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1 Second-order linear boundary

value problems

These lecture notes are based on material written by Derek Moulton. Please send
any corrections or comments to Peter Howell.

1.1 Basic notation and concepts

In this section, we will develop various techniques to analyse and solve ordinary differential
equations (ODEs), in particular inhomogeneous linear boundary value problems (BVPs). We
start by briefly explaining what is meant by each piece of this expression. Although everything
to follow can in principle be generalised to ODEs of arbitrary order, we restrict our attention
to second order ODEs for the moment.

A second-order linear ODE is an equation of the form

Ly(x) = f(x), (1.1)

where f is a given forcing function and L is a linear differential operator, that is,

Ly(x) ≡ P2(x)y
′′(x) + P1(x)y

′(x) + P0(x)y(x) (1.2a)

≡ P2(x)
d2y

dx2
+ P1(x)

dy

dx
+ P0(x)y(x), (1.2b)

for some given coefficients P0(x), P1(x), P2(x). The operator L is linear in the sense that

L
[
α1y1(x) + α2y2(x)

]
≡ α1Ly1(x) + α2Ly2(x), (1.3)

for any constants αi and functions yi(x). Here, and henceforth unless explicitly stated oth-
erwise, we assume that y is sufficiently smooth for all the required derivatives to exist and
be continuous. We will also assume that the coefficents Pi are at least continuous and (for
reasons that will become clear) that P2 is nonzero in the range of x of interest.

The linear ODE (1.1) is said to be homogeneous if the right-hand side f is identically zero,
and if not then the equation is inhomogeneous. We will refer frequently to the homogeneous
and inhomogeneous (or “Non-homogeneous”) versions of (1.1), which we label as follows:

homogeneous: Ly = 0, (H)

inhomogeneous: Ly = f 6≡ 0. (N)

Generally, we expect to need to supplement a second-order ODE of the form (1.1) with
two boundary conditions to get a unique solution for y(x), and the term boundary value
problem refers to the way in which those boundary conditions are imposed. Much of the
Differential Equations I course concerns the solution of initial value problems (IVPs), where
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the “initial values” of y and y′ are given at a single point x = a, say. In a BVP, the ODE (1.1)
is posed on an interval, say a < x < b, and the boundary conditions involve the values of y and
y′ at both ends of the domain x = a and x = b. Provided the coefficients Pi(x) and the forcing
function f(x) are sufficiently well behaved (and P2(x) 6= 0), Picard’s Theorem guarantees that
an IVP for a linear ODE of the form (1.1) has a unique solution in a neighbourhood of the
initial point x = a, but we will see that the same cannot be said of a linear BVP.

Example 1.1. Second order IVP and BVP
The simple 2nd order linear inhomogeneous ODE

y′′ + y = 1 (1.4)

has the general solution y(x) = 1 + c1 cosx + c2 sinx, where c1 and c2 are arbitrary integration
constants. A typical IVP would involve solving (1.4) in x > 0 subject to the initial conditions y(0) = 1
and y′(0) = 2. By imposing the two initial conditions, we can easily solve for the integration constants
and thus obtain the solution y(x) = 1 + 2 sinx.

A typical BVP would be to solve (1.4) on an interval, say 0 < x < π, subject to the boundary
conditions y(0) = 1 and y′(π) = 2. Again, we can solve for the arbitrary constants, and this time we
obtain the solution y(x) = 1− 2 sinx.

Suppose we replace the right-hand side of (1.4) with a more complicated forcing function, for
example

y′′(x) + y(x) = tanx. (1.5)

In principle, this ODE is solvable, subject to suitable boundary conditions, but now it is not at all
obvious how to “spot” the particular integral!

Finally, suppose we slightly alter the boundary conditions to y(0) = 1 and y(π) = 2. One can
easily confirm that the ODE (1.4) has no solution subject to the modified boundary conditions.

In the remainder of this section, we will derive general methods to solve ODEs of the form
(1.1), as well as addressing the following general questions.

1. How can we construct a particular integral for the ODE (1.1) for arbitrary forcing
function f?

2. Given suitable boundary conditions, when does a solution exist? When is it unique?

1.2 Space of solutions

If we ignore boundary conditions for the moment, then the following properties of solutions
of (H) and (N) are easily established.

(i) The solutions of (H) form a vector space since, if Ly1 = 0 = Ly2, then L[αy1+βy2] = 0.

(ii) If y and Y satisfy (N), then y − Y satisfies (H).

(iii) It follows that the general solution of (N) may be written in the form

y(x) = yPI(x)
︸ ︷︷ ︸

any solution of (N)

+ yCF(x)
︸ ︷︷ ︸

general solution of (H)

(1.6)

where yPI is called the particular integral and yCF the complementary function.
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(iv) For a second-order ODE, the vector space of solutions to (H) has dimension two (see
below). The complementary function therefore takes the form

yCF(x) = c1y1(x) + c2y2(x), (1.7)

where c1, c2 are arbitrary constants, and y1, y2 are any two linearly independent solu-
tions to (H).

