Part A Numerical Analysis, Hilary 2020. Problem Sheet 3

1. Give estimates based on Gershgorin’s theorem for the eigenvalues of

A= . el < 1.
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Find a way to establish the tighter bound |[A\3 — 1| < 2 on the smallest eigenvalue of A.
(Hint: consider diagonal similarity transformations.)

2. An n x n matrix has n Gershgorin discs, but when the disks overlap, there need not be
an eigenvalue in each individual disc. Devise an example with n = 2 to illustrate this.

3. Show that all the eigenvalues of a real symmetric matrix A are real.

4. Show that if A is nonsingular then applying the Power Method with the matrix A~!
rather than A will give convergence to the reciprocal of the smallest eigenvalue of A in
magnitude. By reference to the convergence of the Power Method, show that if the eigen-
values of A are 1,2,3,...,n then convergence to the reciprocal of the smallest eigenvalue
using the above approach will be much faster than convergence to the biggest eigenvalue
using the Power Method with A.

Describe an efficient way to perform the Power Method with A~! without explicitly
computing A~

5. Verify that the sequence of matrices produced by the QR Algorithm with shifts are all
similar even if a different shift is used at each iteration.



6. Every matrix A € R™*" with m > n can be written in the form
A=UxvT (1)

where U € C™*™ and V € C™*" are matrices with orthonormal columns, i.e., UTU = I,
and VIV = I,,, and

a1
= (= diag(o1,...,0n))
on
is a diagonal matrix with nonnegative diagonal entries.

The decomposition (1) is called the singular value decomposition (SVD), and is among
the most important results in numerical linear algebra.

Let’s prove this in the following steps.

1. Prove that AT A is a symmetric matrix.
2. Prove that the eigenvalues of AT A are all nonnegative.

3. Let ATA = VD?VT be its symmetric eigenvalue decomposition, with V € R?*"
orthogonal and D diagonal. Then show that the columns of AV are orthogonal,
i.e., (AV)T AV is a diagonal matrix.

4. Show therefore that AV = U3, where U has orthonormal columns and ¥ is diagonal
with nonnegative diagonal entries; thus A = UXVT. (From (AV)TAV = %2 we
further have ¥ = D.

7. Consider the problem of finding the minimizer of

min ||Az —bl|, A€ R™" becR™ m>n. (2)
x

Here |ly|| := \/y? + 93 +--- +y2,. This is called a least-squares problem, which is
ubiquitous in applied mathematics.

Suppose that AT A is nonsingular.

1. Let A=[Q Q] [ﬁ] be 'full’ QR factorization, computed e.g. via the Householder
QR factorization. Show that R is nonsingular, and that = R~'Q7b is the solution
for (2).

2. Show that x = (AT A)~1 AT'b s also the solution for (2). (The first QR-based method
has better numerical stability and hence preferred)

|Az — b)) = |QT (Az — b)|| = H m v [g:‘g;] H

so x = R7'QTb is solution. This also gives an algorithm: compute the “thin” QR
factorization A = QR, then solve Rz = Qb for x.

Then



Questions involving MATLAB programming

8. By using Gershgorin’s Theorem, calculate a lower bound on the ratio |A1|/|A2| where
(Ail = [A2f = [As] = [Ad

are the absolute values of the eigenvalues of the matrix

-2 1 0 1
2 -1 -1 0
1 0 9 -1 (3)

2 0 -1 1

Assume that the starting vector, z, has equal in magnitude components in all of the
eigenvector directions (i.e., if z = )  a;v; where v; are the normalized eigenvectors,
then all the «;’s are equal). Use your lower bound on the ratio to estimate how many
iterations of the Power Method are needed such that the dominant term (i.e., the one in
the direction of v1) is at least 10* times bigger than the sum of the terms in the other
eigenvector directions.

Try the Power Method on the matrix (3) using a random stating vector. For example,
using something like y=A*x; x=y/sqrt(y’*y) perhaps combined with a for loop. Stop
when two successive vectors, x, are the same to 4 decimal places, and calculate the
dominant eigenvalue as y(j)/x(j). You may wish to choose j by selecting the biggest
entry in x—why do you think that would matter? You can of course check if you do
indeed have the dominant eigenvalue by using eig(A) (which uses the QR Algorithm to
compute all of the eigenvalues of the matrix A.)

9. Show that if A is nonsingular then applying the Power Method with the matrix A~!
rather than A will give convergence to the reciprocal of the smallest eigenvalue of A in
magnitude. By reference to the convergence of the Power Method, show that if the eigen-
values of A are 1,2,3,...,n then convergence to the reciprocal of the smallest eigenvalue
using the above approach will be much faster than convergence to the biggest eigenvalue
using the Power Method with A.

