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5 Special functions

These lecture notes are based on material written by Derek Moulton. Please send
any corrections or comments to Peter Howell.

5.1 Introduction

We have seen in the previous section a method to construct power series solutions to ODEs
with non-constant coefficients and singular points. Except for a few examples, even if a closed
form for the coefficients ak can be found, the resulting power series cannot be expressed
in terms of elementary functions, i.e. exponentials, sines, cosines, etc. Nevertheless, some
particular ODEs occur frequently enough for their solutions to have been given special names
and for their behaviour to be fully characterised. In this section, we explore some of these
so-called special functions.

5.2 Bessel functions

5.2.1 Bessel’s equation

Bessel’s equation arises whenever one separates the variables in the Laplacian in cylindrical
polar coordinates. For example, consider the vibrating membrane of a circular drum. It may
be shown that the transverse displacement w(x, y, t) of the membrane at time t and position
(x, y) satisfies the two-dimensional wave equation

1

c2
∂2w

∂t2
= ∇2w =

∂2w

∂x2
+
∂2w

∂y2
, (5.1)

where c is a constant (representing the wave-speed and given by c =
√
T/ρ, where T and ρ

are the membrane tension and density). If the membrane is pinned at the boundary of a disk
of radius a, then we have to solve (5.1) in x2 + y2 < a2, subject to the boundary condition

w = 0 at x2 + y2 = a2. (5.2)

We look for a normal mode in which the membrane oscillates with frequency ω, so that
the displacement takes the form w(x, y, t) = u(x, y) cos(ωt + φ). By substituting into (5.1),
we find that u satisfies the Helmholtz equation

∇2u+ λu = 0, (5.3)

with λ = ω2/c2.

http://people.maths.ox.ac.uk/moulton/
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Now let us switch to plane polar coordinates (r, θ) such that (x, y) = r(cos θ, sin θ), and
thus obtain the equation and boundary condition:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+ λu = 0 0 ≤ r < a, 0 ≤ θ ≤ 2π, (5.4a)

u = 0 r = a, 0 ≤ θ ≤ 2π, (5.4b)

u 2π-periodic in θ. (5.4c)

This is a PDE eigenvalue problem: u ≡ 0 always satisfies the problem (5.4), and our aim is
to find values of λ such that there are non-trivial solutions u(r, θ).

Since u(r, θ) is periodic in θ we can expand u into a Fourier series of the form

u(r, θ) = U0(r) +

∞∑
n=1

Un(r) cosnθ + Vn(r) sinnθ. (5.5)

Substitution of (5.5) into (5.4) gives

1

r

(
rU ′n(r)

)′
+

(
λ− n2

r2

)
Un(r) = 0, for 0 ≤ r < a, (5.6a)

Un(r) = 0 at r = a. (5.6b)

The same equation and boundary condition hold for Vn(r). Now eliminate λ by the rescaling
Un(r) = y(x) with x = λ1/2r, resulting in

x2y′′(x) + xy′(x) +
(
x2 − n2

)
y(x) = 0, (5.7)

which is known as Bessel’s equation of order n.

5.2.2 Bessel functions of first and second kind

Bessel’s equation (5.7) has a regular singular point at x = 0, with indicial equation given
by F (α) = α2 − n2 = 0, the solutions of which are α1 = n, α2 = −n, with a double root for
n = 0. In general, the parameter n in (5.7) can be any complex number but, in the context
described above where u(r, θ) is required to be 2π-periodic in θ, we need only consider n to
be a non-negative integer. Similarly, since x is a scaled version of the radial coordinate r,
we focus on non-negative values of x. A detailed analysis of the singular point at x = 0, as
in §4.2, reveals that one solution of (5.7) is given by a Frobenius series about x = 0 with
the exponent α1 = n, and the other solution is given by a Frobenius series with exponent
α2 = −n plus log(x) times the first solution (i.e. Case III(a) from §4.2.5).

The first Frobenius series, with a specific normalisation of the leading coefficient in the
expansion, defines the Bessel functions of first kind

Jn(x) =
(x

2

)n ∞∑
k=0

(−1)k

k!(k + n)!

