
Part A Numerical Analysis, Hilary 2020. Problem Sheet 2

1. By performing Gauss Elimination (without pivoting), solve
2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8



a
b
c
d

 =


3
8
24
25

 .
From your calculations, write down an LU factorisation of the matrix A above, and verify
that LU = A. Then by successive back and forwards substitutions (and without further
factorisation) solve Ax = b2 where b2 = [4 7 9 2]T .

2. What is the determinant of the matrix A in the question above? (Note one of the few
algebraic properties of the determinant is that det(BC) = det(B)det(C) and you might
also want to consider what is the determinant of a triangular matrix).

3. Given an LU factorisation of a matrix A, how might one calculate a column of the inverse
of A? Estimate the computational work in calculating A−1 and hence in solving Ax = b
via explicit computation of A−1 and multiplication by b.

Are you now convinced that this is not the way to solve linear systems of equations in
practice?!

An even worse technique would be to apply GE separately for each column: what would
the computational cost be then?

4. Suppose A is a real n× n matrix with n ≥ 2 and that the permutation matrix

P =


0 · · · 0 1
0 · · · 1 0
... ·

...
...

1 · · · 0 0

 .
Show that premultiplication of A by P reverses the order of the rows of A.

If A = LU is an LU factorisation of A (without pivoting), what is the structure of PLP?
Hence describe how to calculate a factorisation A = Û L̂ where Û is unit upper triangular
and L̂ is lower triangular.



5. If ‖x‖ :=
√
xTx is the usual (Euclidean) length of a vector x ∈ <n, show that the vector

Qx has the same length whenever Q is an orthogonal n× n matrix.

If we define the angle between vectors x, y ∈ <n as

∠(x, y) := cos−1

(
xT y

‖x‖‖y‖

)
show that the angle between Qx and Qy is unchanged.

6. Suppose that A is a square nonsingular matrix. Prove that the factors Q and R featuring
in the QR factorisation of A are unique if the diagonal entries of R are all positive. How
many possibilities are there if this restriction is removed?

7. By considering the QR factorisation in which the diagonal entries of R are all positive as
in the question above (or otherwise), prove that any orthogonal matrix may be expressed
as the product of Householder matrices.

8. Determine the eigenvalues of a Householder matrix.

9. Show that if x ∈ <n then (denoting by J(i, j) a Givens rotation)

J(1, n)J(1, n− 1) · · · J(1, 3)J(1, 2)x =


β
0
...
0


for some β and further prove that β2 = xTx.

10. Describe a sequence of (n − 1) + (n − 2) + · · · + 2 + 1 = n(n − 1)/2 Givens matrices
which when applied sequentially (as premultiplications) will reduce an n × n matrix to
upper triangular form. (Hint: see question above). You have thus established another
algorithm for QR factorisation. What is Q?

11. First, let A,B be n× n square matrices. Prove that the eigenvalues of AB and BA are
the same. (you can first assume B is nonsingular).

(Hard but recommended): Next let A ∈ Rm×n, B ∈ Rn×m. Prove that the nonzero
eigenvalues of AB and BA are again the same.



Questions involving MATLAB programming

12. In Matlab the ‘backslash’, \, solves linear systems of equations via Gauss Elimination
with partial pivoting: thus x=A\b will perform a permuted LU factorisation (sometimes
called a PLU factorisation: PA = LU) of A and solves Ly = Pb via forward substitution
and then Ux = y via back substitution, giving back just the solution vector x.

Verify your solutions to the two linear systems in question 1 above.

13. Perform an LU factorisation with partial pivoting on the matrix

A =

 2/3 1 3
2 1 4
1 3/2 4


and write down the permutation matrix P , the unit lower triangular matrix of multipliers
and the upper triangular matrix U such that PA = LU which you should verify.

Check your answer with Matlab:
[L,U,P]=lu(A)

will compute P,L and U for you - see how much easier! (but you must do this by hand
once in your life and if you’ve correctly done the above then join the club! else look and
see why you’ve gone wrong).

14. Note that A = randn(7, 7); creates a random matrix in Matlab with entries taken
from a normal distribution with mean zero and variance 1. Also, you can time a command
using tic and toc as in tic; [L, U, P] = lu(A); toc

Using the above, for random matrices of dimensions 2k for k = 5, 6, . . . , 10, see by what
factor the time to compute an LU factorisation grows as you double the dimension. (I
wouldn’t try for too much larger dimension else you might be waiting a long time! -
if you do want to interrupt, then control and c keys pressed together should stop the
current computation and return you to a Matlab prompt).

You might find a for loop useful here. Make sure you do not time the creation of the
matrix, i.e., keep the randn command outside the tic toc.

15. Continuing the above question, using the timing for the matrix of dimension 210 = 1024 ≈
103, estimate how many millions of floating point operations (flops) the computer you
are working on can compute in 1 second. Hence estimate the dimension of a matrix for
which LU factorisation (or equivalently Gaussian elimination) would take 1 year on your
computer (if it had enough memory to store all of the numbers).