1.3 Linear independence; the Wronskian

A pair of functions y1(x), y2(x) is linearly independent if there is no non-trivial linear combi-
nation that vanishes identically; in other words if

c1y1(x) + c2y2(x) ≡ 0 ⇔ c1 = c2 = 0. (1.8)

They are linearly dependent if ci, not both zero, can be found such that c1y1(x) + c2y2(x) is
identically zero. Provided y1, y2 are differentiable, this would also entail c1y

′
1(x)+c2y

′
2(x) ≡ 0.

Therefore (
y1 y2
y′1 y′2

)(
c1
c2

)

≡ 0, (1.9)

and non-trivial solutions can exist for (c1, c2) if and only if the determinant of the matrix is
zero.

We define the Wronskian of a pair of functions to be this determinant:

W (x) = W [y1, y2] = det

(
y1 y2
y′1 y′2

)

= y1(x)y
′

2(x)− y2(x)y
′

1(x). (1.10)

From what we have just seen, we conclude the following.

Proposition 1.1. If two functions are linearly dependent then their Wronskian vanishes.

The converse to this statement is not necessarily true, however. For example, the following
(once) differentiable functions:

y1(x) =

{

0 x < 0,

x2 x ≥ 0,
y2(x) =

{

x2 x < 0,

0 x ≥ 0,
(1.11)

are easily shown to be linearly independent, but have Wronskian equal to zero [exercise].
We will now show that there is a partial converse to Proposition 1.1 for the case where y1
and y2 are solutions to (H).

Suppose that y1 and y2 are two solutions to (H), i.e.

P2y
′′

1 + P1y
′

1 + P0y1 = 0, (1.12a)

P2y
′′

2 + P1y
′

2 + P0y2 = 0. (1.12b)

We can eliminate the P0 term between these two equations by substracting y2×(1.12a) from
y1×(1.12b) to get

P2

(
y1y

′′

2 − y2y
′′

1

)
+ P1

(
y1y

′

2 − y2y
′

1

)
= 0. (1.13)
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The term multiplying P1 in this equation is clearly the Wronskian W [y1, y2], and the term
multiplying P2 is the derivative of W with respect to x, i.e.

P2
dW

dx
+ P1W = 0. (1.14)

Now, provided P2 is nowhere zero, we can solve for W to get

W (x) = const× exp

(

−

∫
P1(x)

P2(x)
dx

)

. (1.15)

Since the exponential can’t vanish, it follows that if W = 0 at one point, then W ≡ 0
everywhere and, conversely, if W 6= 0 at one point, then W 6= 0 everywhere. Now we can use
this result to obtain a partial converse to Proposition 1.1.

Proposition 1.2. Two solutions of a given homogeneous second-order ODE (H) are linearly
dependent if and only if their Wronskian is zero.

Proof. Suppose y1 and y2 are two solutions of (H); if they are linearly dependent then we know
already that their Wronskian is zero so now suppose for the converse that their Wronskian is
zero (everywhere, by (1.15)). If y1 is the zero function then y1 and y2 are certainly linearly
dependent and we are done. Suppose that there is at least one value of x, say x = a, with
y1(a) 6= 0, and pick µ so that y2(a) = µy1(a). Then

0 = W (a) = y1(a)y
′

2(a)− y2(a)y
′

1(a) = y1(a)
(
y′2(a)− µy′1(a)

)
(1.16)

and, since y1(a) 6= 0 by assumption, we conclude that y′2(a) = µy′1(a).
Now define y(x) = y2(x)−µy1(x); then y(x) is a solution of (H) by linearity, and satisfies

the initial conditions y(a) = 0 = y′(a). Thus by uniqueness of solution of (H) (Picard’s
Theorem: again assuming that P2 6= 0) we conclude that y(x) ≡ 0 and therefore y1 and y2
are linearly dependent.

1.4 A basis of solutions to (H)

We can choose two particular solutions y1 and y2 of (H) satisfying the following initial con-
ditions at some point x = a:

y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1. (1.17)

By Picard’s Theorem both y1(x) and y2(x) exist and are unique at least in a neighbourhood
of x = a provided P2(a) 6= 0. Also their Wronskian has W = 1 at x = a and so is nonzero in
the same neighbourhood of x = a, and hence they are linearly independent.

In fact, y1 and y2 span the vector space of solutions. Suppose y(x) is any other solution
of (H) and set

Y (x) = y1(x)y(a) + y2(x)y
′(a). (1.18)

Then Y (x) is also a solution of (H) and satisfies the initial conditions

Y (a) = y(a), Y ′(a) = y′(a). (1.19)

By uniqueness (Picard again) Y (x) ≡ y(x) and thus y(x) is a linear combination of y1 and y2.
Hence they do span the vector space of solutions, i.e. they are a basis, and we conclude the
following.
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Proposition 1.3.

