693101056831e−1 4.786286704993665e−1

n = 4 0.000000000000000e+0 5.688888888888889e−1
−5.384693101056831e−1 4.786286704993665e−1
−9.061798459386640e−1 2.369268850561891e−1
9.324695142031520e−1 1.713244923791703e−1
6.612093864662645e−1 3.607615730481386e−1

n = 5 2.386191860831969e−1 4.679139345726910e−1
−2.386191860831969e−1 4.679139345726910e−1
−6.612093864662645e−1 3.607615730481386e−1
−9.324695142031520e−1 1.713244923791703e−1
9.491079123427585e−1 1.294849661688697e−1
7.415311855993944e−1 2.797053914892767e−1
4.058451513773972e−1 3.818300505051189e−1

n = 6 0.000000000000000e+0 4.179591836734694e−1
−4.058451513773972e−1 3.818300505051189e−1
−7.415311855993944e−1 2.797053914892767e−1
−9.491079123427585e−1 1.294849661688697e−1
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Numerical Analysis Hilary Term 2020

Lectures 14–15: Piecewise Polynomial Interpolation: Splines

Sometimes a ‘global’ approximation like Lagrange interpolation is not appropriate, e.g.,

for ’rough’ data.

On the left the Lagrange interpolant p6 ‘wiggles’ through the points, while on the right a

piecewise linear interpolant (‘join the dots’), or linear spline interpolant, s appears to

represent the data better.

Remark: for any given data s clearly exists and is unique.

Suppose that a = x0 < x1 < · · · < xn = b. Then, s is linear on each interval [xi−1, xi] for

i = 1, . . . , n and continuous on [a, b]. The xi, i = 0, 1, . . . , n, are called the knots of the

linear spline.

Notation: f ∈ Ck[a, b] if f, f ′, . . . , fk exist and are continuous on [a, b].

Theorem. Suppose that f ∈ C2[a, b]. Then,

‖f − s‖∞ ≤
1

8
h2‖f ′′‖∞

where h = max
1≤i≤n

(xi − xi−1) and ‖f ′′‖∞ = max
x∈[a,b]

|f ′′(x)|.

Proof. For x ∈ [xi−1, xi], the error from linear interpolation is

f(x)− s(x) =
1

2
f ′′(η)(x− xi−1)(x− xi)

where η = η(x) ∈ (xi−1, xi). However, |(x − xi−1)(x − xi)| = (x − xi−1)(xi − x) =

−x2 + x(xi−1 + xi)− xi−1xi, which has its maximum value when 2x = xi + xi−1, i.e., when

x− xi−1 = xi − x = 1
2
(xi − xi−1). Thus, for any x ∈ [xi−1, xi], i = 1, 2, . . . , n, we have

|f(x)− s(x)| ≤ 1

2
‖f ′′‖∞ max

x∈[xi−1,xi]
|(x− xi−1)(x− xi)| =

1

8
h2‖f ′′‖∞.

2

Note that s may have discontinuous derivatives, but is a locally defined approximation,

since changing the value of one data point affects the approximation in only two intervals.

To get greater smoothness but retain some ‘locality’, we can define cubic splines s ∈
C2[a, b]. For a given ‘partition’, a = x0 < x1 < · · · < xn = b, these are (generally

different!) cubic polynomials in each interval (xi−1, xi), i = 1, . . . , n, which are ‘joined’ at

each knot to have continuity and continuity of s′ and s′′. Interpolating cubic splines

also satisfy s(xi) = fi for given data fi, i = 0, 1, . . . , n.

Remark: if there are n intervals, there are 4n free coefficients (four for each cubic ‘piece’),

but 2n interpolation conditions (one each at the ends of each interval), n − 1 derivative

continuity conditions (at x1, . . . , xn−1) and n − 1 second derivative continuity conditions
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(at the same points), giving a total of 4n − 2 conditions (which are linear in the free

coefficients). Thus the spline is not unique. So we need to add two extra conditions to

generate a spline that might be unique. There are three common ways of doings this:

(a) specify s′(x0) = f ′(x0) and s′(xn) = f ′(xn); or

(b) specify s′′(x0) = 0 = s′′(xn) — this gives a natural cubic spline; or

(c) enforce continuity of s′′′ at x1 and xn−1 (which implies that the first two pieces are

the same cubic spline, i.e., on [x0, x2], and similarly for the last two pieces, i.e., on

[xn−2, xn], from which it follows that x1 and xn−1 are not knots! — this is usually

described as the ‘not a knot’ end-conditions).

