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4 Power series solution of linear
ODEs

These lecture notes are based on material written by Derek Moulton. Please send
any corrections or comments to Peter Howell.

4.1 Singular points of ODEs

4.1.1 Introduction

This section concerns nth order homogeneous linear ODEs of the form

Ly(x) = y(n)(x) + Pn−1(x)y(n−1)(x) + · · ·+ P1(x)y(n)(x) + P0(x)y(x) = 0. (4.1)

Note, in comparison with (2.38), we have divided through by Pn(x) so that the coefficient
of the highest-order derivative y(n)(x) is equal to 1. We will seek the solution to (4.1) in
the form of a power series expansion in the neighbourhood of some point x = x0. Both the
procedure and the nature of the solution depend on how well-behaved the functions Pj(x) are
as x→ x0.

4.1.2 Ordinary points

The point x0 is an ordinary point of the ODE (4.1) if all Pj(x) are analytic in a neighbourhood
of x = x0, i.e. they each have a convergent power series expansion of the form

∑∞
k=0 ck(x−x0)k.

In this case, it may be shown that:

1. all n linearly independent solutions of (4.1) are also analytic in a neighbourhood of
x = x0, i.e. can be expressed in the form

y(x) =

∞∑
k=0

ak(x− x0)k; (4.2)

2. the radius of convergence of the series solution (4.2) ≥ distance (in C) to nearest singular
point of the coefficent functions Pj(x).

The procedure at an ordinary point is straightforward: just (i) plug the expansion (4.2)
into the ODE (4.1), using the power series expansions of each of the Pj , then (ii) by equating
the coefficient of each power of x to zero, obtain a sequence of equations for the coefficients
ak that can be solved recursively.

http://people.maths.ox.ac.uk/moulton/
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Example 4.1. Find the solution of

y′(x) +
2x

(1 + x2)
y(x) = 0 (4.3)

as a power series expansion about x = 0.
Here x0 = 0 is an ordinary point. The nearest singular points of P0(x) = 2x/

(
1 + x2

)
are at

x = ±i, distance 1 from 0, so the solution of (4.3) can be written as a regular power series expansion
whose radius of convergence R ≥ 1.

By substituting (4.2) into (4.3) and multiplying through by
(
1 + x2

)
, we obtain

0 =

∞∑
k=0

[(
1 + x2

)
kakx

k−1 + 2akx
k+1
]

=

∞∑
k=0

[
kakx

k−1 + (k + 2)akx
k+1
]
. (4.4)

Now we want to increase k by 2 in the first term in the sum so that the exponents of x agree: we have
to take care of the cases k = 0 and k = 1 separately and so end up with

0 = 0× a0x−1 + 1× a1 +

∞∑
k=0

[
(k + 2)ak+2x

k+1 + (k + 2)akx
k+1
]
. (4.5)

The coefficient of x−1 is zero identically. By setting the coefficient of x0 to zero, we deduce that a1
must be zero. Then by setting to zero all the coefficients of x, x2, x3, . . ., we get the recurrence relation

ak+2 = −ak (k = 0, 1, 2, . . .). (4.6)

Since a1 = 0, it follows that the odd coefficients a3, a5, . . . are all equal to zero, and the even
coefficients are given by a2k = (−1)ka0. The solution of (4.3) is thus given by

y(x) = a0

∞∑
k=0

(−1)kx2x. (4.7)

One can easily verify that the radius of convergence of the series (4.7) is equal to 1. Indeed, it is
easy to solve the simple ODE (4.3) exactly to get y(x) = const/

(
1 + x2

)
, of which (4.7) is just the

Maclaurin expansion.

4.1.3 Singular points

The point x0 is called a singular point of the ODE (4.1) if at least one of the coefficient
functions Pj(x) is not analytic there. In this case, the general solution y(x) may not be
analytic at x0: y(x) or its derivatives might “blow-up” as x → x0. The following simple
example illustrates how solutions can behave near a singular point.

Example 4.2. Consider the first-order ODE

y′(x)− λx−my(x) = 0, (4.8)

where λ ∈ R and m is a non-negative integer. The general solution of (4.8) can easily be found via
separation of variables, and the generic behaviour as x→ 0 depends on the value of m.