(i) The dimension of the space of solutions of H is 2.

(ii) Any pair of solutions of H with W 6= 0 is a basis.

Exercise: generalise everything done so far to n-th order linear ODEs.

1.5 Solution methods for homogeneous problem

There are very few general methods of solution for second-order linear ODEs of the form
(H). We will discuss three well known special cases of (H) where the general solution can be
found relatively easily. All three methods can be used for higher order problems with similar
properties.

1.5.1 Constant coefficients

If P2, P1 and P0 are constants, then (H) admits exponential solutions of the form y(x) = emx,
where m satisfies the quadratic equation P2m

2 + P1m + P0 = 0, known as the auxiliary
equation. The general solution can then easily be found as a linear combination of solutions
with different values of m. Care must be taken for cases where the roots m are complex or
are repeated.

1.5.2 Cauchy–Euler equation

In a Cauchy–Euler equation, the coefficients are of the form P2(x) = αx2, P1(x) = βx,
P0(x) = γ, with α, β, γ constants, so (H) takes the form

αx2
d2y

dx2
+ βx

dy

dx
+ γy = 0. (1.20)

(Note that the “power of x” is the same in each term.) In this case, solutions can be found
of the form y(x) = xm, and m again satisfies a quadratic equation, αm(m− 1)+βm+ γ = 0.
Again, extra care is needed if the roots m are repeated or complex. An alternative approach
is to make the substitution x = et, which transforms (1.20) into the constant-coefficients
equation

α
d2y

dt2
+ (β − α)

dy

dt
+ γy = 0. (1.21)

1.5.3 Reduction of order

If one solution y1(x) is known, then the general solution can be found by solving an ODE of
reduced order. The method is to express the solution to the ODE (H) in the form

y(x) = v(x)y1(x). (1.22)

We know that the function v(x) = const is a possible answer but we seek something more
general. We substitute (1.22) into (H) and simplify, using the fact that y1 is a solution of
(H), to obtain

P2y1v
′′ + (2P2y

′

1 + P1y1)v
′ = 0, (1.23)
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which is a separable first-order ODE for v′ with solution

v′(x) =
const

y1(x)2
exp

(

−

∫
P1(x)

P2(x)
dx

)

. (1.24)

One further integration then gives v and thus the general solution y(x) = v(x)y1(x).

This method of constructing the general solution from a single known solution may also
be derived from the expression (1.15) for the Wronskian, i.e.

W (x) = y1(x)y
′

2(x)− y2(x)y
′

1(x) = y1(x)
2 d

dx

(
y2(x)

y1(x)

)

= const× exp

(

−

∫
P1(x)

P2(x)
dx

)

,

(1.25)
from which we can construct y2(x) given y1(x).

1.6 Variation of parameters

We now know a good deal about the solutions of the homogeneous ODE (H). The general
solution to the inhomogeneous version (N) given by (1.6) seems to rely on us spotting a
particular integral yPI(x). The method of variation of parameters allows us to construct a
solution to (N) for any forcing function f without any guesswork, provided we already know
the general solution to the homogeneous equation (H).

Suppose that (H) is solved by y(x) = c1y1(x) + c2y2(x) with linearly independent y1, y2.
We seek a solution to (N) of the form

y(x) = c1(x)y1(x) + c2(x)y2(x), (1.26)

i.e. we “vary the parameters” c1 and c2. First, differentiate (1.26) to find

y′ = c1y
′

1 + c2y
′

2 + c′1y1 + c′2y2. (1.27)

Now to eliminate the highest derivatives of ci, we impose the condition

c′1y1 + c′2y2 = 0 (1.28)

on c1 and c2. Note, since we are using two functions c1 and c2 to define one function y, we
should have enough freedom to satisfy the additional constraint (1.28). Under the assumption
(1.28), the expression (1.27) for y′ simplifies to

y′ = c1y
′

1 + c2y
′

2. (1.29)

We differentiate once more and substitute into (1.2) to get

Ly = P2

(
c1y

′′

1 + c2y
′′

2 + c′1y
′

1 + c′2y
′

2

)
+ P1

(
c1y

′

1 + c2y
′

2

)
+ P0(c1y1 + c2y2)

= c1Ly1 + c2Ly2 + P2

(
c′1y

′

1 + c′2y
′

2

)
. (1.30)

But, since the yi satisfy (H), the inhomogeneous ODE (N) becomes

Ly = P2

(
c′1y

′

1 + c′2y
′

2

)
= f. (1.31)
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Together, (1.28) and (1.31) give two simultaneous linear equations for c′1 and c′2, namely

(
y1 y2
y′1 y′2

)(
c′1
c′2

)

=

(
0

f/P2.

)

(1.32)

Note that the determinant of the matrix on the left-hand side is the Wronskian W , which we
know is nonzero by the assumed linear independence of y1 and y2. We can therefore invert
(1.32) to get

(
c′1
c′2

)

=
1

W

(
y′2 −y2
−y′1 y1

)(
0

f/P2.

