THE FORMULA FOR CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

D. A. EDWARDS

1. INTRODUCTION

The object of this note is to offer a reasonably self-contained proof of the following well known theorem, which, despite its usefulness, is often omitted from elementary accounts of Lebesgue integration. Lebesgue measure in \mathbb{R}^k is denoted by λ .

Theorem 1. Let U and V be open subsets of Euclidean k-dimensional space \mathbb{R}^k and let ϕ be a bijection of U onto V such that ϕ and its inverse ϕ^{-1} are continuous and have continuous derivatives. Then, for every measurable function $f: V \to \overline{\mathbb{R}}_+$, we have

$$\int_{V} f(x)\lambda(dx) = \int_{U} (f \circ \phi)(x) |\det \phi'(x)|\lambda(dx).$$

(The case in which both integrals are infinite is not excluded.)

If, on the other hand, a function $f: V \to \overline{\mathbb{R}}$ is given, then $f \in L^1(V)$ if and only if $(f \circ \phi) |\det \phi'| \in L^1(U)$, and in that case the above formula remains valid.

The prerequisites for reading this paper are a first course in Lebesgue integration theory, treated via the Carathéodory extension theorem, and just a little linear algebra and multivariable analysis. No originality is claimed for the demonstration given here, which has simply been pieced together from a number of sources.

We first recall some matters that are not always treated in elementary accounts of Lebesgue integration.

2. Regularity of Lebesgue measure

Given a set Ω and a family \mathcal{E} of subsets of Ω , we denote by $\sigma(\mathcal{E})$ the smallest σ -algebra of subsets of Ω that contains \mathcal{E} , and we say that $\sigma(\mathcal{E})$ is the σ -algebra of subsets of Ω generated by \mathcal{E} . When Ω is a topological space, we denote by $\mathfrak{B}(\Omega)$ the σ -algebra of subsets of Ω generated by the family of all open subsets of Ω , or, equivalently, by the family of all closed subsets of Ω . The members of $\mathfrak{B}(\Omega)$ are termed **Borel subsets** of Ω , or simply **Borel sets** if there is no risk of confusion.

By a **cell** in \mathbb{R}^k we shall mean a set of the form

$$P := \prod_{i=1}^{k} [a_i, b_i)$$

where $a := (a_1, \ldots, a_k)$ and $b := (b_1, \ldots, b_k)$ are points of \mathbb{R}^k and $a_i \leq b_i$ for all *i*. Note that if $a_i = b_i$ for some *i* then $P = \emptyset$. The **volume**, vol (P), of *P* is, by definition, $\prod_{i=1}^k (b_i - a_i)$. The Lebesgue outer measure $\lambda^*(E)$ of a set $E \subseteq \mathbb{R}^k$ can be defined as $\inf \sum_{n=1}^{\infty} \operatorname{vol}(P_n)$, where the infimum is taken over all sequences (P_n) of cells such that $E \subseteq \bigcup_{n=1}^{\infty} P_n$. Lebesgue measure for \mathbb{R}^k can then be obtained from λ^* by the usual Carathéodory procedure, in the course of which it is shown that every cell is a measurable set. We prove below that that all Borel subsets of \mathbb{R}^k are measurable (with respect to λ). Suppose our cell *P* is non-empty. Then it has interior $\mathring{P} = \prod_{i=1}^k (a_i, b_i)$, and closure $\overline{P} = \prod_{i=1}^k [a_i, b_i]$; and if also *E* is a set satisfying $\mathring{P} \subseteq E \subseteq \overline{P}$ then *E* is measurable and $\lambda(E) = \operatorname{vol}(P)$.

Theorem 2 (Regularity theorem). Let *E* be a measurable subset of \mathbb{R}^k and suppose that $\epsilon > 0$.

- (a) Then there exist an open set G and a closed set F such that $F \subseteq E \subseteq G$, and $\lambda(G \setminus F) < \epsilon$.
- (b) If $\lambda(E) < \infty$ we can find an open set G and a compact set K such that $K \subseteq E \subseteq G$ and $\lambda(G \setminus K) < \epsilon$.

Proof. (a) Consider first the case of the cell $P = \prod_{i=1}^{k} [a_i, b_i)$. The product

$$G_n := \prod_{i=1}^k (a_i - n^{-1}, b_i)$$

is an open set and $(G_n \setminus P) \downarrow \emptyset$ as $n \to \infty$. Since $\lambda(G_1 \setminus P) < \infty$, it follows that $\lambda(G_n \setminus P) \downarrow 0$ as $n \to \infty$.