We may describe a cubic spline within the i-th interval as

si(x) =

{
aix

3 + bix
2 + cix+ di for x ∈ (xi−1, xi)

0 otherwise

and overall, to ensure interpolation (of f), as

s(x) =


n∑

i=1

si(x) for x ∈ [x0, xn] \ {x0, x1, . . . , xn}

f(xi) for x = xi, i = 0, 1, . . . , n.

The 4n linear conditions for an interpolating cubic spline s are:

si(x
−
i ) = f(xi)

s1(x0) = f(x0) si+1(x
+
i ) = f(xi) sn(xn) = f(xn)

s′1(x0) = f ′(x0) (a) s′i(x
−
i )− s′i+1(x

+
i ) = 0 s′n(xn) = f ′(xn) (a)

or s′′1(x0) = 0 (b) s′′i (x−i )− s′′i+1(x
+
i ) = 0 or s′′n(xn) = 0 (b)

i = 1, . . . , n− 1.

(1)

We may write this as Ay = g, with

y = (a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn)T

and the various entries of g are f(xi), i = 0, 1, . . . , n, and f ′(x0), f
′(xn) and zeros for (a)

and zeros for (b).

So if A is nonsingular, this implies that y = A−1g, that is there is a unique set of coefficients

{a1, b1, c1, d1, a2, . . . , dn−1, an, bn, cn, dn}. We now prove that if Ay = 0 then y = 0, and

thus that A is nonsingular for cases (a) and (b) — it is also possible, but more complicated,

to show this for case (c).

Theorem. If f(xi) = 0 at the knots xi, i = 0, 1, . . . , n, and additionally f ′(x0) = 0 = f ′(xn)

for case (a), then s(x) = 0 for all x ∈ [x0, xn].

Proof. Consider∫ xn

x0

(s′′(x))2 dx =
n∑

i=1

∫ xi

xi−1

(s′′i (x))2 dx

=
n∑

i=1

[s′i(x)s′′i (x)]
xi

xi−1
−

n∑
i=1

∫ xi

xi−1

s′i(x)s′′′i (x) dx
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using integration by parts. However,∫ xi

xi−1

s′i(x)s′′′i (x) dx = s′′′i (x)

∫ xi

xi−1

s′i(x) dx = s′′′i (x) [si(x)]xi

xi−1
= 0

since s′′′i (x) is constant on the interval (xi−1, xi) and si(xi−1) = 0 = si(xi). Thus, matching

first and second derivatives at the knots, telescopic cancellation gives∫ xn

x0

(s′′(x))2 dx =
n∑

i=1

[s′i(x)s′′i (x)]
xi

xi−1

= s′1(x1)s
′′
1(x1)− s′1(x0)s′′1(x0)

+ s′2(x2)s
′′
2(x2)− s′2(x1)s′′2(x1) + · · ·

+ s′n−1(xn−1)s
′′
n−1(xn−1)− s′n−1(xn−2)s′′n−1(xn−2)

+ s′n(xn)s′′n(xn)− s′n(xn−1)s
′′
n(xn−1)

= s′n(xn)s′′n(xn)− s′1(x0)s′′1(x0).

However, in case (a), f ′(x0) = f ′(xn) =⇒ s′1(x0) = 0 = s′n(xn), while in case (b) s′′1(x0) =

0 = s′′n(xn). Thus, either way, ∫ xn

x0

(s′′(x))2 dx = 0,

which implies that s′′i (x) = 0 and thus si(x) = cix + di. Since s(xi−1) = 0 = s(xi), s(x) is

identically zero on [x0, xn]. 2

Constructing cubic splines. Note that (1) provides a constructive method for finding

an interpolating spline, but generally this is not used. Motivated by the next result, it is

better to find a good basis.

Proposition. The set of natural cubic splines on a given set of knots x0 < x1 < · · · < xn
is a vector space.

