Part A Integration: HT 2020

Problem Sheet 2: Measurable functions, Lebesgue integral

1. Let (ω_n) be a sequence of non-negative real numbers. For a subset E of N, let

$$\mu_{\omega}(E) = \sum_{n \in E} \omega_n.$$

Show that μ_{ω} is a measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

Now let ν be any measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, and define $\omega_n = \nu(\{n\})$. Show that $\nu(E) = \mu_{\omega}(E)$ for all subsets E of \mathbb{N} .

2. Let $(\Omega, \mathcal{F}, \mu)$ be any measure space. If (A_n) is a decreasing sequence of sets in \mathcal{F} and $\mu(A_1) < \infty$, prove that

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n).$$

Is this still true if $\mu(A_1) = \infty$?

3. Let $b \in \mathbb{R}$. Show that $(-\infty, b) = \bigcup_{n=1}^{\infty} \left(\mathbb{R} \setminus (b - \frac{1}{n}, \infty) \right)$.

Deduce that if \mathcal{F} is a σ -algebra on \mathbb{R} containing the intervals (a, ∞) for each $a \in \mathbb{R}$, then \mathcal{F} contains all open intervals, and hence all open subsets of \mathbb{R} .

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Show that

$$\mathcal{G} := \left\{ G \subseteq \mathbb{R} : f^{-1}(G) \in \mathcal{M}_{\text{Leb}} \right\}$$

is a σ -algebra. Deduce that if $f^{-1}(a, \infty) \in \mathcal{M}_{\text{Leb}}$ for every a, then $f^{-1}(G) \in \mathcal{M}_{\text{Leb}}$ for every $G \in \mathcal{M}_{\text{Bor}}$.

4. Let $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda}$ be a non-empty family of σ -algebras on the same set Ω . Show that $\bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ is a σ -algebra.

By considering the family of all σ -algebras containing \mathcal{B} , deduce that if \mathcal{B} is any subset of $\mathcal{P}(\Omega)$, there is a unique σ -algebra $\mathcal{F}_{\mathcal{B}}$ such that

- (i) $\mathcal{B} \subseteq \mathcal{F}_{\mathcal{B}};$
- (ii) If \mathcal{G} is a σ -algebra on Ω and $\mathcal{B} \subseteq \mathcal{G}$, then $\mathcal{F}_{\mathcal{B}} \subseteq \mathcal{G}$.
- *5. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, Ω_* be a set, and $f: \Omega \to \Omega_*$ be a function. Let

$$f_*(\mathcal{F}) = \{ G \subseteq \Omega_* : f^{-1}(G) \in \mathcal{F} \}, \quad (f_*\mu)(G) = \mu(f^{-1}(G)).$$

Show that $(\Omega_*, f_*(\mathcal{F}), f_*\mu)$ is a measure space.

Now let $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}, \mathcal{M}_{Bor}, m)$, and $\Omega_* = \mathbb{R}$. Determine $f_*(\mathcal{M}_{Bor})$ and f_*m when

- (i) $f(x) = \tan x$ if $\cos x \neq 0$, and f(x) = 0 if $\cos x = 0$,
- (ii) $f(x) = \arctan x$ (taking values in $(-\pi/2, \pi/2)$).

- 6. *(a) Let I be an interval of positive length, let a ∈ I, f,g: I → ℝ be functions such that f(x) = g(x) a.e., and suppose that f and g are continuous at a. Show that f(a) = g(a).
 (b) Is χ_Q continuous a.e.? Does there exist a continuous function g such that χ_Q = g a.e.?
 (c) Is χ_(0,∞) continuous a.e.? Does there exist a continuous function g such that χ_(0,∞) = g a.e.? [Use (a).]
- 7. Let f, g be measurable functions from \mathbb{R} to \mathbb{R} , and $h : \mathbb{R} \to \mathbb{R}$ be continuous. Recall from lectures that f + g and $h \circ f$ are measurable. Prove that the following functions are measurable. [Complicated constructions are not required. Everything can be quickly deduced from the information from lectures recalled above, plus a couple of simple formulae.]
 - (i) $f^2: x \mapsto f(x)^2$,
 - (ii) $fg: x \mapsto f(x)g(x),$
 - (iii) $|f|: x \mapsto |f(x)|,$
 - (iv) $\max(f,g): x \mapsto \max(f(x),g(x)).$
- *8. Suppose that g is a measurable function and f = g a.e. Show that f is measurable. Suppose that f is continuous a.e. Show that there is a sequence of step functions (ϕ_n) such that $f = \lim_{n \to \infty} \phi_n$ a.e. Deduce that f is measurable.
- 9. Let $f: \mathbb{R} \to [-\infty, \infty]$ be an integrable function, and let $\alpha > 0$. Show that

$$m(\{x: |f(x)| \ge \alpha\}) \le \frac{1}{\alpha} \int |f|.$$

Deduce that

- (i) $f(x) \in \mathbb{R}$ a.e.
- (ii) If $\int |f| = 0$, then f(x) = 0 a.e.
- 10. In each of the following cases, state whether the function f is Lebesgue integrable over the interval I. Justify your answers, *and calculate $\int_{I} f$ in those cases where this is feasible.
 - (i) $I = \mathbb{R}$, f(x) = x if x is rational, f(x) = 0 if x is irrational,
 - (ii) $I = (0, \pi/2), f(x) = \tan x,$
 - (iii) $I = [1, \infty), f(x) = (-1)^n / n$ if $n \le x < n + 1, n = 1, 2, 3, \dots$,
 - (iv) $I = (0, 1], f(x) = \sin(1/x),$
 - (v) $I = [0, \infty), f(x) = x^n e^{-x}$ where n is a positive integer,

(vi)
$$I = (0, \infty), f(x) = (\log x)e^{-x}$$

- *(vii) $I = [1, \infty), f(x) = x^{\alpha} \log x$ where $\alpha \in \mathbb{R}$,
- *(viii) $I = (0, \pi), f(x) = (\operatorname{cosec} x)^{1/2},$
- *(ix) $I = (0, \infty), f(x) = (1+x)^{-1} \cos x,$
- *(x) $I = [1, \infty), f(x) = \sin(1/x).$

27.1.2020