
Part A Numerical Analysis, Hilary 2020. Problem Sheet 1

1. Construct the Lagrange interpolating polynomial for the data
x 0 1 3

f 3 2 6
.

2. If pn ∈ Πn interpolates f at x0, x1, . . . , xn, prove that pn+q is the Lagrange interpolating
polynomial to f + q at x0, x1, . . . , xn whenever q ∈ Πn.

3. Consider interpolating 1/x by pn ∈ Πn (i.e. at n + 1 points) on [1, 2]. If e(x) is the
error, show that |e(x)| ≤ 1 for x ∈ [1, 2] with arbitrarily distributed points, but |e(x)| ≤
1/2(n+1)/2 for all x ∈ [1, 2] if n + 1 is even and half of the interpolation points are in
[1, 32 ] and half in (32 , 2]. In this latter situation, how many points would be needed to
guarantee |e(x)| ≤ 10−3?

4. Show that
n∑
k=0

q(xk)Ln,k(x) = q(x) whenever q ∈ Πn. (Optional: How many ways can

you prove this?) Also, show that
n∑
k=0

xlkLn,k(x) = xl for nonnegative integers l ≤ n.

5. Newton–Cotes Quadrature: Find the approximation to the integral∫ 1

0

1

x+ 1
dx

using the trapezium Rule and Simpson’s Rule.

6. Explicitly derive Simpson’s Rule from its definition in terms of the quadratic Lagrange
interpolating polynomial.

7. Derive the Newton-Cotes quadrature rule of order 3 based on exact integration of the
cubic Lagrange interpolating polynomial. [Hint: you may find it helpful to consider
symmetries and the substitution x = x0 + th.]

8. Using the Integral Mean Value Theorem, show that∫ b

a
f(x) dx− b− a

2
[f(b) + f(a)] = − 1

12
(b− a)3f ′′(η) for some η ∈ (a, b).

Hence show that the trapezium rule always overestimates integrals for functions satisfying
f ′′(x) ≥ 0. Explain geometrically why this is reasonable.



9. Show that Simpson’s Rule exactly integrates any cubic polynomial on an interval [a, b].

10. If x0, x1, . . . , xn are distinct real values, then by considering the Lagrange interpolating
polynomial in the form pn = a0 + a1x + · · · + anx

n or otherwise prove that the square
matrix 

1 x0 x20 · · · xn0

1 x1 x21 · · · xn1
...

...
...

...

1 xn x2n · · · xnn


is nonsingular.

Questions involving MATLAB programming

11. Using the Matlab Lagrange interpolation routine that you can download from the course
materials web page, compute and plot the Lagrange interpolating polynomial to

(i) The data in Question 1. (You just need to type lagrange([0,1,3],[3,2,6].)

(ii) The UK census data

Year 1951 1961 1971 1981 1991 2001

Pop(×106) 48.93 51.38 54.39 54.81 56.20 58.79

To enter this larger set of data, it may be best to create two lists (vectors):

years=[1951,1961,1971,1981,1991,2001]

pop=[48.93,51.38,54.39,54.81,56.2,58.79]

Plot this data and the interpolating polynomial with “years” on the x-axis.

What do you notice about the value of the interpolating polynomial before 1951
and after 2001? By comparison does the value in 1995 look reasonable?

(iii) The function f(x) = 1
1+x2

at equally spaced points on [−5, 5].

Here the command linspace is useful: x=linspace(-5,5,11) will create a vec-
tor x with 11 equally spaced values between (and including) −5 and 5. Then
y=1./(1+x.^2) will create the corresponding values of the function at the points in
the vector x.

(iv) By changing the view of the plot using either the axis() or ylim() commands (or
otherwise) can you estimate

M10 := max
x∈[−5,5]

|p10(x)|,

where pn(x) is the interpolating polynomial of degree at most n? Vary the number
of points at which you interpolate the function and try to record (or compute) Mn

for several values of n. What do you think happens as n→∞? Optional: at what
rate does this seem to happen (hint: semilogy() might be helpful)?



12. Estimate how many equal length intervals [0, 2] should be broken into in order that f(x)
be integrated with an accuracy of 10−5 using the composite Simpson rule if

max
x∈[0,2]

|f (4)(x)| = 1.

Check how accurate or how pessimistic this estimate is by using the Matlab function
adaptive simpson (available from the course website) for the function f(x) = cos(x),
which you can define in Matlab with

f = @(x) cos(x)

You may find help adaptive simpson useful. Compare the numerical quadrature with
the exact value of the integral, using format long to show more decimal places (format
short will revert to displaying fewer decimal places).

