Numerical Analysis Hilary Term 2020
Lecture 5: LU Factorization

The basic operation of Gaussian Elimination, row i <— row ¢ + \ * row j, can be achieved
by pre-multiplication by a special lower-triangular matrix

0 00
M@ 3N =1+ 10 X 0|«
0 00
T
J
where I is the identity matrix.
Example: n =4,
1 0 00 a a
ME2N=|0 |, aMAMMA)i _ Mic,
0 0 01 d d

ie, M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and similarly
M (i, 7, \) A performs: row i of A < row i of A+ A\x row j of A.

So GE for e.g., n =3 is

M(3,2,—ls) - M(3,1,—l3) - M(@2,1,-ly) - A=U=0( 1).

a32 a31 a2 .
lgp = —= lg = — log = — (upper triangular)
a22 a11 a11

The [;; are called the multipliers.

Be careful: each multiplier /;; uses the data a,;; and a;; that results from the transforma-
tions already applied, not data from the original matrix. So I35 uses azs and aso that result
from the previous transformations M (2,1, —ly) and M (3,1, —l3).

Lemma. If i # j, (M(i,7,\)) "' = M(4, 5, —\).

Proof. Exercise.

Outcome: forn =3, A= M(2,1,ly) - M(3,1,1l31) - M(3,2,l32) - U, where

1 0 0
M(2,1,10) - M(3,1,151) - M(3,2,130) = | Iy 1 0| =L=C(L_).
131 132 1

(lower triangular)

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU, where U = (D
is upper triangular resulting from GE, and L = (L) is unit lower triangular (lower
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triangular with ones on the diagonal) with /;; = multiplier used to create the zero in the
(4, 7)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize A= LU (~
and then solve Ax =10

1n® adds + ~ Ln® mults)

by solving Ly =0 (forward substitution)
and then Uz =y (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same

A.
Pivoting: GE or LU can fail if the pivot a;; = 0. For example, if

01
A —
GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

O-z1+1-29=1 and 1l-214+40-29=2
1'[L‘1+0'£L‘2:2 OIL‘l—I—lZL‘Q:]_

Vo) e o]

have had their rows reordered: GE fails for the first but succeeds for the second = better
to interchange the rows and then apply GE.

are the same, but their matrices

Partial pivoting: when creating the zeros in the jth column, find
|ak;| = max(lag;], |ajl, - - lan]),

then swap (interchange) rows j and k.
For example,

ay; - Aij-1 Q1 - 0 0 Alp ay; - Aij-1 @y - - 0 Alp
0 0
0 Aj—15-1 Qj—1j Aj—1n 0 aj—15-1 QAj—15 *~ * * Aj_1n
0 0 ajj Ajp, 0 0 Qkj Ak,

_>
0 . 0 0 .
0 0 A QAfn 0 0 Qjj s Qjn
0 0 . 0 0
. 0 0 U pn | .0 0 (nj [
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Property: GE with partial pivoting cannot fail if A is nonsingular.
Proof. If A is the first matrix above at the jth stage,

ajj - - Gjn
det[A] =11 Aj-15-1" det (07 ¢ )
anj . . - Apn

Hence det[A] = 0 if aj; =

:akj:...

= apnj = 0. Thus if the

pivot ay; is zero, A is

singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually a,, can be

zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be

represented by a permutation matrix P.

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted

order. So

PA=LU

represents the factorization—equivalent to GE with partial pivoting. E.g.,

010
001|A
1 00

has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Matlab example:

>> A = rand(5,5)

A =
0.69483 0.38156
0.3171 0.76552
0.95022 0.7952
0.034446 0.18687
0.43874 0.48976

>> exactx = ones(5,1); b

>> [LL, UU] = 1u(A) % not
LL =

0.73123 -0.39971
0.33371 1
1 0
0.036251 0.316
0.46173 0.24512
Uuu =
0.95022 0.7952
0 0.50015
0 0
0 0

O O O O

0.

.44559 0.6797
.64631 0.6551
.70936 0.16261
. 75469 0.119
27603 0.49836

= A*exactx;

.95974
.34039
.58527
.22381
. 75127

O O O O ©

e "psychologically lower triangular" LL

0.15111 1
0 0
0 0
1 0
-0.25337 0.31574
0.70936 0.16261
0.40959 0.60083
0.59954 -0.076759
0 0.81255

=, O O O O

.58527
.14508
.15675
.56608

O O O O
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0 0
>> [L, U, P] = 1u(A)
L =
1 0
0.33371 1
0.036251 0.316
0.73123 -0.39971
0.46173 0.24512
U =
0.95022 0.7952
0 0.50015
0 0
0 0
0 0
P =
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 0

>> max (max (P’*L - LL)))

ans =

= O O O O

0

0

1
0.15111
-0.25337

0.70936
0.40959
0.59954
0
0

= O O O

0.31574

0.16261
0.60083
-0.076759
0.81255

0

% we see LL is P’x*L

0
>> y =L \ (Pxb); % now to solve Ax =
> x =U \y
x =
1
1
1
1
1
>> norm(x - exactx, 2) 7%
ans =
3.5786e-15

b...

0.30645

= O O O O

.58527
.14508
.15675
.56608
.30645

O O O O O

within roundoff error of exact soln
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