Numerical Analysis Hilary Term 2020
Lecture 13: Gaussian quadrature

Suppose that w is a weight function, defined, positive and integrable on the open interval

(a,b) of R.

Lemma. Let {¢g, ¢1,...,dn, ...} be orthogonal polynomials for the inner product (f, g) =
b

/ w(x)f(z)g(x)dz. Then, for each k = 0,1,..., ¢ has k distinct roots in the interval

(a,b).

Proof. Since ¢y(x) = const. # 0, the result is trivially true for k£ = 0. Suppose that k& > 1:
b b

(Dr, Do) = / w(x)pr()po(x) de = 0 with ¢y constant implies that / w(z)pp(r)de =0
with w(x) >a0, x € (a,b). Thus ¢x(x) must change sign in (a,b), i.e.,agzﬁk has at least one
root in (a, b).

Suppose that there are ¢ points a < r; <1y < --- <1y < b where ¢, changes sign for some
1 <?¢<k. Then

‘
q(z) = H(x —r;) x the sign of ¢y on (r,b)

J=1

has the same sign as ¢, on (a,b). Hence

<m4%:/1dwm@muwx>&

and thus it follows from the previous lemma (cf. Lecture 12) that ¢, (which is of degree
¢) must be of degree > k, i.e., £ > k. However, ¢y is of exact degree k, and therefore the
number of its distinct roots, ¢, must be < k. Hence ¢ = k, and ¢, has k distinct roots in
(a,b). O

Quadrature revisited. The above lemma leads to very efficient quadrature rules since
it answers the question: how should we choose the quadrature points xg, z1,...,x, in the
quadrature rule

[ @@ de =3 we) 0

so that the rule is exact for polynomials of degree as high as possible? (The case w(z) =1
is the most common.)

Recall: the Lagrange interpolating polynomial
n
DPn = Zf(xj)[/n,j € I,
5=0
is unique, so f € II,, = p, = f whatever interpolation points are used, and moreover

b b n
[ @@ o= [ wpode = 3w ),
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exactly, where
b
wj:/ w(x)L, j(x)de. (2)

Theorem. Suppose that g < x; < --- < z, are the roots of the n+1-st degree orthogonal
polynomial ¢,,,; with respect to the inner product

(g9, h) :/ w(x)g(z)h(r) de.

Then, the quadrature formula (1) with weights (2) is exact whenever f € Iy, ;.

Proof. Let p € IIy,.1. Then by the Division Algorithm p(x) = q(z)¢ni1(x) + r(z) with
q,r €1l,. So

b b b n
/w(x)p(x)dx:/ w(x)q(:n)qbn+1(x)dx+/ w(x)r(x)dx:ijr(xj) (3)

since the integral involving ¢ € II,, is zero by the lemma above and the other is integrated
exactly since r € II,,. Finally p(z;) = q(z;)Pnt+1(z;) + r(z;) = r(z;) for j =0,1,...,n as
the z; are the roots of ¢,11. So (3) gives

/ w(x)p(x)de = ijp(xj),

where w; is given by (2) whenever p € Iy, 4. O

These quadrature rules are called Gaussian quadratures.
=1, (a,b) = (—1,1): Gauss-Legendre quadrature.
= (1 —2?)7Y% and (a,b) = (—1,1): Gauss-Chebyshev quadrature.

)
(z)

e w(x) =e"* and (a,b) = (0,00): Gauss—Laguerre quadrature.
(z)

They give better accuracy than Newton—Cotes quadrature for the same number of function
evaluations.

Note when using quadrature on unbounded intervals, the integral should be of the form
fooo e *f(x)dz and only f is sampled at the nodes.

Note that by the linear change of variable t = (2 — a — b)/(b — a), which maps [a, b] —
[—1, 1], we can evaluate for example

b 1 n
/f(x)dx: / f((b_a>t2+b+a>b;adtzb;aijf(b;atj—i—b;a),
a - 7=0

1

where ~ denotes “quadrature” and the ¢;, 7 = 0,1,...,n, are the roots of the n + 1-st
degree Legendre polynomial.
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Example. 2-point Gauss-Legendre quadrature: ¢o(t) = t* — 1 = {5 = —

and Lo )
.
wo:/ ﬁdt:—/ (5t —4) dt =1,
-1 B -1

with wy; = 1, similarly. So e.g., changing variables = = (¢ + 3)/2,

21 1 [t 2 1 1
/ —da::—/ dt ~ + = 0.6923077 ... .
1 —

x 2/ ,t+3 " 3+L 33—

S

Note that the trapezium rule (also two evaluations of the integrand) gives

21 11
—dzg~=|=4+1| =0.75
/1xx 2[2+} )

2

1

whereas / —dz=In2=0.6931472....
LT

Theorem. Error in Gaussian quadrature: suppose that f("*2) is continuous on (a,b).