Proof. If p, q ∈ C2[a, b] =⇒ αp+ βq ∈ C2[a, b] and p, q ∈ Π3 =⇒ αp+ βq ∈ Π3 for every

α, β ∈ R. Finally, the natural end-conditions (b) =⇒ (αp+βq)′′(x0) = 0 = (αp+βq)′′(xn)

whenever p′′ and q′′ are zero at x0 and xn. 2

Best spline bases: the Cardinal splines, Ci, i = 0, 1, . . . , n, defined as the interpolatory

natural cubic splines satisfying

Ci(xj) = δij =

{
1 i = j

0 i 6= j,

are a basis for which

s(x) =
n∑

i=0

f(xi)Ci(x)

is the interpolatory natural cubic spline to f .

Preferred are the B-splines (locally) defined by Bi(xi) = 1 for i = 2, 3, . . . , n − 2,

Bi(x) ≡ 0 for x /∈ (xi−2, xi+2), Bi a cubic spline with knots xj, j = 0, 1, . . . , n, with special
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definitions for B0, B1, Bn−1 and Bn.

Example/construction: Cubic B-spline with knots 0, 1, 2, 3, 4. On [0, 1],

B(x) = ax3

for some a in order that B, B′ and B′′ are continuous at x = 0 (recall that B(x) is required

to be identically zero for x < 0). So

B(1) = a, B′(1) = 3a, and B′′(1) = 6a.

On [1, 2], since B is a cubic polynomial, using Taylor’s Theorem,

B(x) = B(1) +B′(1)(x− 1) +
B′′(1)

2
(x− 1)2 + β(x− 1)3

= a+ 3a(x− 1) + 3a(x− 1)2 + β(x− 1)3

for some β, and since we require B(2) = 1, then β = 1 − 7a. Now, in order to continue,

by symmetry, we must have B′(2) = 0, i.e.,

3a+ 6a(x− 1)x=2 + 3(1− 7a)(x− 1)2x=2 = 3− 12a = 0

and hence a = 1
4
. So

B(x) =



0 for x < 0
1
4
x3 for x ∈ [0, 1]

− 3
4
(x− 1)3 + 3

4
(x− 1)2 + 3

4
(x− 1) + 1

4
for x ∈ [1, 2]

− 3
4
(3− x)3 + 3

4
(3− x)2 + 3

4
(3− x) + 1

4
for x ∈ [2, 3]

1
4
(4− x)3 for x ∈ [3, 4]

0 for x > 4.

More generally: B-spline on xi = a+ hi, where h = (b− a)/n.

Bi(x) =



0 for x < xi−2
(x− xi−2)3

4h3
for x ∈ [xi−2, xi−1]

−3(x− xi−1)3

4h3
+

3(x− xi−1)2

4h2
+

3(x− xi−1)
4h

+
1

4
for x ∈ [xi−1, xi]

−3(xi+1 − x)3

4h3
+

3(xi+1 − x)2

4h2
+

3(xi+1 − x)

4h
+

1

4
for x ∈ [xi, xi+1]

(xi+2 − x)3

4h3
for x ∈ [xi+1, xi+2]

0 for x > xi+2.

xi−2 xi−1 xi xi+1 xi+2

0

0.5

1

B
i(
x

)
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The ‘end’ B-splines B0, B1, Bn−1 and Bn are defined analogously by introducing ‘phantom’

knots x−2, x−1, xn+1 and xn+2. The (cubic) B-spline basis is only locally affected if some

xi is changed. But note this is not true of the resulting spline itself.

Spline interpolation: find the cubic spline

s(x) =
n∑

j=0

cjBj(x),

which interpolates fi at xi for i = 0, 1, . . . , n. Require

fi =
n∑

j=0

cjBj(xi) = ci−1Bi−1(xi) + ciBi(xi) + ci+1Bi+1(xi).

For equally-spaced data

fi = 1
4
ci−1 + ci + 1

4
ci+1,

i.e., 

. . . . . . . . .
1
4

1 1
4

1
4

1 1
4

1
4

1 1
4

. . . . . . . . .





...

ci−2
ci−1
ci
ci+1

ci+2
...


=



...

fi−1
fi
fi+1

...

 .

The first few and last few rows of this system depend on the type of spline under consid-

eration. For natural cubic splines, see Problem Sheet 4, Question 20.

