Numerical Analysis Hilary Term 2020

Lecture 5: LU Factorization

The basic operation of Gaussian Elimination, row $i \leftarrow \text{row } i + \lambda * \text{row } j$, can be achieved by pre-multiplication by a special lower-triangular matrix

$$M(i,j,\lambda) = I + \begin{bmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end{bmatrix} \leftarrow i$$

$$\uparrow$$

$$i$$

where I is the identity matrix.

Example: n = 4,

$$M(3,2,\lambda) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } M(3,2,\lambda) \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ \lambda b + c \\ d \end{bmatrix},$$

i.e., $M(3,2,\lambda)A$ performs: row 3 of $A \leftarrow \text{row 3}$ of $A + \lambda * \text{row 2}$ of A and similarly $M(i,j,\lambda)A$ performs: row i of $A \leftarrow \text{row } i$ of $A + \lambda * \text{row } j$ of A.

So GE for e.g., n = 3 is

The l_{ij} are called the **multipliers**.

Be careful: each multiplier l_{ij} uses the data a_{ij} and a_{ii} that results from the transformations already applied, not data from the original matrix. So l_{32} uses a_{32} and a_{22} that result from the previous transformations $M(2, 1, -l_{21})$ and $M(3, 1, -l_{31})$.

Lemma. If $i \neq j$, $(M(i, j, \lambda))^{-1} = M(i, j, -\lambda)$.

Proof. Exercise.

Outcome: for n = 3, $A = M(2, 1, l_{21}) \cdot M(3, 1, l_{31}) \cdot M(3, 2, l_{32}) \cdot U$, where

This is true for general n:

 triangular with ones on the diagonal) with l_{ij} = multiplier used to create the zero in the (i, j)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize
$$A = LU$$
 ($\approx \frac{1}{3}n^3$ adds $+ \approx \frac{1}{3}n^3$ mults)
and then solve $Ax = b$
by solving $Ly = b$ (forward substitution)
and then $Ux = y$ (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same A.

Pivoting: GE or LU can fail if the pivot $a_{ii} = 0$. For example, if

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],$$

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows) into any order we like. For example, the equations

$$0 \cdot x_1 + 1 \cdot x_2 = 1$$

 $1 \cdot x_1 + 0 \cdot x_2 = 2$ and $1 \cdot x_1 + 0 \cdot x_2 = 2$
 $0 \cdot x_1 + 1 \cdot x_2 = 1$

are the same, but their matrices

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \text{ and } \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

have had their rows reordered: GE fails for the first but succeeds for the second \Longrightarrow better to interchange the rows and then apply GE.

Partial pivoting: when creating the zeros in the jth column, find

$$|a_{kj}| = \max(|a_{jj}|, |a_{j+1j}|, \dots, |a_{nj}|),$$

then swap (interchange) rows j and k.

For example,

$$\begin{bmatrix} a_{11} & \cdot & a_{1j-1} & a_{1j} & \cdot & \cdot & \cdot & a_{1n} \\ 0 & \cdot \\ 0 & \cdot & a_{j-1j-1} & a_{j-1j} & \cdot & \cdot & a_{j-1n} \\ 0 & \cdot & 0 & a_{jj} & \cdot & \cdot & a_{jn} \\ 0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & a_{kj} & \cdot & \cdot & a_{kn} \\ 0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & a_{nj} & \cdot & \cdot & a_{nn} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & \cdot & a_{1j-1} & a_{1j} & \cdot & \cdot & a_{1n} \\ 0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & a_{j-1j-1} & a_{j-1j} & \cdot & \cdot & a_{j-1n} \\ 0 & \cdot & 0 & a_{kj} & \cdot & \cdot & a_{kn} \\ 0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & a_{jj} & \cdot & \cdot & a_{jn} \\ 0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & a_{nj} & \cdot & \cdot & a_{nn} \end{bmatrix}$$

Property: GE with partial pivoting cannot fail if A is nonsingular.