Then
f(2n+2) (

b n
/ dx—Zw]f:U] @n+2)! / Hx—xj x,

Jj=
for some 1 € (a,b).

Proof. The proof is based on the Hermite interpolating polynomial Hy,, 1 to f on zg, x1, ..., x,.
[Recall that Hany1(z;) = f(z;) and Hy, 1 (z;) = f'(z;) for 7 = 0,1,...,n.] The error in
Hermite interpolation is

f(z) — Hypyq(x) = m Fe)( H (x — ;)
7=0

for some n = n(x) € (a,b). Now Hy,iq € Tlgyi1, SO

b
/ w(z)Hops1(x)dr = ijHgn+1 () Zw]f (),

7=0

the first identity because Gaussian quadrature is exact for polynomials of this degree and
the second by interpolation. Thus

/ w(z) f(x)dx — ijf(xj) = / w(z)[f(x) — Hopyr(x)] da

b n
= RACCTE) ) (RS

J=0
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and hence the required result follows from the integral mean value theorem as
w(@) [Ty = 2,)° 2 0. 0

Remark: the “direct” approach of finding Gaussian quadrature formulae sometimes
works for small n, but more sophisticated algorithms are used for large n.

Example. To find the two-point Gauss—Legendre rule wy f (o) +w; f(x1) on (=1, 1) with
weight function w(z) = 1, we need to be able to integrate any cubic polynomial exactly,

SO
1
:/ ldz = wo+w (4)
-1
1
0:/ zdr = Wy + W1xq (5)
-1
1
52/ v dr = word 4w’ (6)
-1
1
0:/ ??dr = woxy + wis. (7)
-1

These are four nonlinear equations in four unknowns wy, wy, o and x;. Equations (5) and

(7) give 0
ERIMEE

207 — 2170 = 0

which implies that

for wy, wy # 0, i.e.,

xol’l(ZL’l — 1’0)(.%'1 + Io) =0.
If 29 = 0, this implies w; = 0 or 1 = 0 by (5), either of which contradicts (6). Thus
xo # 0, and similarly x; # 0. If x; = ¢, (5) implies w; = —wjy, which contradicts (4). So

xr1 = —xo, and hence (5) implies w; = wy. But then (4) implies that wy = wy = 1 and (6)
gives
To=—J5 and T = I,

which are the roots of the Legendre polynomial 2% — 1.

!See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Guass-Legendre and
Gauss—Jacobi quadrature nodes and weights” STAM J. Sci. Comput. 2013.
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Table 1:

J=0

Abscissas x; (zeros of Legendre polynomials) and weight factors w; for Gaussian

1 n
quadrature: / f(z)dx ~ ijf(:vj) for n =0 to 6.
-1

Lj

wj

0.000000000000000e+-0

2.000000000000000e+-0

5.773502691896258e—1
—5.773502691896258e—1

1.000000000000000e+-0
1.000000000000000e+-0

7.745966692414834e—1
0.000000000000000e+-0
—7.745966692414834e—1

9.555555555555556e—1
8.888888888888889e—1
5.559555555555556e—1

8.611363115940526e—1
3.399810435848563e—1
—3.399810435848563e—1
—8.611363115940526e—1

3.478548451374539%¢e—1
6.521451548625461e—1
6.521451548625461e—1
3.478548451374539%e—1

9.061798459386640e—1
5.384693101056831e—1
0.000000000000000e+-0
—5.384693101056831e—1
—9.061798459386640e—1

2.369268850561891e—1
4.786286704993665e—1
5.68888888888888%¢e—1
4.786286704993665e—1
2.369268850561891e—1

9.324695142031520e—1
6.612093864662645e—1
2.386191860831969¢—1
—2.386191860831969e—1
—6.612093864662645e—1
—9.324695142031520e—1

1.713244923791703e—1
3.607615730481386e—1
4.679139345726910e—1
4.679139345726910e—1
3.607615730481386e—1
1.713244923791703e—1

9.491079123427585e—1
7.415311855993944e—1
4.058451513773972e—1
0.000000000000000e+-0
—4.058451513773972e—1
—7.415311855993944e—1
—9.491079123427585¢e—1

1.294849661688697e—1
2.797053914892767e—1
3.818300505051189%¢e—1
4.179591836734694e—1
3.818300505051189%¢e—1
2.797053914892767e—1
1.294849661688697e—1
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