(i) For m = 0, the point x = 0 is ordinary. The solution y(x) = const× eλx can be expanded as a
power series about x = 0 which converges for all x ∈ C.
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(ii) For m = 1, the point x = 0 is singular. The solution in this case is y(x) = const × xλ, which
is analytic if λ is a non-negative integer (despite 0 being a singular point). For any other λ,
the solution is singular at x = 0, but with a relatively benign singularity: either a pole (if λ is a
negative integer) or a branch point (otherwise).

(iii) For m = 2, the behaviour is much worse: the solution of (4.8) is y(x) = const× exp(−λ/x),
which has an essential singularity at x = 0. Similarly, there is an essential singularity at x = 0
for any value of m ≥ 2.

Example 4.2 suggests that the strength of the singularity in the solution at a singular
point tends to increase the higher the order of the poles in the coefficients in front of the
lower order terms of the ODE. Indeed, this is the key idea behind the classification of singular
points.

4.1.4 Regular singular points

If the coefficients Pj(x) are not all analytic at x = x0, but the modified coefficients

pj(x) ≡ Pj(x)(x− x0)n−j are all analytic at x = x0, (4.9)

then x = x0 is a regular singular point of the ODE (4.1). For example, Case (ii) of Example 4.2
has a regular singular point at x = 0. For the general second-order ODE

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0, (4.10)

there is a regular singular point at x = x0 if at least one of P (x) and Q(x) is not analytic at
x = x0 but both p(x) = (x− x0)P (x) and q(x) = (x− x0)2Q(x) are.

Any singular point that does not satisfy the criterion (4.9) is an irregular singular points.
At a regular singular point, the singularity in the solution is “not too bad”, and a modification
of the power series approach can be used. For irregular singular points, though, there is no
general theory!

Example 4.3. Cauchy–Euler equation
The Cauchy–Euler equation

y′′(x) +
a

x
y(x) +

b

x2
y(x) = 0 (4.11)

has a regular singular point at x = 0. The general solution can be found via the ansatz y = xα, where
α satisfies the characteristic equation α(α− 1) + aα+ b = 0, and there are two cases to consider.

(i) If the characteristic equation has two distinct roots α1 and α2, then, the general solution of
(4.11) is given by

y(x) = C1x
α1 + C2x

α2 (4.12)

(where C1 and C2 are arbitrary constants).

(ii) If the characteristic equation has a double root α, then the general solution is

y(x) = C1x
α + C2x

α log x. (4.13)

Note that if the roots are two distinct non-negative integers, then the general solution in case (i)
is analytic (even though the ODE has a singular point). In general, however, the behaviour as x→ 0
could be a negative, fractional or even complex power of x, and the solution generically has a pole or
a branch point at x = 0.

The behaviour illustrated by Example 4.3 carries over to regular singular points in general,
except that the functions xα1 and xα2 are each multiplied by an analytic function (i.e. a regular
power series in x). The general theory for regular singular points will be explained below,
but first we show how the point at infinity can be analysed.
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4.1.5 The point at infinity

The point x0 =∞ can also be classified by changing the independent variable via the substi-
tution

t = 1/x, u(t) = y(x), (4.14)

and classifying the point t = 0 for the resulting ODE for u(t).

Example 4.4. Find and classify the singular points of the ODEs

(i) y′(x)− y(x) = 0,

(ii) y′′(x) +
1

x2
y(x) = 0.

In case (i), the coefficient P0(x) = −1 is analytic everywhere, and there don’t appear to be any
singular points. But if we make the change of variables (4.14) then, by the chain rule, we have
u̇(t) = −

(
1/t2

)
y′(x). The ODE (i) therefore becomes

u̇(t) +
1

t2
u(t) = 0, (4.15)

which has an irregular singular point at t = 0, and it follows that (i) has an irregular singular point
at x =∞. Indeed, the solution y(x) = ex has an essential singularity as x→∞.

In case (ii), there is a regular singular point at x = 0 (since x2×
(
1/x2

)
= x is analytic at x = 0).

Again making the substitution (4.14), we get [exercise]

ü(t) +
2

t
u̇(t) +

1

t2
u(t) = 0, (4.16)

which likewise has a regular singular point at t = 0. Therefore the ODE (ii) has regular singular points
at x = 0 and at x =∞.