Now let E be a measurable set with $\lambda(E) < \infty$, and suppose that $\epsilon > 0$. We can find a sequence of cells (P_n) such that $E \subseteq \bigcup_{n=1}^{\infty} P_n$ and $\sum_{n=1}^{\infty} \lambda(P_n) < \lambda(E) + \epsilon/2^2$. Now choose open sets G_n such that $P_n \subseteq G_n$ and $\lambda(G_n \setminus P_n) < \epsilon/2^{n+2}$. Then $G := \bigcup_{n=1}^{\infty} G_n$ is open, $E \subseteq G$, and

$$\lambda(G) < \sum_{n=1}^{\infty} \lambda(G_n) < \sum_{n=1}^{\infty} (\lambda(P_n) + \lambda(G_n \setminus P_n)) < \lambda(E) + \epsilon/2$$

and hence $\lambda(G \setminus E) < \epsilon/2$.

Next, let E be a measurable set with $\lambda(E) = \infty$ and for each integer $n \ge 1$ let $E_n = E \cap B_n$, where B_n is the Borel set $\{x \in \mathbb{R}^k : (n-1) \le \|x\| < n\}$. For each n choose an open set G_n with $E_n \subseteq G_n$ and $\lambda(G_n \setminus E_n) < \epsilon/2^{n+1}$. Then $G := \bigcup_{n=1}^{\infty} G_n$ is open, $E \subseteq G$ and $\lambda(G \setminus E) < \epsilon/2$.

To approximate E from the inside by closed sets, first approximate $\mathbb{C}E$ from outside by open sets, then pass to complements to obtain a closed set F such that $E \supseteq F$ and $\lambda(E \setminus F) < \epsilon/2$. Then $\lambda(G \setminus F) < \epsilon$.

(b) Now suppose that $\lambda(E) < \infty$ and let $E_n = \{x \in E : ||x|| < n\}$. Then $\lambda(E \setminus E_n) \downarrow 0$ as $n \to \infty$. Hence $\lambda(E \setminus E_N) < \epsilon/4$ for some N. And $\lambda(E_N \setminus K) < \epsilon/4$ for some closed and bounded (and hence compact) subset K of E_N . Hence $\lambda(E \setminus K) < \epsilon/2$. If now G is constructed as in part (a) of this proof then we see that $K \subseteq E \subseteq G$ and $\lambda(G \setminus K) < \epsilon$.

Corollary 3. If E is a measurable subset of \mathbb{R}^k then

$$\lambda(E) = \inf\{ \lambda(G) : G \text{ open, } E \subseteq G \}$$
$$= \sup\{ \lambda(K) : K \text{ compact, } K \subseteq E \}.$$

Proof. (i) If $\lambda(E) = \infty$ then it is obvious that $\lambda(E) = \inf\{\lambda(G) : G \text{ is open, } E \subseteq G\}$. Next, suppose that $\lambda(E) < \infty$ and that $\epsilon > 0$. Then we can find an open set G such that $E \subseteq G$ and $\lambda(G \setminus E) < \epsilon$. But then

$$\lambda(E) \le \lambda(G \setminus E) + \lambda(E) < \lambda(E) + \epsilon.$$

Hence $\lambda(E) = \inf\{\lambda(G) : G \text{ open}, E \subseteq G\}.$

(ii) Suppose that $\mathbb{R} \ni t < \lambda(E)$, and for each integer $n \ge 1$ let $E_n = \{x \in E : ||x|| \le n\}$. Then $\lambda(E_N) > t$ for large enough N. Now choose a closed set K such that $K \subseteq E_N$ and $\lambda(E_N \setminus K) < \lambda(E_N) - t$. Then K, being both closed and bounded, is a compact subset of E and $\lambda(K) > t$.

Corollary 4. Let E be a subset of \mathbb{R}^k . Then E is measurable if and only if there exist Borel sets A and B such that $A \subseteq E \subseteq B$ and $\lambda(B \setminus A) = 0$.