)

=
f

P2W

(
−y2
y1

)

. (1.33)

We can thus integrate to obtain

c1(x) = −

∫ x f(ξ)y2(ξ)

P2(ξ)W (ξ)
dξ, c2(x) =

∫ x f(ξ)y1(ξ)

P2(ξ)W (ξ)
dξ, (1.34)

and, by substituting into (1.26)

y(x) = −

∫ x f(ξ)y2(ξ)y1(x)

P2(ξ)W (ξ)
dξ +

∫ x f(ξ)y1(ξ)y2(x)

P2(ξ)W (ξ)
dξ. (1.35)

In principle, (1.35) allows us to construct a particular solution to (N) for any right-hand
side f . There is some freedom in the construction (1.35): firstly in the choice of two linearly
independent solutions (y1, y2) of (H); and secondly in setting the lower limits in the integrals.
We will show below how to use this freedom to fit boundary conditions, after doing an example.

Example 1.2. Consider the equation

y′′(x) + y(x) = tanx for −
π

2
< x <

π

2
. (1.36)

The corresponding homogeneous equation is y′′ + y = 0, for which we may choose two linearly-
independent solutions as

y1(x) = cosx, y2(x) = sinx. (1.37)

The Wronskian turns out to be

W (x) = y1(x)y
′

2
(x)− y2(x)y

′

1
(x) = cos2 x+ sin2 x = 1, (1.38)

and so by (1.34) we have

c1(x) = −

∫

tanx sinx dx = sin(x)− log(secx+ tanx), (1.39a)

c2(x) =

∫

tanx cosx dx = − cosx. (1.39b)

Thus a particular integral of the inhomogeneous ODE (1.36) is given by

y(x) = c1(x)y1(x) + c2(x)y2(x) = − cos(x) log(secx+ tanx). (1.40)

It would have been very difficult to “spot” this from (1.36)!
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1.7 Fitting boundary conditions

We now develop a general method to solve the inhomogeneous ODE (N) with homogeneous
boundary conditions. We consider the BVP

P2(x)y
′′(x) + P1(x)y

′(x) + P0(x)y(x) = f(x) a < x < b, (1.41a)

with boundary data
y(a) = 0 = y(b). (1.41b)

We will see later on how generalised boundary conditions more complicated than (1.41b) may
be handled. We follow the Variation of Parameters recipe (1.26), but now making specific
choices of the two basis solutions y1 and y2 such that y1(a) = 0 and y2(b) = 0. We assume
for the moment that such y1 and y2 exist and are linearly independent so that W [y1, y2] 6= 0,
and it follows that y1(b) 6= 0 and y2(a) 6= 0.

So the solution takes the form y(x) = c1(x)y1(x) + c2(x)y2(x), with the ci as in (1.34),
and the boundary conditions (1.41b) lead to

y(a) = c1(a)y1(a) + c2(a)y2(a) = c2(a)y2(a) = 0, (1.42a)

y(b) = c1(b)y1(b) + c2(b)y2(b) = c1(b)y1(b) = 0 (1.42b)

with the choices made for yi. This requires that we take c2(a) = 0 = c1(b) and, by imposing
these conditions on (1.34), we obtain explicit unique forms for c1 and c2, namely

c1(x) =

∫ b

x

f(ξ)y2(ξ)

P2(ξ)W (ξ)
dξ, c2(x) =

∫ x

a

f(ξ)y1(ξ)

P2(ξ)W (ξ)
dξ (1.43)

(note the switching of the limits in the integral for c1).
The solution to the BVP (1.41) can thus be written as

y(x) =

∫ x

a

f(ξ)y1(ξ)y2(x)

P2(ξ)W (ξ)
dξ +

∫ b

x

f(ξ)y2(ξ)y1(x)

P2(ξ)W (ξ)
dξ, (1.44)

which we can write concisely as

y(x) =

∫ b

a

g(x, ξ)f(ξ) dξ, (1.45)

where

g(x, ξ) =







y1(ξ)y2(x)

P2(ξ)W (ξ)
a < ξ < x < b,

y2(ξ)y1(x)

P2(ξ)W (ξ)
a < x < ξ < b,

(1.46)

is called the Green’s function. We will return to study the properties of g in more detail in
Section 2.

Example 1.3. We illustrate the construction of g for the BVP

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, (1.47a)

with boundary conditions

y(0) = 0 = y
(π

2

)

. (1.47b)
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1. Identify (H) as y′′ + y = 0.

2. Choose solutions y1 and y2 such that y1(0) = 0 and y2(π/2) = 0: y1(x) = sinx and y2(x) = cosx
will do.

3. Note P2 = 1 and calculate W =

∣
∣
∣
∣

y1 y2
y′
1

y′
2

∣
∣
∣
∣
= −1.

Therefore (1.46) gives the Green’s function as

g(x, ξ) =

{

− sin ξ cosx 0 < ξ < x < π
2
,

− cos ξ sinx 0 < x < ξ < π
2
.