4.2 Frobenius method for 2nd order ODEs

4.2.1 The indicial equation

From now on, we restrict attention to regular singular points of 2nd order ODEs. If x = x0
is a regular singular point, then we can write the ODE in the form

Ly(x) = y′′(x) +
p(x)

(x− x0)
y′(x) +

q(x)

(x− x0)2
y(x) = 0, (4.17)

where p and q are analytic, and can therefore be expanded as convergent power series:

p(x) =

∞∑
k=0

pk(x− x0)k, q(x) =

∞∑
k=0

qk(x− x0)k. (4.18)

The idea is to seek a solution in the form of a Frobenius series

y(x) = (x− x0)α
∞∑
k=0

ak(x− x0)k. (4.19)

Note the similarity to the Cauchy–Euler Example 4.3: y(x) ∼ a0(x− x0)α as x→ 0, but now
the power of x is multiplied by an a priori unknown analytic function

∑
k ak(x− x0)k, with

coefficients ak to be determined. We may assume that a0 6= 0 by choosing α appropriately.
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Now we plug (4.19) into the ODE (4.17), to get

∞∑
k=0

(α+ k)(α+ k − 1)ak(x− x0)α+k−2 +

∞∑
k=0

∞∑
j=0

(α+ k)pjak(x− x0)α+k+j−2

+
∞∑
k=0

∞∑
j=0

qjak(x− x0)α+k+j−2 = 0, (4.20)

and equate coefficients. At the lowest power, namely (x− x0)α−2, we find[
α(α− 1) + p0α+ q0

]
a0 = 0. (4.21)

Since a0 is defined to be non-zero, the quadratic function in brackets must be zero. This
polynomial plays an important role, and we will denote it by

F (α) = α(α− 1) + p0α+ q0. (4.22)

The equation F (α) = 0 is called the indicial equation, and it determines the possible indicial
exponents α1, α2. Note that in general these exponents can be complex! In any case, we
order them such that Re[α1] ≥ Re[α2].

4.2.2 The first series solution

Let us continue equating coefficients of powers of (x − x0). We find after some algebra that
the coefficients of (x− x0)k+α−2 satisfy

F (α+ k)ak = −
k−1∑
j=0

[(α+ j)pk−j + qk−j ]aj (4.23)

To generate the first series solution, we take α = α1: the solution of the indicial equation
with the larger real part. Since F is a quadratic function with roots at α1 and α2, with
Re[α2] ≤ Re[α1], it follows that F (α1 + k) 6= 0 for any integer k ≥ 1 We can therefore
rearrange (4.23) to

ak = − 1

F (α1 + k)

k−1∑
j=0

[(α1 + j)pk−j + qk−j ]aj (4.24)

and thus solve successively for all the coefficients a1, a2, . . ., and we obtain one solution

y1(x) = (x− x0)α1

∞∑
k=0

ak(x− x0)k. (4.25)

Therefore at least one solution of (4.17) can always be expressed as a Frobenius series
with indicial exponent α = α1, and we call this the first solution.
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4.2.3 The second solution Case I: α1 − α2 6∈ Z

For the second solution, we have to distinguish between several cases and sub-cases. The
simplest case occurs when the indices α1 and α2 do not differ by an integer (so in particular
they are not equal). In this case, F (α2 + k) 6= 0 for all k ≥ 1, so we can solve (4.23) also with
the second value of the exponent α = α2. We call the coefficients the second solution bn to
distinguish from the previous coefficients ak, and they satisfy the recurrence relations

bk = − 1

F (α2 + k)

k−1∑
j=0

[(α2 + j)pk−j + qk−j ]bj . (4.26)

Thus, we obtain with no problems a second solution also as a Frobenius series, with indicial
exponent α2:

y2(x) = (x− x0)α2

∞∑
k=0

bk(x− x0)k. (4.27)

4.2.4 Case II: α1 = α2

In the case of a double root we apparently only get one solution with the Frobenius method,
and we have to multiply by logs to get a second solution (similar to the case of a double root
in Cauchy–Euler). In particular, the second solution is of the form

y2(x) = y1(x) log(x− x0) + (x− x0)α1

∞∑
k=0

bk(x− x0)k, (4.28)

where y1 is the first solution (4.25).

The form of solution (4.28) can be derived using the so-called derivative method, which
is outlined in §4.2.6. For the moment, we can at least verify that it works in principle by
substituting (4.28) into (4.17). In doing so, note that, with L defined by (4.17),

L
[
y1(x) log(x− x0)

]
= log(x− x0)Ly1(x) +

2

(x− x0)
y′1(x) +

p(x)− 1

(x− x0)2
y1(x) (4.29)

and because Ly1 = 0, when (4.28) is substituted into (4.17), the logs vanish, and one can
solve a sequence of recurrence relations for the coefficients bk as above.

