Numerical Analysis Hilary Term 2020
Lecture 1: Lagrange Interpolation

These lecture notes are adapted from the numerical analysis textbook by Siili and Mayers.
This first lecture comes from Chapter 6 of the book.

Notation: II,, = {real polynomials of degree < n}

Setup: Given data f; at distinct x;, 1 = 0,1,...,n, with ¢ < z; < --- < x,, can we
find a polynomial p, such that p,(z;) = f;? Such a polynomial is said to interpolate the
data, and (as we shall see) can approximate f at other values of z if f is smooth enough.
This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n =1 quadratic n = 2

Theorem. Jp, € II,, such that p,(z;) = f; fori =0,1,... n.

Proof. Consider, for k =0,1,...,n, the “cardinal polynomial”

 @—ae) (@ )@ — o) (& — 1)
L@ = Gy e — o) @n — 1) (o — ) © 9

Then Ly, ;(x;) = ik, that is,

Lyp(x;)=0 for i=0,....,k—1,k+1,....,n and L,x(zy) = 1.

So now define

k=0
i n
Pu(xi) = Y filng(zi) = f; for i=0,1,...,n. 0
k=0

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree < n is unique.

Proof. Consider two interpolating polynomials p,,, ¢, € II,,. Their difference d,, = p,,—q. €
IT,, satisfies d,,(zx) =0 for k =0,1,...,n. i.e., d, is a polynomial of degree at most n but
has at least n + 1 distinct roots. Algebra = d,, =0 = p,, = q,. O

Matlab:
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>> help lagrange
LAGRANGE Plots the Lagrange polynomial interpolant for the
given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);

I I I I I I I I I
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);
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Data from an underlying smooth function: Suppose that f(x) has at least n + 1
smooth derivatives in the interval (xg,x,). Let fr, = f(zx) for k = 0,1,...,n, and let p,
be the Lagrange interpolating polynomial for the data (zy, f), k =0,1,... n.

Error: How large can the error f(z) — p,(z) be on the interval [xq,x,]?
Theorem. For every = € [xg,x,] there exists £ = &(x) € (xo, z,) such that

f(E)

o) & f(x) = pula) = (0 = a0)la — 1)+ (@ =) oy

(3)
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where f("*1 is the (n + 1)-st derivative of f.

Proof. Trivial for z =z, k =0,1,...,n as e(x) = 0 by construction. So suppose x # xy.
Let ()
def exr
t) = e(t) — t
o) 2 eft) ~ £ 55x(0),
where ot
()= (t—xo)(t —x1) - (t — )
i=0
€ Hn+1-
Now note that ¢ vanishes at n + 2 points x and xy, £k = 0,1,...,n. = ¢’ vanishes at
n + 1 points &, ..., &, between these points = ¢” vanishes at n points between these

new points, and so on until ¢+ vanishes at an (unknown) point £ in (g, ,). But

(1) (4) — p(n+1)(4) e(v) (1) (4) — FO+D) (4 e(v) 1
$VE) = V) SR = ) S0 )
since p("*)(t) = 0 and because 7(t) is a monic polynomial of degree n+ 1. The result then
follows immediately from this identity since ¢p("*(¢) = 0.
O

Example: f(z) =log(1+z) on [0,1]. Here, |f™*V(&)] = n!/(14+&)" < nlon (0,1). So
le(z)| < |m(z)[n!/(n+ 1)! < 1/(n+ 1) since |z — x| < 1 for each z, 24, k =0,1,...,n, in
[0,1] = |7(z)| < 1. This is probably pessimistic for many z, e.g. forz = 1, 7(1) < 2-("+1)
as |3 — x| < 5.

This shows the important fact that the error can be large at the end points when samples
{z1} are equispaced points, an effect known as the “Runge phenomena” (Carl Runge,
1901). There is a famous example due to Runge, where the error from the interpolating
polynomial approximation to f(z) = (1 4+ 2?)~! for n + 1 equally-spaced points on [—5, 5]
diverges near +£5 as n tends to infinity: try this example with lagrange from the website
in Matlab!

Building Lagrange interpolating polynomials from lower degree ones.
Notation: Let @);; be the Lagrange interpolating polynomial at zy, k =1,...,J.

Theorem.
(= 2:)Qiy1(z) — (. — 25)Qij1(x)

xj—xi

Qi,j (37) = (4)

Proof. Let s(z) denote the right-hand side of (4). Because of uniqueness, we simply wish

to show that s(zy) = fi. For k=1+1,...,5 — 1, Qi+1,(xr) = fr = Qi j—1(zx), and hence
(zr — @) Qivrj(xr) — (2 — ) Qij—1 (1)

iCj—.fl'

s(xy) = = fi.

'There is a beautiful solution to this issue, Chebyshev interpolation: choose {zx} cleverly, essentially to minimise
MaXye(zg,zn] |(T — o)(x — 1) - -+ (x — x,)| in (3). This results in taking more points near the endpoints. See
Trefethen’s book Approximation Theory and Approximation Practices, STAM.
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We also have that Q;11;(z;) = f; and Q;;—1(z;) = f;, and hence

s(xi) = Qij—1(x:) = fi and s(x;) = Qiy5(z;) = f;. 0

Comment: This can be used as the basis for constructing interpolating polynomials. In
books: may find topics such as the Newton form and divided differences.
Generalisation: Given data f; and ¢; at distinct z;, « = 0,1,...,n, with g < 1 <
-+« < xp, can we find a polynomial p such that p(z;) = f; and p/(z;) = ¢;? (i.e., interpolate
derivatives in addition to values)

Theorem. There is a unique polynomial po,,1 € s,y such that pe,ii(x;) = f; and
Phnsr (@) = gi for i =0,1,...,n.

Construction: Given L, () in (1), let

Hygo(x) = [Log(2)]*(1 = 2(x — zx) Ly, 1. (1))
and K, x(x) = [Lyg(2)]*(@ — xp).
Then

n

Pons1(z) = D [feHnk(x) + g Kk (z)] (5)

k=0
interpolates the data as required. The polynomial (5) is called the Hermite interpolating
polynomial. Note that H, x(z;) = 6y and H), ;. (2;) = 0, and K, x(7;) = 0, K], ; (i) = ..
Theorem. Let py, 1 be the Hermite interpolating polynomial in the case where f; = f(x;)
and ¢g; = f'(x;) and f has at least 2n+2 smooth derivatives. Then, for every = € [z, z,],

2 [ 2(E)

F(@) = panna(2) = (2 = a0)x = 1) - (0 — )P

where £ € (g, z,) and "2 is the (2n + 2)nd derivative of f.
Proof (non-examinable): see Siili and Mayers, Theorem 6.4. O

We note that as xz; — 0 in (3), we essentialy recover Taylor’s theorem with p,(x)
equal to the first n + 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as
a special case of Lagrange interpolation where we interpolate high-order derivatives at a
single point.
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