For linear splines, a similar local basis of ‘hat functions’ or Linear B-splines φi(x)

exist:

φi(x) =


x− xi−1
xi − xi−1

x ∈ (xi−1, xi)

x− xi+1

xi − xi+1

x ∈ (xi, xi+1)

0 x /∈ (xi−1, xi+1)

xi−2 xi−1 xi xi+1 xi+2

0

0.5

1

φ
i(
x

)

and provide a C0 piecewise basis.
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Listing 1: demo lec14 spline vs lagrange.m

1 N = 9; % number of interpolation points

2 x = linspace(-4, 4, N); % the knots

3

4 % values at knots

5 f = @(x) 1 ./ (1 + x.^2);

6 fp = @(x) -2*x ./ (1 + x.^2)^2;

7 ypoints = f(x);

8

9 % an extended vector padded with the slope at the first and last

10 % interpolation points , see "help spline ": end -point choices available

11 % with the matlab command spline (called option (a) in lecture notes ).

12 y = [fp(x(1)) ypoints fp(x(end ))];

13

14 % a data structure containing the pieces of the spline

15 s = spline(x, y);

16

17 fine = linspace(-4, 4, 500);

18 h = figure (1); clf; lw = ’linewidth ’;

19 plot(fine , ppval(s, fine), lw ,2); % see "help ppval"

20 ff = f(fine);

21

22 % Plot function

23 hold on

24 plot(fine , f(fine), ’r--’, lw ,2);

25 plot(x, ypoints , ’ko’, lw ,2)

26 % Compare to Lagrange interpolating polynomial

27 p = lagrange_poly(x, ypoints );

28 plot(fine , polyval(p, fine), ’g-’, ’color’ ,[0 0.5 0], lw ,2);

29

30 set(get(h, ’children ’), ’fontsize ’, 16)

31 legend(’spline ’, ’func’, ’knots’, ’lagrange ’)

32 ylim ([-0.2 1.1]); xlim ([-4.1 4.1])

33 xlabel(’x’)

−4 −2 0 2 4
−0.2

0

0.2

0.4

0.6

0.8

1

x

 

 

spline

func

knots

lagrange
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Error analysis for cubic splines

Theorem. Amongst all functions t ∈ C2[x0, xn] that interpolate f at xi, i = 0, 1, . . . , n,

the unique function that minimizes ∫ xn

x0

[t′′(x)]2 dx

is the natural cubic spline s. Moreover, for any such t,∫ xn

x0

[t′′(x)]2 dx−
∫ xn

x0

[s′′(x)]2 dx =

∫ xn

x0

[t′′(x)− s′′(x)]2 dx.

Proof. See exercises (uses integration by parts and telescopic cancellation, and is similar

to the proof of existence above). 2

We will also need:

Lemma. (Cauchy–Schwarz inequality): if f, g ∈ C[a, b], then[∫ b

a

f(x)g(x) dx

]2
≤
∫ b

a

[f(x)]2 dx

∫ b

a

[g(x)]2 dx.

Proof. For any λ ∈ R,

0 ≤
∫ b

a

[f(x)− λg(x)]2 dx =

∫ b

a

[f(x)]2 dx− 2λ

∫ b

a

[f(x)g(x)] dx+ λ2
∫ b

a

[g(x)]2 dx.

The result then follows directly since the discriminant of this quadratic must be nonposi-

tive. 2

Theorem. For the natural cubic spline interpolant s of f ∈ C2[x0, xn] at x0 < x1 < · · · <
xn with h = max1≤i≤n(xi − xi−1), we have that

‖f ′ − s′‖∞ ≤ h
1
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

and ‖f − s‖∞ ≤ h
3
2

[∫ xn

x0

[f ′′(x)]2 dx

] 1
2

.