4.2.5 Case III: α1 − α2 a positive integer

If α1 − α2 = N , where N > 0 is an integer, then we will potentially run into trouble in
equation (4.26) when k = N . In this case, there are two sub-possibilities.

Case III(a): For k = N , the right-hand side of (4.26) is non-zero.

Then we have a contradiction, and the standard Frobenius solution method doesn’t work.
To get a second solution, we use the same form as in Case II, i.e.

y2(x) = y1(x) log(x− x0) + (x− x0)α2

∞∑
k=0

bk(x− x0)k. (4.30)
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Again, when we substitute (4.30) into the ODE (4.17), the logs vanish and one obtains a
set of recurrence relations that determine the coefficients bk. Note that the indicial exponent
for the second series in (4.30) is α2, whereas y1 is given by the Frobenius series using the
exponent α1.

Case III(b): When k = N , the right-hand side of RHS of (4.23) is zero.

In this case, there is no contradiction, but any choice for bN will satisfy (4.26), i.e. bN
remains undetermined. The second solution therefore has Frobenius form

y2(x) = (x− x0)α2

∞∑
k=0

bk(x− x0)k, (4.31)

where b0 can be chosen to be b0 = 1 (without loss of generality) and bN is arbitrary. Since
α2 +N = α1, changing bN just corresponds to adding multiples of y1 to (4.31).

Example 4.5. Find a series solution about the regular singular point x = 0 for the differential
equation

4x2y′′(x) + 4xy′(x) + (4x2 − 1)y(x) = 0. (4.32)

Step 1: Assume a solution of form

y(x) = xα
∞∑
k=0

akx
k (4.33)

with a0 6= 0. Compute the corresponding series for y′, y′′ by differentiating term by term.

Step 2: Plug the series (4.33) into the ODE (4.32) and multiply everything out:

0 =

∞∑
k=0

4(α+ k)(α+ k − 1)akx
α+k

︸ ︷︷ ︸
4x2y′′

+

∞∑
k=0

4(α+ k)akx
α+k

︸ ︷︷ ︸
4xy′

−
∞∑
k=0

akx
α+k

︸ ︷︷ ︸
y

+

∞∑
k=0

4akx
α+k+2

︸ ︷︷ ︸
4x2y

=
∞∑
k=0

(
4(α+ k)2 − 1

)
akx

α+k +

∞∑
k=0

4akx
α+k+2. (4.34)

Step 3: The indicial equation comes from the balance at lowest order, in this case xα:

F (α) = 4α2 − 1. (4.35)

The indicial exponents are the roots of F , i.e.

α1 =
1

2
, α2 = −1

2
. (4.36)

Step 4: Shift the terms in the series (4.34) so that the exponents of x are the same in each term.
For this example, we need only shift the index in the last sum, so all the series have terms proportional
to xα+k. Thus, by replacing k with k − 2, we have

∞∑
k=0

4akx
α+k+2 ≡

∞∑
k=2

4ak−2x
k+α, (4.37)
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and thus we obtain

0 = a0F (α)xα + a1F (α+ 1)xα+1 +

∞∑
k=2

[akF (α+ k) + 4ak−2]xk+α. (4.38)

We have chosen the α so that the equation balances at xα, and hence a0 is free. Balancing at all other
orders will determine the coefficients ak for k ≥ 1.

Step 5: First series
Set α = α1 = 1/2 in (4.38); note that

F (α1 + k) = 4

(
1

2
+ k

)2

− 1 = 4k(k + 1) (4.39)

and thus we obtain

a1 = 0, ak =
−1

k(k − 1)
ak−2 k = 2, 3, . . . . (4.40)

Step 6: Use the recursion relation (4.40) to determine a formula for ak in terms of a0. A good
idea is to write out a few terms, and look for a pattern. Here, since a1 = 0, we easily see that
a3 = a5 = · · · = 0, i.e. all the odd coeffients are zero, and we are left with

a2 =
−1

2 · 3
a0,

a4 =
−1

4 · 5
a2 =

1

5 · 4 · 3 · 2
a0,

. . . . . . . . . . . . . . .

a2k =
(−1)ka0
(2k + 1)!