Proof. If A is the first matrix above at the jth stage,

$$\det[A] = a_{11} \cdots a_{j-1j-1} \cdot \det \begin{bmatrix} a_{jj} & \cdots & a_{jn} \\ \vdots & \ddots & \vdots \\ a_{kj} & \cdots & a_{kn} \\ \vdots & \ddots & \ddots & \vdots \\ a_{nj} & \cdots & a_{nn} \end{bmatrix}.$$

Hence $\det[A] = 0$ if $a_{jj} = \cdots = a_{kj} = \cdots = a_{nj} = 0$. Thus if the pivot $a_{k,j}$ is zero, A is singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually a_{nn} can be zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be represented by a permutation matrix P.

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted order. So

$$PA = LU$$

represents the factorization—equivalent to GE with partial pivoting. E.g.,

$$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right] A$$

has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Matlab example:

```
\Rightarrow A = rand(5,5)
          0.69483
                                                        0.6797
                         0.38156
                                        0.44559
                                                                      0.95974
           0.3171
                         0.76552
                                        0.64631
                                                        0.6551
                                                                      0.34039
          0.95022
                          0.7952
                                        0.70936
                                                       0.16261
                                                                      0.58527
         0.034446
                         0.18687
                                        0.75469
                                                         0.119
                                                                      0.22381
                                                       0.49836
          0.43874
                         0.48976
                                        0.27603
                                                                      0.75127
   >> exactx = ones(5,1);
                              b = A*exactx;
   >> [LL, UU] = lu(A) % note "psychologically lower triangular" LL
   LL =
10
                        -0.39971
                                        0.15111
          0.73123
                                                              1
                                                                             0
11
          0.33371
                                1
                                               0
                                                              0
                                                                             0
12
                                0
                                               0
                                                              0
                                                                             0
                 1
13
         0.036251
                                               1
                                                              0
                                                                             0
                           0.316
14
          0.46173
                         0.24512
                                       -0.25337
                                                       0.31574
                                                                             1
   UU =
16
17
          0.95022
                          0.7952
                                        0.70936
                                                       0.16261
                                                                      0.58527
                         0.50015
                                        0.40959
                                                                      0.14508
                 0
                                                       0.60083
                 0
                                        0.59954
                                                     -0.076759
                                                                      0.15675
                                0
19
                                0
                                                       0.81255
                                                                      0.56608
20
```

```
0
                                 0
                                                0
                                                                0
                                                                        0.30645
21
22
   \Rightarrow [L, U, P] = lu(A)
24
                                 0
                                                0
                                                                0
                                                                                0
                1
25
          0.33371
                                 1
                                                0
                                                                0
                                                                                0
26
         0.036251
                            0.316
                                                                0
                                                                                0
                                                1
27
          0.73123
                        -0.39971
                                                                1
                                                                                0
                                         0.15111
          0.46173
                         0.24512
                                        -0.25337
                                                         0.31574
                                                                                1
29
30
   U =
          0.95022
                          0.7952
                                         0.70936
                                                         0.16261
                                                                        0.58527
                 0
                          0.50015
                                         0.40959
                                                         0.60083
                                                                        0.14508
32
                 0
                                         0.59954
                                                       -0.076759
                                 0
                                                                        0.15675
33
                 0
                                 0
                                                         0.81255
                                                0
                                                                        0.56608
                 0
                                 0
                                                0
                                                               0
                                                                        0.30645
35
36
         0
                0
                       1
                              0
                                      0
37
         0
                1
                       0
                              0
                                      0
38
         0
                0
                       0
                              1
39
         1
                0
                       0
                              0
40
                                      1
         0
                0
                       0
                              0
41
42
   \rightarrow max(max(P'*L - LL))) % we see LL is P'*L
43
   ans =
44
        0
45
46
   >> y = L \setminus (P*b); % now to solve Ax = b...
47
   >> x = U \ y
48
49
                 1
                 1
51
                 1
                 1
54
55
   >> norm(x - exactx, 2) % within roundoff error of exact soln
   ans =
57
      3.5786e-15
```