Part A Integration

Problem Sheet 3: Convergence theorems and consequences

Note: Answers to this problem sheet should, if possible, be carefully justified by reference to theorems in the lectures and by showing that the conditions of those theorems are satisfied.

- 1. Let $\alpha \in (0, \infty)$. Show that $\Gamma(\alpha) := \int_0^\infty x^{\alpha-1} e^{-x} dx$ exists as a Lebesgue integral, and that $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$.
- 2. We know that $\frac{\sin x}{x}$ is not integrable over $(1, \infty)$. Deduce, or prove otherwise, that neither of the following functions is integrable over the given intervals:

(i)
$$\frac{\sin(x^2)}{x}$$
 over $(1,\infty)$, (ii) $\frac{1}{x}\sin\frac{1}{x^2}$ over $(0,1)$.

3. By comparing terms in binomial expansions, or otherwise, show that $(1 + \frac{x}{n})^n \leq (1 + \frac{x}{n+1})^{n+1}$ for $n \geq 2, x \geq 0$. Use the MCT to deduce that $\lim_{n \to \infty} \int_{1}^{2} (1 + \frac{x}{n})^{-n} dx = e^{-1} - e^{-2}.$

*4. Use the binomial expansion of $(1-x)^{-k}$ to show that $(1-\frac{u}{n})^{-n} \ge (1-\frac{u}{n+1})^{-(n+1)}$ for $n \ge 2$ and $0 \le u \le n$. Hence, or otherwise, prove that

$$\lim_{n \to \infty} n^{\alpha} \int_0^1 x^{\alpha - 1} e^{-n\beta x} (1 - x)^n \, dx = (\beta + 1)^{-\alpha} \Gamma(\alpha)$$

where $\alpha > 0$, $\beta > -1$, and $\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha - 1} du$.

5. Show that $0 \leq \frac{x}{1+x^{\alpha}} \leq 1$ for $\alpha > 1, x \geq 0$, and deduce that

$$\lim_{n \to \infty} \int_0^{2\pi} \frac{nx \sin x}{1 + n^\alpha x^\alpha} \, dx = 0.$$

*6. Prove that $\lim_{n \to \infty} \int_0^{n^2} n\left(\sin\frac{x}{n}\right) e^{-x^2} dx = \frac{1}{2}.$

7. Let $\alpha > -1$. Show that $x^{\alpha} \log x$ is integrable over (0, 1), and

$$\int_0^1 x^{\alpha} \log x \, dx = -(1+\alpha)^{-2}.$$

Deduce that for $\beta > -1$, $x^{\beta}(1-x)^{-1} \log x$ is integrable over (0,1), and

$$\int_0^1 x^\beta (1-x)^{-1} \log x \, dx = -\sum_{n=1}^\infty (n+\beta)^{-2}.$$

8. Show that for n > 0, $e^{-nx} \sin x$ is integrable over $[0, \infty)$, and

$$\int_0^\infty e^{-nx} \sin x \, dx = \frac{1}{1+n^2}.$$

Deduce that for $0 \le a \le 1$, $(e^x - a)^{-1} \sin x$ is integrable over $[0, \infty)$, and

$$\int_0^\infty (e^x - a)^{-1} \sin x \, dx = \sum_{n=1}^\infty \frac{a^{n-1}}{1 + n^2}$$

*9. Let $a \in (0,1)$. Prove that $\frac{e^{-ax} - e^{(a-1)x}}{1 - e^{-x}}$ is an integrable function on \mathbb{R} , and that $\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{-ax} - e^{(a-1)x}}{1 - e^{-x}} dx = \frac{1}{a} + \frac{1}{a-1} + \frac{1}{a+1} + \frac{1}{a-2} + \frac{1}{a+2} + \frac{1}{a-3} + \dots$

10. Prove that $\int_0^\infty \cos x \arctan(\lambda x) e^{-x} dx \to \frac{\pi}{4}$ as $\lambda \to \infty$.

11. Let
$$J_0(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \cos \theta) \, d\theta$$
. Show that J_0 is differentiable on \mathbb{R} .

*Show that the function Γ , as defined in Q.1, is differentiable on $(0, \infty)$.

- 12. Let $f(x,y) = y^3 e^{-y^2 x}$, $F(y) = \int_0^\infty f(x,y) dx$. Calculate F'(0) and $\int_0^\infty \frac{\partial f}{\partial y}(x,0) dx$. How do your answers relate to the theorem about differentiating through integrals?
- 13. By differentiating through the integral sign, evaluate the following integrals:

(i)
$$\int_0^\infty \frac{e^{-x} \sin tx}{x} dx,$$

*(ii)
$$\int_0^{\pi/2} \log(a^2 \cos^2 x + b^2 \sin^2 x) dx, \text{ where } a, b > 0.$$

Let $K(t) = \int_1^\infty \frac{\cos(tx)}{x^2} dx.$ Show carefully that $K'(t) = \frac{K(t) - \cos t}{t}$ for $t > 0.$

12.2.2020

*14.