. (4.41)

Step 7: Input the formula (4.41) for the coefficients to obtain the first solution:

y1(x) = a0x
1/2

∞∑
k=0

(−1)k

(2k + 1)!
x2k. (4.42)

Step 8: Second series
Repeat the process for the second root α2 = −1/2. In this case, α1 − α2 = 1 = N is an integer, so

we are in Case III.
The coefficients bk in the second series satisfy

0 = b0F (α2)xα2 + b1F (α2 + 1)xα2+1 +

∞∑
k=2

[bkF (α2 + k) + 4bk−2]xk+α2 . (4.43)

The coefficient of xα2 , namely F (α2), is zero by construction. At order xα2+N = xα2+1, we obtain
F (1/2)b1 = 0× b1 = 0. There is no contradiction, and b1 is arbitrary and can be set to zero: we are
in CaseIII(b).

Step 9: Following the recursion forward with b0 6= 0, analogous computations to the above yield

y2(x) = b0x
−1/2

∞∑
k=0

(−1)k

(2k)!
x2k. (4.44)
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Step 10: The general solution is a linear combination of the two series solutions, i.e.

y(x) = C1x
1/2

∞∑
k=0

(−1)k

(2k + 1)!
x2k + C2x

−1/2
∞∑
k=0

(−1)k

(2k)!
x2k. (4.45)

In this example, we can recognise the series for sine and cosine and thus express the solution in closed
form. In fact, the general solution to (4.32) (which is called Bessel’s equation of order 1/2) is

y(x) = C1
sinx√
x

+ C2
cosx√
x
. (4.46)

4.2.6 Derivative method

Here we discuss Case II, where α1 is a double root of F (α), and give a brief justification for
the form (4.28) of the series solution. Without loss of generality, let a0 = 1. Suppose we solve
(4.23) for the coefficients a1, a2, . . . with arbitrary α, i.e. with F (α) not generally equal to
zero. Thus, each coefficient ak is a function of α, and we can think of α as a parameter in
the series

y(x;α) = (x− x0)α +

∞∑
k=1

ak(α)(x− x0)k+α. (4.47)

The recurrence relation (4.23) ensures that the coefficient of (x− x0)α+k−2 in Ly is zero for
all k ≥ 1, and we are just left with

Ly(x;α) = (x− x0)α−2F (α). (4.48)

Since F (α1) = 0, it follows that Ly(x;α1) = 0 and thus

y1(x) = y(x;α1) =

∞∑
0

ak(α1)(x− x0)α1+k (4.49)

is a solution (as we already know). Now the idea is to differentiate (4.48) with respect to α,
then set α = α1. Since L has no dependence on α,

L

[
∂

∂α
y(x;α)

]
=

∂

∂α

[
Ly(x;α)

]
=

∂

∂α

[
(x− x0)α−2F (α)

]
= (x− x0)α−2 log(x− x0)F (α) + (x− x0)α−2F ′(α). (4.50)

Since α1 is a double root of F , the right-hand side of (4.50) is zero when α = α1, and it
follows that

y2(x) =
∂

∂α
y(x;α)

∣∣∣∣
α=α1

(4.51)

satisfies Ly2 = 0. To get a more explicit form, calculate

∂

∂α
y(x;α) =

∂

∂α

( ∞∑
k=0

ak(α)(x− x0)α+k
)

= log(x− x0)
∞∑
k=0

ak(α)(x− x0)α+k +

∞∑
k=0

a′k(α)(x− x0)α+k (4.52)
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and set α = α1 to get

y2(x) = log(x− x0)y1(x) +

∞∑
k=0

bk(x− x0)α1+k, (4.53)

in agreement with (4.28), where bk = a′k(α1).
In principle, the derivative method allows us to determine the coefficients bk in the second

series solution, as outlined above. However, to do so we require a closed form for ak(α) for
general α. In practice, it is usually easier just to substitute in the appropriate form (4.28) of
the series and compare coefficients.

4.2.7 More examples

Example 4.6. Find a series solution about x = 0 for the differential equation

x(x− 1)y′′(x) + 3xy′(x) + y(x) = 0. (4.54)

First we divide through by x(x− 1) to obtain the standard form

y′′(x) +
3

x− 1
y′(x) +

1

x(x− 1)
y(x) = 0. (4.55)

Since p(x) = 3x/(x − 1) and q(x) = x/(x − 1) are analytic at x = 0, it is a regular singular point.
Thus we expect to find at least one solution in the form of a Frobenius series.

