Numerical Analysis Hilary Term 2020 Lecture 1: Lagrange Interpolation

These lecture notes are adapted from the numerical analysis textbook by Süli and Mayers. This first lecture comes from Chapter 6 of the book.

Notation: $\Pi_n = \{ \text{real polynomials of degree} \le n \}$

Setup: Given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p_n such that $p_n(x_i) = f_i$? Such a polynomial is said to **interpolate** the data, and (as we shall see) can approximate f at other values of x if f is smooth enough. This is the most basic question in approximation theory.

E.g.:

Theorem. $\exists p_n \in \Pi_n$ such that $p_n(x_i) = f_i$ for i = 0, 1, ..., n. **Proof.** Consider, for k = 0, 1, ..., n, the "cardinal polynomial"

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} \in \Pi_n.$$
 (1)

Then $L_{n,k}(x_i) = \delta_{ik}$, that is,

$$L_{n,k}(x_i) = 0$$
 for $i = 0, \dots, k - 1, k + 1, \dots, n$ and $L_{n,k}(x_k) = 1$.

So now define

$$p_n(x) = \sum_{k=0}^n f_k L_{n,k}(x) \in \Pi_n$$
(2)

 \Longrightarrow

$$p_n(x_i) = \sum_{k=0}^n f_k L_{n,k}(x_i) = f_i \text{ for } i = 0, 1, \dots, n.$$

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials $p_n, q_n \in \Pi_n$. Their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for k = 0, 1, ..., n. i.e., d_n is a polynomial of degree at most n but has at least n + 1 distinct roots. Algebra $\implies d_n \equiv 0 \implies p_n = q_n$.

Matlab:

```
>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the
given DATA at the given KNOTS
```

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);

Data from an underlying smooth function: Suppose that f(x) has at least n + 1 smooth derivatives in the interval (x_0, x_n) . Let $f_k = f(x_k)$ for k = 0, 1, ..., n, and let p_n be the Lagrange interpolating polynomial for the data $(x_k, f_k), k = 0, 1, ..., n$.

Error: How large can the error $f(x) - p_n(x)$ be on the interval $[x_0, x_n]$?

Theorem. For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \stackrel{\text{def}}{=} f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},\tag{3}$$

Lecture 1 pg 2 of 4

where $f^{(n+1)}$ is the (n+1)-st derivative of f.

Proof. Trivial for $x = x_k$, k = 0, 1, ..., n as e(x) = 0 by construction. So suppose $x \neq x_k$. Let

$$\phi(t) \stackrel{\text{def}}{=} e(t) - \frac{e(x)}{\pi(x)} \pi(t),$$

where

$$\pi(t) \stackrel{\text{def}}{=} (t - x_0)(t - x_1) \cdots (t - x_n) \\ = t^{n+1} - \left(\sum_{i=0}^n x_i\right) t^n + \cdots (-1)^{n+1} x_0 x_1 \cdots x_n \\ \in \Pi_{n+1}.$$

Now note that ϕ vanishes at n + 2 points x and x_k , $k = 0, 1, \ldots, n$. $\implies \phi'$ vanishes at n + 1 points ξ_0, \ldots, ξ_n between these points $\implies \phi''$ vanishes at n points between these new points, and so on until $\phi^{(n+1)}$ vanishes at an (unknown) point ξ in (x_0, x_n) . But

$$\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)}\pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)}(n+1)!$$

since $p_n^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is a monic polynomial of degree n+1. The result then follows immediately from this identity since $\phi^{(n+1)}(\xi) = 0$.

Example: $f(x) = \log(1+x)$ on [0,1]. Here, $|f^{(n+1)}(\xi)| = n!/(1+\xi)^{n+1} < n!$ on (0,1). So $|e(x)| < |\pi(x)|n!/(n+1)! \le 1/(n+1)$ since $|x - x_k| \le 1$ for each $x, x_k, k = 0, 1, \ldots, n$, in $[0,1] \Longrightarrow |\pi(x)| \le 1$. This is probably pessimistic for many x, e.g. for $x = \frac{1}{2}, \pi(\frac{1}{2}) \le 2^{-(n+1)}$ as $|\frac{1}{2} - x_k| \le \frac{1}{2}$.