Proof. Let e := f − s. Take any x ∈ [x0, xn], in which case x ∈ [xj−1, xj] for some

j ∈ {1, . . . , n}. Then e(xj−1) = 0 = e(xj) as s interpolates f . So by the Mean Value

Theorem, there is a c ∈ (xj−1, xj) with e′(c) = 0. Hence e′(x) =

∫ x

c

e′′(t) dt. Then the

Cauchy–Schwarz inequality gives that

|e′(x)|2 ≤
∣∣∣∣∫ x

c

dt

∣∣∣∣ ∣∣∣∣∫ x

c

[e′′(t)]2 dt

∣∣∣∣ .
However, the first required inequality then follows since for x ∈ [xj−1, xj],

∣∣∣∣∫ x

c

dt

∣∣∣∣ ≤ h and

because the previous theorem gives that∣∣∣∣∫ x

c

[e′′(t)]2 dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

c

[f ′′(t)]2 dt

∣∣∣∣ ≤ ∫ xn

x0

[f ′′(x)]2 dx.
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The remaining result follows from Taylor’s Theorem. 2

Theorem. Suppose that f ∈ C4[a, b] and s satisfies end-conditions (a). Then,

‖f − s‖∞ ≤
5

384
h4‖f (4)‖∞

and

‖f ′ − s′‖∞ ≤
9 +
√

3

216
h3‖f (4)‖∞,

where h = max1≤i≤n(xi − xi−1).
Proof. Beyond the scope of this course. 2

Similar bounds exist for natural cubic splines and splines satisfying end-condition (c).
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Numerical Analysis Hilary Term 2020

Lecture 16: Richardson Extrapolation

Extrapolation is based on the general idea that if Th is an approximation to T , computed

by a numerical approximation with (small!) parameter h, and if there is an error formula

of the form

T = Th +K1h+K2h
2 + · · ·+O(hn) (1)

then T = Tk +K1k +K2k
2 + · · ·+O(kn) (2)

for some other value, k, of the small parameter. In this case subtracting (1) from (2) gives

(k − h)T = kTh − hTk +K2(kh
2 − hk2) + · · ·

i.e., the linear combination

kTh − hTk
k − h︸ ︷︷ ︸

“extrapolated formula”

= T + K2kh︸ ︷︷ ︸
2nd order error

+ · · ·

In particular if only even terms arise:

T = Th +K2h
2 +K4h

4 + · · ·+O(h2n)

and k = 1
2
h : T = Th

2
+K2

h2

4
+K4

h4

16
+ · · ·+O(

h2n

22n
)

then T =
4Th

2
− Th
3

− K4

4
h4 + · · ·+O(h2n).

This is the first step of Richardson extrapolation. Call this new, more accurate formula

T
(2)
h :=

4Th
2
− Th
3

,

where T
(1)
h := Th. Then the idea can be applied again:

T = T
(2)
h +K

(2)
4 h4 + · · ·+O(h2n)

and T = T
(2)
h
2

+K
(2)
4

h4

16
+ · · ·+O(h2n)

so T =
16T

(2)
h
2

− T (2)
h

15︸ ︷︷ ︸
T

(3)
h

+K
(3)
6 h6 + · · ·+O(h2n)

is a more accurate formula again. Inductively we can define

T
(j)
h :=

1

4j−1 − 1

[
4j−1T

(j−1)
h
2

− T (j−1)
h

]
for which

T = T
(j)
h +O(h2j)
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so long as there are high enough order terms in the error series.

Example: approximation of π by inscribed polygons in unit circle. For a regular n-gon,

the circumference = 2n sin(π/n) ≤ 2π, so let cn = n sin(π/n) ≤ π, or if we put h = 1/n,

cn =
1

h
sin(πh) = π − π3h2

6
+
π5h4

120
+ · · ·

so that we can use Richardson extrapolation. Indeed c2 = 2 and

c2n = 2n sin(π/2n) = 2n
√

1
2
(1− cos(π/n))

= 2n

√
1
2
(1−

√
1− sin2(π/n)) = 2n

√
1
2
(1−

√
1− (cn/n)2) .

So1 c4 = 2.8284, c8 = 3.0615, c16 = 3.1214. Extrapolating between c4 and c8 we get

c
(2)
4 = 3.1391 and similarly from c8 and c16 we get c

(2)
8 = 3.1214. Extrapolating again

between c
(2)
4 and c

(2)
8 , we get c

(3)
4 = 3.141590 . . ..