(1.48)

By (1.45), the solution of the BVP (1.47) is then given by

y(x) =

∫ π

2

0

g(x, ξ)f(ξ) dξ. (1.49)

Example 1.4.: Nonexistence/nonuniqueness of solution
Here we consider the same ODE as in Example 1.3 but with modified boundary conditions, namely

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, (1.50a)

subject to

y(0) = 0 = y′
(π

2

)

. (1.50b)

The problem here is that y1(x) = sin(x) satisfies both boundary conditions (1.50b), and it is impossible
to find linearly independent y1 and y2 satisfying one boundary condition each. The construction that
led to (1.44) therefore fails.

However, from the discussion in §1.4, we know that any solution of (1.50a) can be written in the
form “particular integral + complementary function”, that is,

y(x) = c1(x)y1(x) + c2(x)y2(x)
︸ ︷︷ ︸

PI

+αy1(x) + βy2(x)
︸ ︷︷ ︸

CF

, (1.51)

where, as before,

c1(x) = −

∫ π/2

x

f(ξ)y2(ξ) dξ, c2(x) = −

∫ x

0

f(ξ)y1(ξ) dξ, (1.52)

and α, β are arbitrary constants. Here we use variation of parameters just to find the particular
integral: we have not yet attempted to apply the boundary conditions. Given the condition (1.28)
satisfied by c1 and c2, we can easily calculate

y′(x) =
[
c1(x)y

′

1
(x) + c2(x)y

′

2
(x)

]
+
[
αy′

1
(x) + βy′

2
(x)

]
. (1.53)

Now we impose the boundary conditions (1.50b). Using the particular forms y1(x) = sinx and
y2(x) = cosx and the conditions c2(0) = 0 = c1(π/2), we calculate

y(0) = β and y′(π/2) = −β − c2(π/2), (1.54)

and substitution into (1.50b) gives β = 0 and c2(π/2) = 0, i.e.

∫ π/2

0

f(ξ) sin(ξ) dξ = 0. (1.55)

The BVP (1.50) has no solution unless f satisfies the solvability condition (1.55). If (1.55) is
satisfied, then the solution of (1.50) exists but is not unique, since the value of α in (1.53) remains
arbitrary.
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1.8 Analogy with linear algebra

The difficulty encountered in Example 1.4 is reminiscent of a difficulty that can occur in
the solution of systems of linear equations. Consider the homogeneous and inhomogeneous
problems

Ax = 0, (H)

Ax = b, (N )

where A ∈ R
n×n and x, b ∈ R

n. If A is invertible (i.e. has nonzero determinant), then (H)
has only the trivial solution x = 0. In this case, (N ) has a unique solution x = A−1b.

However, if (H) has a solution x = x1 6= 0, then A must be singular and, for general b,
the solution of (N ) does not exist. If for some particular choice of b a solution of (N ) for x
does exist, then it is non-unique, since any vector of the form x + αx1 is also a solution. In
summary, if the homogeneous problem admits non-trivial solutions, then the inhomogeneous
problem has either no solution or an infinite number of solutions, but how can we determine
which it is?

One option is to note that (since the row and column ranks of A are equal) A∗ is singular
if and only if A is, where A∗ here denotes the transpose of A. Thinking of A as a linear
transformation on R

n, we can also identify A∗ as the corresponding adjoint transformation,
in the sense that

〈Ax,w〉 ≡ 〈x, A∗w〉 , (1.56)

where 〈x,w〉 ≡ x ·w denotes the usual Cartesian inner product.
If (H) admits non-trivial solutions for x, then the corresponding adjoint problem

A∗w = 0, (H∗)

also admits non-trivial solutions for w. By taking the inner product of (N ) with w and using
(1.56), we deduce that a necessary condition for (N ) to be solvable is that

〈b,w〉 = 0 for all w satisfying (H∗). (1.57)

It can be shown that the solvability condition (1.57) is also sufficient, and hence that (N ) is
solvable for x if and only if b is orthogonal to every vector in the kernel of A∗. Indeed, this
is really just a re-phrasing of the standard result for finite-dimensional inner product spaces
im(A) = ker(A∗)⊥: “the image of A is the orthogonal complement of the kernel of A∗”.

Collecting all the above together, we see that there are three alternative outcomes for
the inhomogeneous problem (N ): there is either a unique solution, no solution, or an infinite
number of solutions. These can be summarised as follows in the so-called Fredholm Alternative
Theorem (FAT).

Theorem 1.1. Fredholm Alternative (Rn version)
Exactly one of the following possibilities occurs.

1. The homogeneous equation (H) Ax = 0 has only the zero solution. In this case the
solution of (N ) Ax = b is unique.

2. The homogeneous equation (H) Ax = 0 admits non-trivial solutions, and so does
(H∗) A∗w = 0. In this case there are two sub-possibilities:
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2(a) if 〈b,w〉 = 0 for all w satisfying (H∗), then (N ) has a non-unique solution;

2(b) otherwise, (N ) has no solution.