(x
2

)2k
, (5.8)

for integer n ≥ 0.
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Similarly, a specifically normalised choice for the second series solution defines the Bessel
functions of second kind

Yn(x) =
2

π
log
(x

2

)
Jn(x)− 1

π

(
2

x

)n n−1∑
k=0

(n− k − 1)!

k!

(
x2

4

)k

− 1

π

(x
2

)n ∞∑
k=0

[
ψ(k + 1) + ψ(n+ k + 1)

]
k!(n+ k)!

(
−x

2

4

)k

, (5.9)

where the digamma function ψ(m) for integer m ≥ 1 is given by ψ(m) = −γ +
∑m−1

k=1 k
−1,

and γ = 0.5772 · · · is the Euler–Mascheroni constant. More details regarding the expansions
(5.8) and (5.9) are explored on Problem Sheet 3.

5.2.3 Properties of Bessel functions

The first few Bessel functions Jn(x) and Yn(x) are plotted in Figure 5.1. Many properties of
the Bessel functions are known — see for example the NIST Digital Library of Mathematical
Functions (DLMF). — and we list here just a few.

(i) Since Bessel’s equation (5.7) has only one singular point for finite x, the series (5.8) and
(5.9) for Jn and in Yn have infinite radius of convergence.

(ii) Also, Jn and Yn are oscillating functions that decay slowly as x → ∞. Each has
an infinite set of discrete zeros in x > 0, which are quite useful and have therefore
been tabulated, for example at mathworld. The first few zeros of Jn and Yn (denoted
jn,1, jn,2, . . . and yn,1, yn,2, . . .) are listed in Table 5.1, and 5.2, respectively.

(iii) As x → 0, the behaviours of the two kinds of Bessel function are quite different. For
the first kind, we have Jn(0) = 0 if n > 0, and J0(0) = 1, while the second kind Bessel
functions are singular, with Yn(x) → −∞ as x → 0. (The singularity is logarithmic
when n = 0, or has Yn(x) = O (x−n) when n > 0.)

(iv) The following two recursion relations can be derived from the local expansion (5.8):

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x), Jn+1(x) = −2J ′n(x) + Jn−1(x). (5.10)

The same relations also hold for the second-kind Bessel functions Yn.

5.2.4 Normal modes of a circular drum

We can now express the general solution to (5.6a) in terms of Bessel functions as

Un(r) = C1Jn

(
λ1/2r

)
+ C2Yn

(
λ1/2r

)
, (5.11)

for some arbitrary constants C1 and C2. We require the displacement to be bounded as r → 0,
and must therefore set C2 = 0 to remove the singularity in Yn. For a non-trivial solution we
must have C1 6= 0, and the boundary condition (5.6b) at r = a therefore leads to

Jn

(
λ1/2a

)
= 0, (5.12)

http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://mathworld.wolfram.com/BesselFunctionZeros.html
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Figure 5.1: (a) Bessel functions of the first kind Jn(x). (b) Bessel functions of the second
kind Yn(x).

m j0,m j1,m j2,m j3,m j4,m
1 2.40483 3.83171 5.13562 6.38016 7.58834
2 5.52008 7.01559 8.41724 9.76102 11.0647
3 8.65373 10.1735 11.6198 13.0152 14.3725
4 11.7915 13.3237 14.796 16.2235 17.616
5 14.9309 16.4706 17.9598 19.4094 20.8269

Table 5.1: The first five zeros of Jn with n = 0, 1, 2, 3, 4.

m y0,m y1,m y2,m y3,m y4,m
1 0.893577 2.19714 3.38424 4.52702 5.64515
2 3.95768 5.42968 6.79381 8.09755 9.36162
3 7.08605 8.59601 10.0235 11.3965 12.7301
4 10.2223 11.7492 13.21 14.6231 15.9996
5 13.3611 14.8974 16.379 17.8185 19.2244

Table 5.2: The first five zeros of Yn with n = 0, 1, 2, 3, 4.
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i.e. λ1/2a has to be one of the zeros jn,m of Jn. Thus the eigenvalues for (5.6) are given by

λ =
j2n,m
a2

, n = 0, 1, . . . , m = 1, 2, . . . (5.13)

with corresponding eigenfunctions

Un,m(r) = Jn (jn,mr/a) . (5.14)

We can then read off the normal frequencies of the drum from the definition of λ, i.e.