Example 2: Romberg Integration. Consider the Composite Trapezium Rule for

integrating T =
∫ b

a
f(x) dx:

Th =
h

2

f(a) + f(b) + 2
2n−1∑
j=1

f(xj)


with x0 = a, xj = a + jh and h = (b − a)/2n. Recall from Lecture 3 that the error is

(b− a)h
2

12
f ′′(ξ) for some ξ ∈ (a, b). If there were an (asymptotic) error series of the form∫ b

a
f(x) dx− Th = K2h

2 +K4h
4 + · · ·

we could apply Richardson extrapolation as above to yield

T −
4Th

2
− Th
3

= K4h
4 + · · ·

There is such as series: the Euler–Maclaurin formula∫ b

a
f(x) dx− Th = −

r∑
k=1

B2k

(2k)!
h2k[f (2k−1)(b)− f (2k−1)(a)]

+(b− a)
h2r+1B2r+2

(2r + 2)!
f (2r+2)(ξ)

where ξ ∈ (a, b) and B2k are called the Bernoulli numbers, defined by

x

ex − 1
=
∞∑
`=0

Bl
x`

`!

1This expression is sensitive to roundoff errors, so we rewrite it as c2n = cn/

√
1
2

+ 1
2

√
1 − (cn/n)2.
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so that B2 = 1
6

, B4 = − 1
30

, etc.

Romberg Integration is composite Trapezium for n = 0, 1, 2, 3, ..., and the repeated

application of Richardson extrapolation. Changing notation (Th → Tn, h = stepsize, 2n =

number of composite steps), we have

T0 =
b− a

2
[f(a) + f(b)] = R0,0

T1 =
b− a

4
[f(a) + f(b) + 2f(a+ 1

2
(b− a))]

= 1
2
[R0,0 + (b− a)f(a+ 1

2
(b− a))] = R1,0.

Extrapolation then gives

R1,1 =
4R1,0 −R0,0

3
.

with error O(h4). Also

T2 =
b− a

8
[f(a) + f(b) + 2f(a+ 1

2
(b− a))

+ 2f(a+ 1
4
(b− a)) + 2f(a+ 3

4
(b− a))]

=
1

2

[
R1,0 +

b− a
2

[f(a+ 1
4
(b− a)) + f(a+ 3

4
(b− a))

]
= R2,0.

Extrapolation gives

R2,1 =
4R2,0 −R1,0

3

with error O(h4). Extrapolation again gives

R2,2 =
16R2,1 −R1,1

15

now with error O(h6). At the ith stage

Ti = Ri,0 =
1

2

[
Ri−1,0 +

b− a
2i−1

2i−1∑
j=1

f

(
a+

(
j − 1

2

)
b− a
2i−1

)
︸ ︷︷ ︸

evaluations at new interlacing points

]
.

Extrapolate

Ri,j =
4jRi,j−1 −Ri−1,j−1

4j − 1
for j = 1, 2, . . .

This builds a triangular table:

R0,0

R1,0 R1,1

R2,0 R2,1 R2,2
...

...
...

. . .

Ri,0 Ri,1 Ri,2 . . . Ri,i

Theorem: Composite Composite

Trapezium Simpson

Lecture 16 pg 3 of 4



Notes 1. The integrand must have enough derivatives for the Euler–Maclaurin series to

exist (the whole procedure is based on this!).

2. Rn,n →
∫ b

a
f(x) dx in general much faster than Rn,0 →

∫ b

a
f(x) dx.

A final observation: because of the Euler–Maclaurin series, if f ∈ C2n+2[a, b] and is

periodic of period b− a, then f (j)(a) = f (j)(b) for j = 0, 1, . . . , 2n− 1, so∫ b

a
f(x) dx− Th = (b− a)

h2n+1B2n+2

(2n+ 2)!
f (2n+2)(ξ)

c.f., ∫ b

a
f(x) dx− Th = (b− a)

h2

12
f ′′(ξ)

for nonperiodic functions! That is, the Composite Trapezium Rule is extremely accurate

for the integration of periodic functions. If f ∈ C∞[a, b], then Th →
∫ b
a f(x) dx faster than

any power of h.

Example: the circumference of an ellipse with semi-axes A and B is∫ 2π

0

√
A2 sin2 φ+B2 cos2 φ dφ.

For A = 1 and B = 1
4
, T8 = 4.2533, T16 = 4.2878, T32 = 4.2892 = T64 = · · ·.
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