Describe an efficient way to perform the Power Method with A~! without explicitly
computing A7,



10.

11.

Extension of the question above: if p is known to be an approximation to an eigenvalue
A of a matrix A, why do you think it would be a good idea to apply the Power Method
to the matrix (A — pu)~'? Suppose that by doing so one gets convergence of y(j)/x(j)
to . Show that the eigenvalue of A which one has approximately found is A = p+ 1/~.

Using the estimate g = 9, in the example in equation (3) above, use this procedure
to calculate the biggest eigenvalue of A. Note to do this efficiently you would need to
use your result from Question 5, but to just see the convergence you might consider
y=(A-muxeye (4))\x; x=y/sqrt(y’*y)

(Recall backslash does the system solve via LU factorisation with partial pivoting.)

The MATLAB command hess performs the explicit similarity transformation using House-
holder matrices described in lectures. Thus if we make a random symmetric matrix
A=randn(6,6); A=A+A’ then B=hess(A) will be a tridiagonal matrix which is similar to
A. Verify that A and B are indeed similar using the eig command.

(Check the results with Question 13.)

Produce the QR factorisation of the tridiagonal matrix B. Further, check the lemma
given in lectures (that tridiagonal form is preserved in the QR algorithm) by looking at
where the non-zeros are in RQ).



Optional questions

12. Assume that A € ™" is a general matrix. If

a X X
0 x X

J(1,n)J(1,n—1)...J(1,2)A =
0 x - x

then show that J(1,n)J(1,n —1)...J(1,2)AJ(1,2)T is generally a full matrix (i.e., has
no zeros in general) so that the result of the explicit similarity transformation

J(1,n)J(1,n—1)...J(1,2)AJ(1,2)T7(1,3)" ... J(1,n)"

is certainly a full matrix in general.

However, if (here we abuse notation as all of the Givens matrices are defined to make
the appropriate zero based on the entries of column 1 and not column 2)

@] X e X
B x - X
J2,n)J(2n—1)... J(2,3)A=| 0 x -~ X
0 x o x

then show that the zeros created in the first column are not destroyed by further postmul-
tiplication by J(2,3)7.J(2,4)T ... J(2,n)T which makes this a similarity transformation.

Further, if A is symmetric, explain why

a B 0 0
Bx X X
J(2,n) ... J(2,3)AT(2,3)T ... J@2,n)T =0 x X X
0 >< X X

13. Verify that in QR factorisation of a tridiagonal matrix (as in the symmetric QR Algo-
rithm), the upper triangular matrix R has two non-zero super diagonals.



14.

15.

[M] Implement the Symmetric QR Algorithm with shifting based on the last diagonal
entry of a matrix. Use an dot-m file called, for example, qr_alg shifts to write a
function. Your code should work like:

n = 6;

A = randn(n,n); A = A+A’

tol = 1e-7;

ews = qr_alg_shifts(A, tol)

ews2 = eig(A)

sort (ews) - sort(ews2)

You should first reduce to tridiagonal form. The tolerance tol should be used to test
when the off-diagonals b,_1, are sufficiently small. To deflate and continue on the
smaller n — 1 x n — 1 leading submatrix you can use something like:

n =n-1; B =B(1:n,1:n);

Specimen Exam question

Let A be an n x n tridiagonal matrix with the numbers 5, 10, ..., 5n on the main diagonal
and the numbers £1 in each position aj;1; and a; j41. The distribution of the £ signs
is arbitrary, and in particular, not necessarily symmetric.

(a) What does Gerschgorin’s theorem imply about the eigenvalues of A7 Give the
sharpest estimates you can, and in particular, explain why although A may be non-
symmetric, its eigenvalues must all be real.

(b) What does it mean for a matrix A to be diagonalisable? Show that this particular
matrix is diagonalisable. Show also that it is nonsingular.

(c) Consider the sequence of vectors 20, 20 22 defined by
Azt — :c(k), k>0

k)

where z(©) is a fixed starting vector. Prove that the vectors 2(¥) converge to 0, with the

jth component of z(*) satisfying
P < akC
for some constant C.

(d) Suppose the recurrence is modified to
(A—5Nz®+) = 20 >0,

again with a fixed starting vector z(°). Now what can be said about the behaviour
as k — o0o? Explain what algorithmic purpose might be served by carrying out this
iteration. What property of 2(°) will ensure that the recurrence achieves this purpose?