Now let us see how Theorem 1.1 relates to Examples 1.3 and 1.4.

Example 1.3 corresponds to alternative 1 of Theorem 1.1. The homogeneous problem
Ly = y′′ + y = 0, subject to the boundary conditions y(0) = y(π/2) = 0 has no non-trivial
solutions. In this case, we are able to find two linearly independent solutions satisfying
y1(0) = 0 = y2(π/2), and the construction in §1.7 provides a unique solution to the inhomo-
geneous problem Ly = f for arbitrary f .

In Example 1.4, the homogeneous problem Ly = y′′ + y, subject to the new boundary
conditions y(0) = y′(π/2) = 0 does admit a non-trivial solution y1(x) = sinx. In this case, it
is impossible to find two linearly independent solutions satisfying y1(0) = 0 = y′2(π/2), and
the construction of the Green’s function given in §1.1 fails. This corresponds to alternative 2
of Theorem 1.1: the inhomogeneous problem Ly = f either has (2a) a non-unique solution,
if f satisfies the solvability condition (1.55); or (2b) no solution, if (1.55) is not satisfied.
However, to understand how (1.55) relates to (1.57), we need to define the adjoint of a
differential operator.

1.9 Adjoint operator and boundary conditions

We define the inner product between two (suitably smooth) functions defined on an interval
[a, b] by

〈u, v〉 :=

∫ b

a

u(x)v(x) dx, (1.58)

where the overbar denotes complex conjugate. Where it is clear that we are dealing with
real-valued functions, we will generally drop the overbar for simplicity.

In general, for a given linear operator L, the corresponding adjoint operator L
∗ is defined

by the inner product relation

〈Ly, w〉 = 〈y,L∗w〉 (1.59)

for all y, w in a suitable inner product space. To determine the adjoint of a linear differential
operator, one needs (i) to move the derivatives of the operator from y to w, using integration
by parts, and (ii) to set the boundary conditions to ensure that all boundary terms vanish.

Example 1.5. Let
Ly = y′′ (1.60)

for a ≤ x ≤ b. We use integration by parts to calculate

〈Ly, w〉 =

∫ b

a

y′′(x)w(x) dx = −

∫ b

a

y′(x)w′(x) dx+ [y′(x)w(x)]
b
a

=

∫ b

a

y(x)w′′(x) dx+ [y′(x)w(x)− y(x)w′(x)]
b
a ≡ 〈y,L∗w〉 . (1.61)

To enforce this identity, we identify the integrand in (1.61) with L
∗w, i.e.

L
∗w = w′′. (1.62)

We note in this case that L ≡ L
∗: the operator is self-adjoint.
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We must also ensure that the boundary terms in (1.61) vanish. Thus, the boundary conditions
imposed on y imply corresponding adjoint boundary conditions to be imposed on w.

As a first illustration, suppose that y satisfies the boundary conditions

B1y = y(a) = 0, B2y = y(b) = 0. (BC1)

Then the boundary terms in (1.61) reduce to

y′(b)w(b)− y′(a)w(a)− y(b)w′(b) + y(a)w′(a) = y′(b)w(b)− y′(a)w(a) (1.63)

and, to ensure that this vanishes for all y′(a) and y′(b), we deduce the adjoint boundary conditions

B
∗

1
w = w(a) = 0, B

∗

2
w = w(b) = 0. (BC1∗)

Alternatively, if we impose the more complicated boundary condtions

B1y = y′(a) = 0, B2y = 3y(a)− y(b) = . (BC2)

on y, then the boundary terms in (1.61) may be expressed in the form

y′(b)w(b)− y′(a)w(a)− y(b)w′(b) + y(a)w′(a) = y(a)w′(a)− 3y(a)w′(b) + y′(b)w(b). (1.64)

To ensure that this expression vanishes for all y(a) and y′(b), we deduce the adjoint boundary conditions

B
∗

1
w = w′(a)− 3w′(b) = 0, B

∗

2
w = w(b) = 0. (BC2∗)

Example 1.5 illustrates the following general points about the adjoint of a linear differential
operator.

(i) We can calculate the adjoint L∗ of an operator L without worrying about the boundary
conditions.

(ii) If L∗ = L, then the operator L is self-adjoint.

(iii) When L is supplemented with homogeneous boundary conditions to give a problem of
the form (L + BC), then corresponding adjoint boundary conditions are generated to
gave an adjoint problem (L∗ + BC∗).

(iv) If L = L
∗ and BC = BC∗ then the problem is said to be fully self-adjoint (as in the

case (BC1) above).

(v) As illustrated by (BC2) and (BC2∗), it is possible for the operator to be self-adjoint but
the boundary conditions not to be (sometimes this case is called “formally self-adjoint”).

