
Numerical Analysis Hilary Term 2020

Lecture 2: Newton–Cotes Quadrature

See Chapter 7 of Süli and Mayers.

Terminology: Quadrature ≡ numerical integration

Setup: given f(xk) at n+ 1 equally spaced points xk = x0 + k · h, k = 0, 1, . . . , n, where

h = (xn − x0)/n. Suppose that pn(x) interpolates this data.

Idea: Approximate and Integrate. Having obtained the polynomial pn from data

{(xk, f(xk))}nk=0 by Lagrange interpolation, we can compute the integral
∫ xn
x0
pn(x) dx.

Question: ∫ xn

x0
f(x) dx ≈

∫ xn

x0
pn(x) dx? (1)

We investigate the error in such an approximation below, but note that∫ xn

x0
pn(x) dx =

∫ xn

x0

n∑
k=0

f(xk) · Ln,k(x) dx

=
n∑
k=0

f(xk) ·
∫ xn

x0
Ln,k(x) dx

=
n∑
k=0

wkf(xk),

(2)

where the coefficients

wk =
∫ xn

x0
Ln,k(x) dx (3)

k = 0, 1, . . . , n, are independent of f . A formula∫ b

a
f(x) dx ≈

n∑
k=0

wkf(xk)

with xk ∈ [a, b] and wk independent of f for k = 0, 1, . . . , n is called a quadrature

formula; the coefficients wk are known as weights. The specific form (1)–(3), based on

equally spaced points, is called a Newton–Cotes formula of order n.

Examples:

Trapezium Rule: n = 1 (also known as the trapezoid or trapezoidal rule):

f

p1

x0 x1h

∫ x1

x0
f(x) dx ≈ h

2
[f(x0) + f(x1)]

Proof.

∫ x1

x0
p1(x) dx = f(x0)

L1,0(x)∫ x1

x0

︷ ︸︸ ︷
x− x1
x0 − x1

dx +f(x1)

L1,1(x)∫ x1

x0

︷ ︸︸ ︷
x− x0
x1 − x0

dx

= f(x0)
(x1 − x0)

2
+ f(x1)

(x1 − x0)
2
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Simpson’s Rule: n = 2:

x0 x1h x2h

f

p2

∫ x2

x0
f(x) dx ≈ h

3
[f(x0) + 4f(x1) + f(x2)]

Note: The trapezium rule is exact if f ∈ Π1, since if f ∈ Π1 =⇒ p1 = f . Similarly,

Simpson’s Rule is exact if f ∈ Π2, since if f ∈ Π2 =⇒ p2 = f . The highest degree of

polynomial exactly integrated by a quadrature rule is called the (polynomial) degree of

accuracy (or degree of exactness).

Error: we can use the error in interpolation directly to obtain∫ xn

x0
[f(x)− pn(x)] dx =

∫ xn

x0

π(x)

(n+ 1)!
f (n+1)(ξ(x)) dx

so that ∣∣∣∣∫ xn

x0
[f(x)− pn(x)] dx

∣∣∣∣ ≤ 1

(n+ 1)!
max

ξ∈[x0,xn]
|f (n+1)(ξ)|

∫ xn

x0
|π(x)| dx, (4)

which, e.g., for the trapezium rule, n = 1, gives∣∣∣∣∣
∫ x1

x0
f(x) dx− (x1 − x0)

2
[f(x0) + f(x1)]

∣∣∣∣∣ ≤ (x1 − x0)3

12
max

ξ∈[x0,x1]
|f ′′(ξ)|.

In fact, we can prove a tighter result using the Integral Mean-Value Theorem1:

Theorem.
∫ x1

x0
f(x) dx − (x1 − x0)

2
[f(x0) + f(x1)] = −(x1 − x0)3

12
f ′′(ξ) for some ξ ∈

(x0, x1).

Proof. See problem sheet. 2

For n > 1, (4) gives pessimistic bounds. But one can prove better results such as:

Theorem. Error in Simpson’s Rule: if f ′′′′ is continuous on (x0, x2), then∣∣∣∣∣
∫ x2

x0
f(x) dx− (x2 − x0)

6
[f(x0) + 4f(x1) + f(x2)]

∣∣∣∣∣ ≤ (x2 − x0)5

720
max

ξ∈[x0,x2]
|f ′′′′(ξ)|.