ωn,m = jn,m
c

a
. (5.15)

5.2.5 Sturm–Liouville form

The differential equation (5.6a) can be written in Sturm-Liouville form by multiplying through
by r. For convenience we also pose the problem on the unit interval (corresponding to the
modes in a disk of unit radius a = 1, which may be obtained by rescaling r with a) to get the
eigenvalue problem

LU(r) = −
(
rU ′(r)

)′
+
n2

r
U(r) = λrU(r), for 0 < r < 1, (5.16a)

U(r) = 0 at r = 1, (5.16b)

U(r) bounded as r → 0. (5.16c)

From above, we know that the eigenvalues and eigenfunctions for (5.16) are given by

λn,m = j2n,m, Un,m(r) = Jn (jn,mr) . (5.17)

We recognise (5.16a) as a singular Sturm–Liouville equation with weighting function r,
and thus deduce the following orthogonality relation between eigenfunctions:∫ 1

0
Jn (jn,`r) Jn (jn,mr) r dr = 0 for ` 6= m. (5.18)

A separate calculation for the case ` = m results in [see Problem Sheet 3 ]∫ 1

0
J2
n (jn,mr) r dr =

1

2

(
J ′n(jn,m)

)2
. (5.19)

5.3 Legendre functions

5.3.1 The Legendre equation

The Legendre equation arises when studying eigenvalue problems for the 3D Laplacian oper-
ator in spherical coordinates. Suppose again we are solving the Helmholtz equation (5.3) but
now using spherical polars (r, θ, φ), so the Laplacian is given by

∇2u =
1

r

∂2

∂r2
(ru) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
= −k2u. (5.20)
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When we separate the variables by seeking a solution of the form

u(r, θ, φ) = R(r)Θ(θ)Φ(φ), (5.21)

then (5.20) may be rearranged to

r
(
rR(r)

)′′
R(r)

+ k2r2 = −(sin θΘ′(θ))′

sin θΘ(θ)
− Φ′′(φ)

sin2 θΦ(φ)
. (5.22)

By the usual argument, the left-hand side of (5.22) is a function only of r, while the
right-hand side is independent of r, so they must both equal a constant, λ say. We then have

− Φ′′(φ)

Φ(φ)
=

sin θ (sin θΘ′(θ))′

Θ(θ)
+ λ sin2 θ, (5.23)

which likewise must equal a constant. For Φ to be a 2π-periodic function, that constant
must be of the form m2, where m ≥ 0 is an integer: this gives Φ = const if m = 0 or
Φ(φ) = cos(mφ+ α) if m > 0. We are then left with the following linear ODE for Θ(θ):

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
λ− m2

sin2 θ

)
Θ = 0. (5.24)

Equation (5.24) is to be solved for 0 < θ < π. It may readily be verified that θ = 0 and θ = π
are both regular singular points of (5.24), and to get physically resonable solutions we must
insist that Θ(θ) is sufficiently well-behaved as θ → 0, π.

We can express (5.24) in a more helpful form by making the change of variable cos θ = x
and Θ(θ) = y(x). Then d/dθ = − sin θ d/dx, and (5.24) is transformed into the associated
Legendre equation for y(x):

d

dx

((
1− x2

) dy

dx

)
+

(
λ− m2

1− x2

)
y = 0. (5.25)

The parameters m and λ in (5.25) can in general take any complex values. We will focus on
the case where m is a non-negative integer and (for reasons that will become clear below)
λ = `(`+ 1), where ` is also a non-negative integer. The solutions of the associated Legendre
equation (5.25) are the associated Legendre functions; for m = 0, we drop the “associated”
and speak of the Legendre equation and Legendre functions.

5.3.2 Properties of Legendre functions

Many properties and relations satisfied by solutions of (5.25) may be found, for example, at
DLMF or mathworld. Here we list a few useful properties.