By following through the integration by parts procedure, one can find a general form for
the adjoint operator:

Ly = P2y
′′ + P1y

′ + P0y (1.65a)

⇔ L
∗w = (P2w)

′′ − (P1w)
′ + P0w. (1.65b)

One can easily check that an analagous procedure works for higher-order operators: to find the
adjoint, move all the coefficients inside the derivatives, and switch the sign of any odd-ordered
derivatives. Using (1.65), we calculate

wLy − yL∗w = w
[
P2y

′′ + P1y
′ + P0y

]
− y

[
(P2w)

′′ − (P1w)
′ + P0w

)
]

=
[
P2wy

′ − (P2w)
′y + P1wy

]′
(1.66)
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and therefore
〈Ly, w〉 − 〈y,L∗w〉 =

[
P2wy

′ − (P2w)
′y + P1wy

]b

a
. (1.67)

Given appropriate homogeneous boundary conditions for y, we can deduce the correspond-
ing adjoint boundary conditions for w by setting the final integrated term in (1.67) equal to
zero. This integrated term must then be expressible in the form

〈Ly, w〉 − 〈y,L∗w〉 =
[
P2wy

′ − (P2w)
′y + P1wy

]b

a

= (K∗

1w)(B1y) + (K∗

2w)(B2y) + (K1y)(B
∗

1w) + (K2y)(B
∗

2w), (1.68)

where K1y and K2y are linearly independent of B1y and B2y, and likewise K∗
1w and K∗

2w are
linearly independent of B∗

1w and B
∗
2w. For example, in the case of (BC2) from Example 1.5,

we can write

[
y′w − yw′

]b

a
= −w(a)

︸ ︷︷ ︸

K∗

1
w

y′(a)
︸ ︷︷ ︸

B1y

+w′(b)
︸ ︷︷ ︸

K∗

2
w

(
3y(a)− y(b)

)

︸ ︷︷ ︸

B2y

+ y(a)
︸︷︷︸

K1y

(
w′(a)− 3w′(b)

)

︸ ︷︷ ︸

B∗

1
w

+ y′(b)
︸︷︷︸

K2y

w(b)
︸︷︷︸

B∗

2
w

.

(1.69)
We then see how the given boundary conditions B1y = B2y = 0 enforce the corresponding
ajoint conditions B∗

1w = B
∗
2w = 0.

Expanding out L∗ in (1.65), we find

L
∗w = P2w

′′ +
(
2P ′

2 − P1

)
w′ +

(
P ′′

2 − P ′

1 + P0

)
w, (1.70)

and, by comparing with L, we deduce that L is self-adjoint if and only if P1 = P ′
2. If so then,

setting P2 = −p, P1 = −p′ and P0 = q, we can write L as

Ly = −
(
py′

)′
+ qy, (1.71)

which is the most general formally self-adjoint second-order differential operator.
Finally, we are ready for a statement (without proof!) of the Fredholm Alternative The-

orem (FAT) for linear differential operators of the form (1.65a).

Theorem 1.2. Fredholm Alternative (linear ODE version)
We consider the linear homogeneous and inhomogeneous ODEs

Ly = 0, (H)

Ly = f 6≡ 0, (N)

for 0 < x < a, supplemented by linear homogeneous boundary conditions of the form

B1y = α1y(a) + α2y
′(a) + β1y(b) + β2y

′(b) = 0,
B2y = α3y(a) + α4y

′(a) + β3y(b) + β4y
′(b) = 0,

}

(BC)

(with (α1, α2, β1, β2) and (α3, α4, β3, β4) linearly independent). We also define the homoge-
neous adjoint equation

L
∗w = 0, (H∗)

and corresponding adjoint boundary conditions (BC∗), computed as described above.
Exactly one of the following possibilities occurs.
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1. The homogeneous problem (H+BC) has only the zero solution. In this case the solution
of (N+BC) is unique.

2. The homogeneous problem (H+BC) admits non-trivial solutions, and so does (H∗+BC∗).
In this case there are two sub-possibilities:

2(a) if 〈f, w〉 = 0 for all w satisfying (H∗+BC∗), then (N+BC) has a non-unique
solution;

2(b) otherwise, (N+BC) has no solution.

Exercise: Demonstrate that Examples 1.3 and 1.4 are consistent with FAT.

1.10 Inhomogeneous boundary conditions and FAT

Our statement of the Fredholm Alternative in Theorem 1.2 concerns ODEs subject to homo-
geneous boundary conditions. A little more work is required to apply the results to problems
with inhomogeneous boundary conditions. Suppose that we replace the boundary conditions
(BC) with

B1y = α1y(a) + α2y
′(a) + β1y(b) + β2y

′(b) = γ1,
B2y = α3y(a) + α4y

′(a) + β3y(b) + β4y
′(b) = γ2,

}

(NBC)

for some constants γ1 and γ2. First we note that the condition for a unique solution of the
modified problem (N+NBC) is exactly the same as case 1 in Theorem 1.2. To see this, let
v(x) be any twice differentiable function that satisfies the conditions (NBC): it need not be
a solution of the ODE (H). We can then make the boundary conditions homogeneous by
subtracting off v(x), i.e. defining ỹ(x) = y(x)− v(x), so that ỹ satisfies the problem

Lỹ = f − Lv = f̃ , (1.72)

say, with homogeneous boundary conditions B1ỹ = 0 = B2ỹ. We can now apply FAT to
deduce that there is a unique solution for ỹ, and therefore also for y, if and only if the
homogeneous problem (H+BC) has no non-trivial solutions.