Proof. Recall
∫ x2

x0
p2(x) dx = 1

3
h[f(x0) + 4f(x1) + f(x2)], where h = x2 − x1 = x1 − x0.

Consider f(x0) − 2f(x1) + f(x2) = f(x1 − h) − 2f(x1) + f(x1 + h). Then, by Taylor’s

Theorem,

f(x1 − h) f(x1)− hf ′(x1) + 1
2
h2f ′′(x1)− 1

6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ1)

−2f(x1) = −2f(x1) +

+f(x1 + h) f(x1) + hf ′(x1) + 1
2
h2f ′′(x1) + 1

6
h3f ′′′(x1) + 1

24
h4f ′′′′(ξ2)

1Integral Mean-Value Theorem: if f and g are continuous on [a, b] and g(x) ≥ 0 on this interval, then there

exists an η ∈ (a, b) for which

∫ b

a

f(x)g(x) dx = f(η)

∫ b

a

g(x) dx (see problem sheet).
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for some ξ1 ∈ (x0, x1) and ξ2 ∈ (x1, x2), and hence

f(x0)− 2f(x1) + f(x2) = h2f ′′(x1) + 1
24
h4[f ′′′′(ξ1) + f ′′′′(ξ2)]

= h2f ′′(x1) + 1
12
h4f ′′′′(ξ3),

(5)

the last result following from the Intermediate-Value Theorem2 for some ξ3 ∈ (ξ1, ξ2) ⊂
(x0, x2). Now for any x ∈ [x0, x2], we may use Taylor’s Theorem again to deduce∫ x2

x0
f(x) dx = f(x1)

∫ x1+h

x1−h
dx+ f ′(x1)

∫ x1+h

x1−h
(x− x1) dx

+ 1
2
f ′′(x1)

∫ x1−h

x1−h
(x− x1)2 dx+ 1

6
f ′′′(x1)

∫ x1+h

x1−h
(x− x1)3 dx

+ 1
24

∫ x1+h

x1−h
f ′′′′(η1(x))(x− x1)4 dx

= 2hf(x1) + 1
3
h3f ′′(x1) + 1

60
h5f ′′′′(η2)

= 1
3
h[f(x0) + 4f(x1) + f(x2)] + 1

60
h5f ′′′′(η2)− 1

36
h5f ′′′′(ξ3)

=
∫ x2

x0
p2(x) dx+

1

180

(
x2 − x0

2

)5

(3f ′′′′(η2)− 5f ′′′′(ξ3))

where η1(x) and η2 ∈ (x0, x2), using the Integral Mean-Value Theorem and (5). Thus,

taking moduli, ∣∣∣∣∫ x2

x0
[f(x)− p2(x)] dx

∣∣∣∣ ≤ 8

25 · 180
(x2 − x0)5 max

ξ∈[x0,x2]
|f ′′′′(ξ)|

as required. 2

Note: Simpson’s Rule is exact if f ∈ Π3 since then f ′′′′ ≡ 0.

In fact, it is possible to compute a slightly stronger bound.

Theorem. Error in Simpson’s Rule II: if f ′′′′ is continuous on (x0, x2), then∫ x2

x0
f(x) dx =

x2 − x0
6

[f(x0) + 4f(x1) + f(x2)]−
(x2 − x0)5

2880
f ′′′′(ξ)

for some ξ ∈ (x0, x2).

Proof. See Süli and Mayers, Thm. 7.2. 2

2Intermediate-Value Theorem: if f is continuous on a closed interval [a, b], and c is any number between

f(a) and f(b) inclusive, then there is at least one number ξ in the closed interval such that f(ξ) = c. In particular,

since c = (df(a)+ ef(b))/(d+ e) lies between f(a) and f(b) for any positive d and e, there is a value ξ in the closed

interval for which d · f(a) + e · f(b) = (d+ e) · f(ξ).
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