If we try for a solution with the local behaviour of the form y(x) ∼ xα as x → 0, then (4.54)
implies that

− α(α− 1)xα−1 + higher order terms = 0, (4.56)

and we deduce that the indicial equation is

F (α) = α(α− 1) = 0, (4.57)

which has roots α1 = 1, α2 = 0.
More generally, by seeking the solution as a power series of the form

y(x) = xα
∞∑
k=0

akx
k (4.58)

we obtain

∞∑
k=0

−(k + α)(k + α− 1)akx
k+α−1

︸ ︷︷ ︸
series 1

+

∞∑
k=0

[(k + α)(k + α− 1) + 3(k + α) + 1] akx
k+α

︸ ︷︷ ︸
series 2

= 0. (4.59)

Now, shift the index in series 2 so that the indices match series 1:

series 2 =

∞∑
k=1

[
(k + α− 1)(k + α− 2) + 3(k + α− 1) + 1

]
ak−1x

k+α−1. (4.60)

Now we can bring the two sums together and demand that the coefficients of xk+α−1 all vanish. The
first term with k = 0 vaishes identically by the indicial equation (4.57). Simplifying the terms for
k > 0, we obtain the recursion relation

(k + α)(k + α− 1)ak − (k + α)2ak−1 = 0. (4.61)
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Note that the coefficient of ak is just F (k + α), as expected.
On substituting α = α1 = 1 into (4.61), we obtain

ak =
k + 1

k
ak−1. (4.62)

Without loss of generality setting a0 = 1, we obtain the simple formula ak = k + 1, and thus one
solution to (4.54) is given by the series

y1(x) =

∞∑
k=0

(k + 1)xk+1 =
x

(1− x)2
. (4.63)

For a second solution, since α1 − α2 = 1 is an integer, we are in Case III, and there may or may
not be a Frobenius series solution. To find out, we seek a solution

y2 = xα2

∞∑
k=0

bkx
k =

∞∑
k=0

bkx
k. (4.64)

Setting α = α2 = 0 in (4.61), we have

(k − 1)bk = kbk−1. (4.65)

We immediately run into trouble, since we must take b0 6= 0, and thus with k = 1 we get the contra-
diction 0 × b1 = b0 6= 0. Hence the second Frobenious solution does not work: we are in Case III(a),
and the form of the second solution is

y2(x) = y1(x) log(x) +

∞∑
k=0

bkx
k. (4.66)

Example 4.6 illustrates that the indicial equation can be found just by considering the
leading-order terms, without bothering to substitute in an entire series. In Example 4.6, once
we have obtained one series solution y1(x) = x/(1 − x)2, we can construct the other using
reduction of order. Setting y(x) = y1(x)v(x) in (4.54), we find that v satisfies the ODE

v′′(x) +
(2− x)

x(1− x)
v′(x) = 0, (4.67)

which is easily integrated to give

v(x) = C1 + C2

(
log(x) +

1

x

)
. (4.68)

A second solution to (4.54) is thus given by

y2(x) = y1(x)

(
log(x) +

1

x

)
= y1(x) log(x) +

1

(1− x)2
, (4.69)

which indeed has the form (4.66) when expanded about x = 0.

Example 4.7. Find the form of series solutions about x = 0 for the differential equation

sin2(x)y′′ − sin(x) cos(x)y′ + y = 0. (4.70)

We consider the functions

p(x) = −x sin(x) cos(x)

sin2(x)
, q(x) = x2

1

sin2(x)
. (4.71)
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As both p and q are finite as x→ 0 (the singularities there are removable), x = 0 is a regular singular
point. Note that

lim
x→0

p(x) = −1, lim
x→0

q(x) = 1, (4.72)

as can be obtained with L’Hôpital’s rule. This implies that the leading terms in the power series
expansions of p and q are p0 = −1 and q0 = 1, and the indicial equation is

F (α) = α(α− 1) + p0α+ q0 = (α− 1)2 = 0. (4.73)

Hence α = 1 is a repeated root.
We conclude that one solution is of the form

y1(x) =

∞∑
k=0

akx
k+1 (4.74a)

and a second solution is given by

y2(x) = y1(x) log(x) +

∞∑
k=0

bkx
k+1. (4.74b)

The coefficients {ak, bk} can in principle be computed by inserting the solution forms (4.74) into (4.70)
and balancing coefficients, but we will not do so here.

One can solve (4.70) exactly by spotting that sinx is a solution and then using reduction
of order: this approach confirms that the local expansions (4.74) are indeed of the correct
form.
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