This shows the important fact that the error can be large at the end points when samples $\{x_k\}$ are equispaced points, an effect known as the "Runge phenomena" (Carl Runge, 1901). There is a famous example due to Runge, where the error from the interpolating polynomial approximation to $f(x) = (1 + x^2)^{-1}$ for n + 1 equally-spaced points on [-5, 5] diverges near ± 5 as n tends to infinity: try this example with lagrange from the website in Matlab¹

Building Lagrange interpolating polynomials from lower degree ones.

Notation: Let $Q_{i,j}$ be the Lagrange interpolating polynomial at x_k , k = i, ..., j. **Theorem.**

$$Q_{i,j}(x) = \frac{(x - x_i)Q_{i+1,j}(x) - (x - x_j)Q_{i,j-1}(x)}{x_j - x_i}$$
(4)

Proof. Let s(x) denote the right-hand side of (4). Because of uniqueness, we simply wish to show that $s(x_k) = f_k$. For k = i + 1, ..., j - 1, $Q_{i+1,j}(x_k) = f_k = Q_{i,j-1}(x_k)$, and hence

$$s(x_k) = \frac{(x_k - x_i)Q_{i+1,j}(x_k) - (x_k - x_j)Q_{i,j-1}(x_k)}{x_j - x_i} = f_k$$

¹There is a beautiful solution to this issue, Chebyshev interpolation: choose $\{x_k\}$ cleverly, essentially to minimise $\max_{x \in [x_0, x_n]} |(x - x_0)(x - x_1) \cdots (x - x_n)|$ in (3). This results in taking more points near the endpoints. See Trefethen's book Approximation Theory and Approximation Practices, SIAM.

We also have that $Q_{i+1,j}(x_j) = f_j$ and $Q_{i,j-1}(x_i) = f_i$, and hence

$$s(x_i) = Q_{i,j-1}(x_i) = f_i$$
 and $s(x_j) = Q_{i+1,j}(x_j) = f_j$.

Comment: This can be used as the basis for constructing interpolating polynomials. In books: may find topics such as the Newton form and divided differences.

Generalisation: Given data f_i and g_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < \cdots < x_n$, can we find a polynomial p such that $p(x_i) = f_i$ and $p'(x_i) = g_i$? (i.e., interpolate derivatives in addition to values)

Theorem. There is a unique polynomial $p_{2n+1} \in \Pi_{2n+1}$ such that $p_{2n+1}(x_i) = f_i$ and $p'_{2n+1}(x_i) = g_i$ for i = 0, 1, ..., n.

Construction: Given $L_{n,k}(x)$ in (1), let

$$H_{n,k}(x) = [L_{n,k}(x)]^2 (1 - 2(x - x_k)L'_{n,k}(x_k))$$

and $K_{n,k}(x) = [L_{n,k}(x)]^2 (x - x_k).$

Then

$$p_{2n+1}(x) = \sum_{k=0}^{n} [f_k H_{n,k}(x) + g_k K_{n,k}(x)]$$
(5)

interpolates the data as required. The polynomial (5) is called the **Hermite interpolating** polynomial. Note that $H_{n,k}(x_i) = \delta_{ik}$ and $H'_{n,k}(x_i) = 0$, and $K_{n,k}(x_i) = 0$, $K'_{n,k}(x_i) = \delta_{ik}$. **Theorem.** Let p_{2n+1} be the Hermite interpolating polynomial in the case where $f_i = f(x_i)$ and $g_i = f'(x_i)$ and f has at least 2n+2 smooth derivatives. Then, for every $x \in [x_0, x_n]$,

$$f(x) - p_{2n+1}(x) = [(x - x_0)(x - x_1) \cdots (x - x_n)]^2 \frac{f^{(2n+2)}(\xi)}{(2n+2)!},$$

where $\xi \in (x_0, x_n)$ and $f^{(2n+2)}$ is the (2n+2)nd derivative of f.

Proof (non-examinable): see Süli and Mayers, Theorem 6.4.

We note that as $x_k \to 0$ in (3), we essentially recover Taylor's theorem with $p_n(x)$ equal to the first n + 1 terms in Taylor's expansion. Taylor's theorem can be regarded as a special case of Lagrange interpolation where we interpolate high-order derivatives at a single point.