16. If A = QR is a QR factorisation of A, show that this provides a special type of triangular
factorisation of ATA in which ATA is expressed as the product of an upper triangular
matrix followed by its transpose. (Such decomposition B = RTR is called the Cholesky
factorization for a positive definite matrix).

In Matlab, [Q, R] = qr(A) calculates a QR factorisation of a matrix and Q∗Q’ will
test if a matrix is orthogonal. Verify numerically the existence of the special triangular
factorisation above for any matrix (you may want to use randn to construct A).

17. Investigate the use of QR factorisation in the solution of linear systems of equations:
generate a random square matrix, a right hand side vector of ones and the solution using
LU factorisation and forward and back substitution using something like
A = randn(8, 8); b = ones(8, 1); x = A\b
and compare x to the solution y, say using QR factorisation:
[Q, R] = qr(A)

y = R\(Q’*b)
Note here that \ used with a triangular matrix should perform the appropriate (forwards
or backwards) substitution whereas for a general matrix it performs PLU factorisation.
You may want to use format long to see more digits in x and y since they should be
very similar!

18. Using a loop and tic and toc compare the time it takes to do PLU and QR factorisations.
For example, for random matrices of dimension 25 to 210

for k=5:10, A=randn(2^k); tic, [L,U,P]=lu(A); toc,...

tic, [Q,R]=qr(A); toc, end

should give some timings. (Note how you use dots in Matlab to continue onto the next
line). What do you think the computational work is for QR factorisation given that LU
is to leading order 2

3n
3? Note qr uses Householder matrices as described in lectures to

compute the QR factorisation.

Optional questions

19. Prove that the product of two lower triangular matrices is lower triangular and that
the inverse of a non-singular lower triangular matrix is lower triangular. Deduce similar
results for upper triangular matrices.

20. Show that if x, y ∈ <n with x 6= 0, y 6= 0 then the outer product matrix, xyT has an
n − 1–dimensional kernel. Identify the Image (also called the Range) of this matrix.
Hence, identify an eigenvector which corresponds to a generally non-zero eigenvalue and
give the condition under which this eigenvalue is also zero.



21. If S is a real skew-symmetric matrix, so that ST = −S, and assuming that I − S is
nonsingular, show that (I − S)−1(I + S) is an orthogonal matrix. (You may want to
convince yourself that for a nonsingular matrix (A−1)T = (AT )−1.)

22. If x ∈ <n show that postmultiplication of the row vector xT by J(i, j, θ) with an appro-
priately chosen value of θ which you should give, will make the jth entry of the resulting
row vector equal to zero.

23. Using the results of the above questions can you show directly (and constructively) that
any matrix A ∈ <n×n admits a factorisation LQ with L a lower triangular matrix and Q
orthogonal. (Note if B = QR then BT = RTQT certainly is another way of doing this).

24. If A is a real matrix with m rows and n columns (i.e. a rectangular matrix when m 6=
n), convince yourself that the method described in lectures for QR factorisation using
Householder matrices could equally well be applied for m 6= n. How many Householder
matrices are required if m > n and how many if m ≤ n?

25. Specimen exam question for revision

Usually GE is applied to square matrices. Suppose, however, that we apply GE (without
pivoting) to a matrix with m rows and n columns with m > n. Assume that no zeros on
the diagonal are encountered.

(a) Describe the elimination process algorithmically in the style of a computer program,
explaining exactly what loops and arithmetic operations are involved in the elimination
process.

(b) Describe the matrix factorization that has been accomplished by GE. How have we
decomposed A? Be sure to be explicit about the dimensions of matrices involved, zeros
vs. nonzero entries, etc.

(c) Let b be a column vector of dimension m. Depending on b, the system of equations
Ax = b may or may not have a solution. Using the results of the Gaussian elimination,
show how to compute a n−vector x that is the solution, if it exists. Give a condition on
x in terms of the results of Gaussian elimination that determines whether or not Ax = b
has a solution.

(d) Suppose now that a zero on the diagonal is encountered after all in the elimination
process, at step k. Show that the upper left k × k block of A is singular.



26. Specimen exam question for revision

(a) Define what it means for two n-vectors x and y to be orthogonal, and what it means
for an n× n matrix Q to be orthogonal.

(b) Suppose an n× n matrix A has LU and QR factorisations

A = LU, A = QR

in the usual senses of these terms. State precisely what forms the matrices L,U,Q and
R have in these factorisations.

(c) Name (but do not describe) the standard algorithms for computing LU and QR
factorisations.

(d) Suppose A is nonsingular. Show that this implies that the diagonal entries of U and
of R are all nonzero.

(e) Let q1, . . . , qn denote the columns of Q, and let `1, . . . , `n denote the columns of L.
For any k with 1 ≤ k ≤ n, let Qk and Lk denote the k-dimensional subspaces

Qk = span{q1, . . . , qk}, Lk = span{`1, . . . , `k},

i.e. the subspaces of all linear combinations of the indicated k vectors. Still assuming A
is nonsingular, show that for each k,

Qk = Lk.

(f) Let m denote the last row of L−1. Still assuming A is nonsingular, show that

m = CqTn

for some constant C. What is this constant?