13. Apply adaptive simpson (see question above) for the following functions:∫ π/2

0
cosx dx (a)

∫ 1

−1
|x|dx, (see help abs) (b)

∫ 3/2

−1
|x|dx (c)∫ ∞

−∞

1√
2π
e−x

2/2 dx approximated by

∫ 5

−5

1√
2π
e−x

2/2 dx (d)

(since e−25/2 ≤ 10−5). [Recall the normal distribution from probability.] You might need
to use component-wise exponentiation (x.^2) to specify the integrand.

Comment on what you observe in each case, in particular relating what you see to the
theory covered in lectures.

Optional questions

14. If you are trying to construct the degree n Lagrange interpolating polynomial to f at
x0, . . . , xn, can you see (and explain) how the relevant coefficients ai can be found in the
form

((· · · ((an(x− xn−1) + an−1)(x− xn−2) + an−2) · · ·+ a2)(x− x1) + a1)(x− x0) + a0?



15. Let w(x) =

n∏
k=0

(x − xk). Show that the Lagrange interpolating polynomial pn to f at

x0, x1, . . . , xn can be written as

pn(x) = w(x)
n∑
k=0

f(xk)

(x− xk)w′(xk)
.

By dividing by a “clever form of 1”, derive the barycentric formula for Lagrange inter-
polation:

pn(x) =

n∑
k=0

wk
(x− xk)

f(xk)

n∑
k=0

wk
(x− xk)

,

where wk = 1
w′(xk)

.

16. In the previous question, what might you expect to go wrong when implementing these
formulae on a computer? Despite this, it turns out they are completely well-behaved
(numerically stable) although this was only proven recently [Higham, The numerical
stability of barycentric Lagrange interpolation, 2004], see also the survey article [Berrut
& Trefethen, Barycentric Lagrange interpolation, 2004].

For real-world code, developed at Oxford, using the barycentric form, see:
https://github.com/chebfun/chebfun/blob/master/bary.m

17. Noting that for b > a, and any function f continuous on [a, b],

min
x∈[a,b]

f(x) ≤ 1

b− a

∫ b

a
f(x) dx ≤ max

x∈[a,b]
f(x),

use the Intermediate Value Theorem to show that ∃η ∈ (a, b) satisfying∫ b

a
f(x) dx = (b− a)f(η).

Thus if G′(x) = g(x) ≥ 0 for x ∈ [a, b], prove that∫ b

a
f(x)g(x) dx = f(η)

∫ b

a
g(x) dx

for some η ∈ (a, b). [Note dG = G′(x) dx.]

http://dx.doi.org/10.1093/imanum/24.4.547
http://dx.doi.org/10.1093/imanum/24.4.547
http://dx.doi.org/10.1137/S0036144502417715
https://github.com/chebfun/chebfun/blob/master/bary.m


18. Specimen exam question for revision

Write down a polynomial Ln,k(x) of degree exactly n which satisfies Ln,k(xi) = 0 for
i = 0, 1, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1 where x0 < x1 < · · · < xn. Hence
by construction, prove that if data values f(x0), f(x1), . . . , f(xn) are given then there
exists a polynomial Pn of degree at most n satisfying Pn(xi) = f(xi) for i = 0, 1, . . . , n.
Prove also that Pn is the unique polynomial of degree at most n which satisfies these
interpolation conditions.

If g(x) = αf(x) + β for some α, β ∈ R prove that Qn(x) = αPn(x) + β is the only
polynomial of degree at most n which interpolates the function g at the same points xi,
i = 0, 1, . . . , n.

Suppose that f(x) = f(−x) for all x, that n is an odd integer and that the interpolation
points are symmetrically placed about the origin so that xi = −xn−i for i = 0, 1, . . . , n−12 .
For the case n = 1, sketch P1 and show that it is a polynomial of degree zero. Prove
by induction for n = 1, 3, 5, . . . (or otherwise) that Pn is of degree at most n − 1 and
satisfies Pn(x) = Pn(−x). (You may wish to construct a polynomial which includes as
one part the (n − 1)th degree polynomial s(x) = (x − x1) · · · (x − xn−1) which satisfies
s(x) = s(−x) in your inductive argument.)

Hence show that the polynomial Rn+1(x) which interpolates xf(x) at the n + 2 points
x0, x1, . . . , x(n−1)/2, 0, x(n+1)/2, . . . , xn−1, xn is in fact of degree at most n.