If (H+BC) does admit non-trivial solutions, then we can apply Case 2 of FAT to deduce
that there is no solution unless 〈f̃ , w〉 = 0 for all w in the kernel of (H∗+BC∗), in which case
the solution is non-unique. The solvability condition in this case may be expressed as

0 = 〈f̃ , w〉 = 〈f, w〉 − 〈Lv, w〉

= 〈f, w〉 − 〈v,L∗w〉 − (K∗

1w)(B1v)− (K∗

2w)(B2v)− (K1v)(B
∗

1w)− (K2v)(B
∗

2w), (1.73)

when we apply the decomposition (1.68). Since w satisfies the homogeneous adjoint problem
(H∗+BC∗), the right-hand side of (1.73) only involves functions of v that are known by the
given boundary conditions B1v = γ1 and B2v = γ2, and we thus deduce the solvability
condition

〈f, w〉 = γ1K
∗

1w + γ2K
∗

2w. (1.74)

We note that (1.74) does not involve the function v that was introduced to make the
boundary conditions homogeneous, and indeed one can obtain (1.74) directly without first
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simplifying the boundary conditions. As above, let w be any solution of the homogeneous
adjoint problem (H∗+BC∗), and take the inner product of (N) with w to get

〈f, w〉 = (K∗

1w)(B1y) + (K∗

2w)(B2y) + (K1y)(B
∗

1w) + (K2y)(B
∗

2w). (1.75)

Application of the relevant boundary conditions then immediately produces (1.74).
In summary, when the boundary conditions are inhomogeneous, we have shown the fol-

lowing.

• The condition for a unique solution to exist (Case 1 of FAT) is unaffected.

• For cases where there is not a unique solution, the solvability condition is still obtained
by taking the inner product with a non-trivial solution w of the homogeneous adjoint
problem. Now the boundary terms produced by integration by parts do not disappear
identically but do only involve quantites that are in principle known from the specified
boundary conditions.

Example 1.6. Solve y′′(x) = f(x) on 0 < x < 1 with y(0) = 0 and y′(1) = 7.
Here L is self-adjoint, and the homogeneous adjoint problem is L∗w = w′′ = 0 with w(0) = w′(1) = 0.

This only has the trivial solution w ≡ 0, so original BVP has a unique solution for any f(x).
For this simple ODE, we can construct the solution straightforwardly as follows. First let’s make

the boundary conditions homogeneous by subtracting off a suitable solution of the homogeneous problem,
namely u(x) = 7x. Thus ỹ = y − u satisfies

ỹ′′(x) = f(x) on 0 < x < 1, ỹ(0) = 0 = ỹ′(1). (1.76)

We can easily integrate this simple ODE directly; alternatively, the Green’s function for this problem
is easily found to be given by

g(x, ξ) =

{

−x 0 < x < ξ < 1,

−ξ 0 < ξ < x < 1,
(1.77)

and the solution of the BVP is then

y(x) = 7x+

∫
1

0

g(x, ξ)f(ξ) dξ. (1.78)

Example 1.7. Solve the same ODE y′′ = 3 with boundary conditions y′(0) = 0 and y′(1) = β.
The problem is again self-adjoint. The homogeneous adjoint problem w′′ = 0, w′(0) = 0 = w′(1)

has the non-trivial solution w = 1 (or any multiple thereof). Now calculate

〈y′′, w〉 = 〈f, w〉

⇒

∫
1

0

y′′(x) dx =

∫
1

0

3 dx = 3

⇒
[
y′
]1

0
= β = 3 (1.79)

Thus if β 6= 3, we have a contradiction and no solution exists, while if β = 3, we have a non-unique
solution.

Example 1.8. When is the BVP

y′′(x) + y(x) = f(x) for 0 < x <
π

2
, y(0) = 1, y′

(π

2

)

= 0 (1.80)

solvable for y?
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This is a very slightly altered version of Example 1.4. The problem is again self-adjoint, and we
know that w(x) = sinx satisfies the homogeneous problem. So take the inner product with sinx and
integrate by parts to get

∫ π/2

0

(
y′′(x) + y(x)

)
sinx dx ≡ [y′(x) sinx− y(x) cosx]

π/2
0

= 1, (1.81)

when we evaluate the right-hand side using the given boundary conditions. The solvability condition
in this case is therefore

∫ π/2

0

f(x) sinx dx = 1. (1.82)
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