Numerical Analysis Hilary Term 2020
Lecture 12: Orthogonal Polynomials

Gram—Schmidt orthogonalization procedure: the solution of the normal equations
Aa = o for best least-squares polynomial approximation would be easy if A were diagonal.
Instead of {1,z,2%,...,2"} as a basis for II,, suppose we have a basis {@g, @1, ..., P, }.

Then p,(x) = Z Bror(x), and the normal equations become
k=0

b n
/ w(z) (f(w) — Zﬁk¢k($)> ¢i(r)dx =0 for i =0,1,...,n,

or equivalently

n

> (/abw(xm(x)@(x) dx) B, = /abw(x)f(x)qs,-(x) de, i=0,...,n, ie.,

k=0
AB =, (1)
where 3 = (Bo, B1, - . - 75n)T’ © = (f1. fo, .. -afn)T and now

b b
o= [ w@onle)oe)do and fi= [ w@) i@ de
So A is diagonal if

b = 7 al
0n00) = [(wl@otaas { 5 17 E

We can create such a set of orthogonal polynomials

{¢07¢17"'7¢n7"'}7

with ¢; € II; for each 7, by the Gram—-Schmidt procedure, which is based on the following
lemma.

Lemma. Suppose that ¢, ..., ¢, with ¢; € II; for each i, are orthogonal with respect to
b
the inner product (f,g) = / w(z)f(z)g(x)dx. Then,

a

k
Ppy1(z) = 2" — Z Aigi()
=0
satisfies ,
(Ges1, &) = / w(@) b (2)d5(@)de =0, j=0,1,....k with

k+1 4
AJ:M, j=0,1,... k.

(D5, 5)
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Proof. For any j, 0 < j <k,

(k1. 05) = (2"1,)) ZA (i b5

= (2" ¢;) — /\j<¢j,¢j>
by the orthogonality of ¢; and ¢;, i # j,
=0 by definition of A;. O

Notes: 1. The G-S procedure does this successively for k =0,1,...,n
2. ¢y is always of exact degree k, so {¢o, ..., ®} is a basis for I, V¢ > 0.
3. ¢ can be normalised to satisfy (¢, ¢r) = 1 or to be monic, or ...

1
Examples: 1. The inner product (f, g) :/ f(x)g(x)dx
-1

gives orthogonal polynomials called the Legendre polynomials,

do(x) =1, ¢1(x) ==, ¢2() — 3, ¢s(x) =2 — 3, ..

2. The inner product (f, g) / f
1 - x2

gives orthogonal polynomials called the Chebyshev polynomials,
¢0<$> = ]-7 ¢1(x) =, ¢2(ZL’) - 2‘%‘2 - 17 ¢3(I) - 4[[‘3 - 3ZE, s

3. The inner product (f,g) = / e “f(z)g(x)dx
0

gives orthogonal polynomials called the Laguerre polynomials,
po(x) =1, ¢1(x) =1—x, ¢o(x) =2 — da + 27,
¢3(z) = 6 — 18z + 92° — 2°,

Lemma. Suppose that {¢g, ¢1,. .., ¢, ...} are orthogonal polynomials for a given inner
product (-,-). Then, (¢, ¢) = 0 whenever ¢ € IIj_;.

Proof. This follows since if ¢ € TI;_;, then ¢(x Zaquz ) for some o; € R, i =
0,1,...,k—1,so0
k—1
(Dr:q) Zaz r, i) =
=0

Remark: note from the above argument that if q(z Z o;¢i(x) is of exact degree k

(SO Ok 7é O), then <gz5k,q> = 0k<gz5k,gz5k> 7é 0.

Theorem. Suppose that {¢g, d1,...,¢n,...} is a set of orthogonal polynomials. Then,
there exist sequences of real numbers ()2, (Br)2y, ()5, such that a three-term
recurrence relation holds of the form

¢/€+1(x) = ak(x - 6k)¢k(x) - ’Vkﬁbk—l(x)? k=1,2,....
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Proof. The polynomial x¢; € 1,1, so there exist real numbers

0k0,0k1y-++50kk+1

such that
k41

rdp(T) = Z%i@(l‘)

., ®ra1} 1s a basis for T, ;. Now take the inner product on both sides with

as {¢07 ¢17 c
¢; where j <k — 2. On the left-hand side, note z¢; € II;_; and thus
b b
(wu,05) = [ w()on(@)y(w)de = [ wla)oula)oo,(a) de = (Gr,25) =0
by the above lemma for 7 < k£ — 2. On the right-hand side
k41 k+1
<Z Ok,i®i, ¢j> = onildi, b5) = 0k(¢5, ;)
i=0 i=0
by the linearity of (-,-) and orthogonality of ¢; and ¢; for i # j. Hence o;; = 0 for
j <k—2,and so
TOR(7) = Op 1 Okr1(T) + Ok kOk(T) + O p10k-1(T).
Almost there: taking the inner product with ¢, reveals that
(Tdk, Phy1) = Ohpr1{Prr1s Prr),
SO0 ogkr+1 # 0 by the above remark as x¢y is of exact degree k + 1 (e.g., from above

Gram—Schmidt notes). Thus,

1 Ok b
L (bkfl(x)a

(z — okp)r(z) —

¢k+1(l’) =
Ok k+1 Ok, k+1
which is of the given form, with
1 Ok k-1
ﬂk:(jk,k? Y& = s k:1,2,
Ok k+1

o = )
Ok k+1
O

That completes the proof.

oo
2

Example. The inner product (f, g) :/ e " f(x)g(x)de

gives orthogonal polynomials called the Hermite polynomials,

do(x) =1, ¢1(x) =22, ¢pi1(x) = 22¢k(x) — 2kd_1(x) for k> 1.
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Listing 1: hermite_polys.m

%% Demonstrate Hermite Orthogonal Polynomials

lw = ’linewidth’;
x = linspace(-2.2, 2.2, 256);
H_old = ones(size(x));

H = figure(1); clf;

plot(x, H_old, ’r-’, 1lw,2)

set (get (H, ’children’), ’fontsize’, 16);
hold on; pause

H = 2xx;
plot(x, H, 1lw,2, ’color’,[0 0.75 0])
pause

for n = 1:4
% use the three-term recurrence
H_new = (2*x).*H - (2*n)*H_old;
plot(x, H_new, 1lw,2, ’color’,rand(3,1))
pause;
H_old = H; H = H_new;
end
legend (’H_O0(x)’, ’H_1(x)’, ’H_2(x)’, ’H_3(x)’, ’*H_4(x)’, ’H_5(x)?)
xlabel(’x’); title(’Hermite orthogonal polynomials’)
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