
Numerical Analysis Hilary Term 2020

Lecture 3: Newton-Cotes Quadrature (continued)

See Chapter 7 of Süli and Mayers.

Motivation: we’ve seen oscillations in polynomial interpolation—the Runge phenomenon–

for high-degree polynomials.

Idea: split a required integration interval [a, b] = [x0, xn] into n equal intervals [xi−1, xi]

for i = 1, . . . , n. Then use a composite rule:∫ b

a
f(x) dx =

∫ xn

x0

f(x) dx =
n∑

i=1

∫ xi

xi−1

f(x) dx

in which each
∫ xi

xi−1

f(x) dx is approximated by quadrature.

Thus rather than increasing the degree of the polynomials to attain high accuracy, instead

increase the number of intervals.

Trapezium Rule: ∫ xi

xi−1

f(x) dx =
h

2
[f(xi−1) + f(xi)]−

h3

12
f ′′(ξi)

for some ξi ∈ (xi−1, xi)

Composite Trapezium Rule:∫ xn

x0

f(x) dx =
n∑

i=1

[
h

2
[f(xi−1) + f(xi)]−

h3

12
f ′′(ξi)

]

=
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)] + eTh

where ξi ∈ (xi−1, xi) and h = xi−xi−1 = (xn−x0)/n = (b−a)/n, and the error eTh is given

by

eTh = −h
3

12

n∑
i=1

f ′′(ξi) = −nh
3

12
f ′′(ξ) = −(b− a)

h2

12
f ′′(ξ)

for some ξ ∈ (a, b), using the Intermediate-Value Theorem n times. Note that if we halve

the stepsize h by introducing a new point halfway between each current pair (xi−1, xi), the

factor h2 in the error should decrease by four.

Another composite rule: if [a, b] = [x0, x2n],∫ b

a
f(x) dx =

∫ x2n

x0

f(x) dx =
n∑

i=1

∫ x2i

x2i−2

f(x) dx

in which each
∫ x2i

x2i−2

f(x) dx is approximated by quadrature.

Simpson’s Rule:∫ x2i

x2i−2

f(x) dx =
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]−

(2h)5

2880
f ′′′′(ξi)

Lecture 3 pg 1 of 3

for some ξi ∈ (x2i−2, x2i).

Composite Simpson’s Rule:∫ x2n

x0

f(x) dx =
n∑

i=1

[
h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]−

(2h)5

2880
f ′′′′(ξi)

]

=
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·
+ 2f(x2n−2) + 4f(x2n−1) + f(x2n)] + eSh

where ξi ∈ (x2i−2, x2i) and h = xi − xi−1 = (x2n − x0)/2n = (b− a)/2n, and the error eSh is

given by

eSh = −(2h)5

2880

n∑
i=1

f ′′′′(ξi) = −n(2h)5

2880
f ′′′′(ξ) = −(b− a)

h4

180
f ′′′′(ξ)

for some ξ ∈ (a, b), using the Intermediate-Value Theorem n times. Note that if we halve

the stepsize h by introducing a new point half way between each current pair (xi−1, xi),

the factor h4 in the error should decrease by sixteen (assuming f is smooth enough).

Adaptive (or automatic) procedure: if Sh is the value given by Simpson’s rule with

a stepsize h, then

Sh − S 1
2
h ≈ −

15

16
eSh.

This suggests that if we wish to compute
∫ b

a
f(x) dx with an absolute error ε, we should

compute the sequence Sh, S 1
2
h, S 1

4
h, . . . and stop when the difference, in absolute value,

between two consecutive values is smaller than 16
15
ε. That will ensure that (approximately)

|eSh| ≤ ε.

Sometimes much better accuracy may be obtained: for example, as might happen when

computing Fourier coefficients, if f is periodic with period b−a so that f(a+x) = f(b+x)

for all x.

Matlab:

>> help adaptive_simpson

ADAPTIVE_SIMPSON Adaptive quadrature with Simpson’s rule

S = ADAPTIVE_SIMPSON(F, A, B, TOL, NMAX) computes an approximation

to the integral of F on the interval [A, B] . It will take a

maximum of NMAX steps and will attempt to determine the integral

to a tolerance of TOL. If omitted, NMAX will default to 100.

The function uses an adaptive Simpson’s rule, as described

in lectures.

>> format long g % see more than 5 digits

>> f = @(x) sin(x);

>> s = adaptive_simpson(f, 0, pi, 1e-7)

Step 1 integral is 2.0943951024.

Step 2 integral is 2.0045597550, with error estimate 0.089835.

Step 3 integral is 2.0002691699, with error estimate 0.0042906.

Lecture 3 pg 2 of 3

Step 4 integral is 2.0000165910, with error estimate 0.00025258.

Step 5 integral is 2.0000010334, with error estimate 1.5558e-05.

Step 6 integral is 2.0000000645, with error estimate 9.6884e-07.

Step 7 integral is 2.0000000040, with error estimate 6.0498e-08.

Successful termination at iteration 7.

s =

2.00000000403226

>> g = @(x) sin(sin(x));

>> fplot(g, [0 pi])

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

>> s = adaptive_simpson(g, 0, pi, 1e-7)

Step 1 integral is 1.7623727094.

Step 2 integral is 1.8011896009, with error estimate 0.038817.

Step 3 integral is 1.7870879453, with error estimate 0.014102.

Step 4 integral is 1.7865214631, with error estimate 0.00056648.

Step 5 integral is 1.7864895607, with error estimate 3.1902e-05.

Step 6 integral is 1.7864876112, with error estimate 1.9495e-06.

Step 7 integral is 1.7864874900, with error estimate 1.2118e-07.

Step 8 integral is 1.7864874825, with error estimate 7.5634e-09.

Successful termination at iteration 8.

s =

1.7864874824541

>> s = adaptive_simpson(g, 0, pi, 1e-7, 3)

Step 1 integral is 1.7623727094.

Step 2 integral is 1.8011896009, with error estimate 0.038817.

Step 3 integral is 1.7870879453, with error estimate 0.014102.

*** Unsuccessful termination: maximum iterations exceeded ***

The integral *might* be 1.7870879453.

s =

1.78708794526495

Lecture 3 pg 3 of 3