(i) The points x = ±1 and x = ∞ are regular singular points of the associated Legendre
equation (5.25). The indicial exponents for x = ±1 are −m/2 and m/2. Thus, the local
expansion yields one bounded and one unbounded solution as x → 1, and similarly as
x → −1. (When m = 0, there is a repeated root of the indicial equation, and one
solution is of order log(x∓ 1) as x→ ±1.)

http://dlmf.nist.gov/
http://mathworld.wolfram.com/AssociatedLegendrePolynomial.html
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(ii) If we consider bounded solutions of (5.25) on −1 < x < 1, we see that boundedness
imposes two conditions, one at either end of the interval. This suggests that (5.25) can
be posed as a singular Sturm–Liouville problem:

−
((

1− x2
)
y′(x)

)′
+

m2

1− x2
y(x) = λy(x) for − 1 < x < 1, (5.26a)

y(x) bounded as x→ ±1. (5.26b)

(iii) The eigenvalues of (5.26) are given by λ = `(` + 1) with integer ` ≥ m ≥ 0. The
eigenfunctions are the corresponding associated Legendre functions, which are denoted
by y(x) = Pm

` (x). From Sturm–Liouville theory, we infer the orthogonality relation∫ 1

−1
Pm
k (x)Pm

` (x) dx = 0 for k 6= `. (5.27)

The case k = ` requires explicit calculation: see Problem Sheet 3.

(iv) For m = 0 and integer ` ≥ 0, the Legendre functions (without “associated”) are denoted
by P`(x). It may be shown that P` is a polynomial of degree `: if one seeks the solution
of (5.25) as a power series expansion about x = 0,

y(x) =
∞∑
k=0

akx
k, (5.28)

then the series terminates, with ak ≡ 0 for k > `. The resulting Legendre polynomials
are given explictly by the Rodrigues’ formula:

P`(x) =
1

2``!

d`

dx`

[
(x2 − 1)`

]
. (5.29)

(v) A second, linearly independent, solution of the Legendre equation (5.26a) with m = 0
is given by the Legendre function of second kind, denoted by Q`(x). These solutions
are unbounded as x → ±1. For the case ` = 0, the solution Q0 is found on Problem
Sheet 2:

Q0(x) =
1

2
log

(
1 + x

1− x

)
. (5.30)

(vi) For the general case of nonzero m ≤ `, the associated Legendre functions of first and
second kind are given by

Pm
` (x) = (−1)m

(
1− x2

)m/2 dmP`(x)

dxm
, (5.31a)

Qm
` (x) = (−1)m

(
1− x2

)m/2 dmQ`(x)

dxm
. (5.31b)

The associated Legendre function Pm
` is a polynomial if and only if m is even.
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5.4 Generalisation: orthogonal polynomials

There are many other second order linear ODEs with families of orthogonal polynomials as
solutions, satisfying orthogonality relations∫ b

a
pm(x)pn(x)r(x) dx = 0 m 6= n (5.32)

with a fixed weighting function r(x) which can by inferred by formulating an appropriate
Sturm–Liouville eigenvalue problem. One can in fact give a complete classification of all
infinite families of orthogonal polynomials that can arise from second-order linear ODEs.
The most important ones include the following.

1. The “Jacobi-like” polynomials, which include the Legendre, Chebyshev, and Gegenbauer
polynomials, arise from ODEs of the type(

1− x2
)
y′′(x) + (a+ bx)y′(x) + λy(x) = 0, (5.33)

posed on the interval [−1, 1], with constants a and b and an appropriate discrete set of
values of λ.

2. The associated Laguerre polynomials satisfy Laguerre’s equation:

xy′′(x) + (a+ 1− x)y′(x) + λy(x) = 0, (5.34)

which admits a polynomial solution y(x) = La
n(x) when λ is a non-negative integer n.

They satisfy the orthogonality relation∫ ∞
0

La
m(x)La

n(x)xae−x dx = 0 for m 6= n. (5.35)

The Laguerre polynomials (without “associated”) correspond to a = 0 and are denoted
by Ln(x) ≡ L0

n(x).

3. Hermite polynomials are solutions of the Hermite equation

y′′(x)− 2xy′(x) + λy(x) = 0, (5.36)

which admits a polynomial solution Hn(x) when λ = 2n for integer n ≥ 0. Hermite
polynomials satisfy the orthogonality relation∫ ∞

−∞
Hm(x)Hn(x)e−x

2
dx = 0 for m 6= n. (5.37)
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