Problem Sheet 4

- 1. Order relations.
 - (a) Determine the order as $\epsilon \to 0$ of

$$\frac{\sqrt{\epsilon}}{1 - \cos \epsilon}$$

- (b) Obtain an asymptotic expansion of $\exp(\tan \epsilon)$ in integer powers of ϵ up to order $O(\epsilon^4)$.
- (c) Show that $\log \epsilon = o(\epsilon^{-p})$ as $\epsilon \to 0^+$ for all p > 0.
- 2. <u>Roots.</u> Find expansions for all roots of the equations below as $\epsilon \to 0$ with two nonzero terms in each expansion:
 - (a) $\epsilon x^3 x + 1 = 0$,
 - (b) $\tan x = \frac{\epsilon}{x}$.

[Hint: Roots are near $n\pi$ for integers n. The root near zero must be treated separately, and requires the balance $x = O(\epsilon^{1/2})$ (can you see why?).]

3. Regular perturbation. Find the first two terms in an asymptotic expansion in powers of the small parameter ϵ of the solution of

$$xy'(x) + y(x) = \epsilon y(x)^{1/2}, \qquad x > 1, \quad y(1) = 1.$$

Explain why the expansion is not valid as $x \to \infty$. What form of rescaling would be necessary to examine the behaviour for large x?

[You do not need to carry out the resulting analysis.]

4. Inner and outer expansions. Find inner and outer expansions, correct up to and including terms of $O(\epsilon)$, for the function

$$f(x;\epsilon) = \frac{e^{-x/\epsilon}}{x} + \frac{\sin x}{x} - \coth x,$$

for x > 0 and $0 < \epsilon \ll 1$. Compare the inner and outer approximations with the exact function f by plotting all three on the same graph for various small values of ϵ .

5. <u>Singular perturbation</u>. Use matched asymptotic expansions to find leading-order outer and inner solutions to the boundary value problem

$$\epsilon y''(x) + xy'(x) + y(x) = 0, \qquad 1 < x < 2,$$

 $y(1) = 0, \qquad y(2) = 1,$

where $0 < \epsilon \ll 1$. Form the leading-order composite solution.

Explain briefly why there is a boundary layer at x = 1 and not at x = 2.

How might the analysis change if ϵ were small and negative? [You do not need to find the solution in this case.]

6. Singular perturbation 2. Construct leading-order inner and outer solutions to

$$\epsilon u''(x) + u'(x) = \frac{u(x) + u(x)^3}{1 + 3u(x)^2}, \qquad 0 < x < 1,$$
$$u(0) = 0, \qquad u(1) = 1$$

where $0 < \epsilon \ll 1$. [You will only be able to determine the outer solution implicitly.]