Proof. Suppose that E is measurable. Then, for each integer $n \ge 1$, we can find an open set G_n such that $E \subseteq G_n$ and $\lambda(G_n \setminus E) < n^{-1}$. We can arrange that the sequence (G_n) is decreasing. Let B be the Borel set $\bigcap_{n=1}^{\infty} G_n$. Then $E \subseteq B$, and $(G_n \setminus E) \downarrow (B \setminus E)$ as $n \to \infty$. It follows that $\lambda(B \setminus E) = \lim_{n \to \infty} \lambda(G_n \setminus E) = 0$. Similarly, approximating E

from the inside by closed sets, we obtain a Borel set A such that $A \subseteq E$ and $\lambda(E \setminus A) = 0$. Consequently $\lambda(B \setminus A) = 0$.

Suppose, conversely, that E is a subset of \mathbb{R}^k for which there exist Borel sets A and B such that $A \subseteq E \subseteq B$ and $\lambda(B \setminus A) = 0$. Then, by the completeness of Lebesgue measure, the set $E \setminus A$ is measurable because it is a subset of the null set $B \setminus A$. But A is a measurable set, because it is Borel. Hence $E = A \cup (E \setminus A)$ is measurable. \Box

3. Borel sets

Let U be an open subset of \mathbb{R}^k . The relation between $\mathfrak{B}(U)$ and $\mathfrak{B}(\mathbb{R}^k)$ is given by the following lemma.

Lemma 5. If U is an open subset of \mathbb{R}^k then

$$\mathfrak{B}(U) = \{ B \cap U : B \in \mathfrak{B}(\mathbb{R}^k) \} = \{ A \in \mathfrak{B}(\mathbb{R}^k) : A \subseteq U \}.$$

Proof. Denote by \mathcal{U} the set of all open subsets of U and by \mathcal{G} the set of all open subsets of \mathbb{R}^k . Observe that

$$\mathcal{U} \subseteq \{ B \cap U : B \in \mathfrak{B}(\mathbb{R}^k) \}.$$

It is easy to see that $\{B \cap U : B \in \mathfrak{B}(\mathbb{R}^k)\}$ is a σ -algebra of subsets of U, so it follows that

(1)
$$\mathfrak{B}(U) \subseteq \{ B \cap U : B \in \mathfrak{B}(\mathbb{R}^k) \}.$$

To obtain the reverse inclusion, consider $\mathcal{E} := \{ E : E \cap U \in \mathfrak{B}(U) \}$. This is a σ -algebra of subsets of \mathbb{R}^k and, clearly, $\mathcal{G} \subseteq \mathcal{E}$. Hence $\mathfrak{B}(\mathbb{R}^k) \subseteq \mathcal{E}$. But that means that

$$\{B \cap U : B \in \mathfrak{B}(\mathbb{R}^k)\} \subseteq \mathfrak{B}(U),\$$

so that, by (1), we in fact have equality. Finally, because $U \in \mathfrak{B}(\mathbb{R}^k)$, the truth of the equation $\{B \cap U : B \in \mathfrak{B}(\mathbb{R}^k)\} = \{A \in \mathfrak{B}(\mathbb{R}^k) : A \subseteq U\}$ is obvious.

Lemma 6. If X, Y are topological spaces and $h: X \to Y$ is a continuous map then $h^{-1}(\mathfrak{B}(Y)) \subseteq \mathfrak{B}(X)$. If h is a homeomorphism of X onto Y then $h(\mathfrak{B}(X)) = \mathfrak{B}(Y)$ and $h^{-1}(\mathfrak{B}(Y)) = \mathfrak{B}(X)$.

Proof. Let $h: X \to Y$ be continuous and let $\mathcal{E} = \{ E: E \subseteq Y, h^{-1}(E) \in \mathfrak{B}(X) \}$. Then \mathcal{E} is a σ -algebra of subsets of Y that contains the open sets. Hence $\mathcal{E} \supseteq \mathfrak{B}(Y)$ and therefore $h^{-1}(\mathfrak{B}(Y)) \subseteq \mathfrak{B}(X)$.

Now assume that h is a homeomrphism. Then, by what we have proved, $h(\mathfrak{B}(X)) \subseteq \mathfrak{B}(Y)$. Hence

$$\mathfrak{B}(X) = h^{-1}h(\mathfrak{B}(X)) \subseteq h^{-1}(\mathfrak{B}(Y)) \subseteq \mathfrak{B}(X),$$

so $h^{-1}(\mathfrak{B}(Y)) \subseteq \mathfrak{B}(X)$. Similarly, $h(\mathfrak{B}(X)) = \mathfrak{B}(Y)$.

4. DYADIC CUBES

We shall denote by W the cell $[0,1)^k$. By a **dyadic cube** in \mathbb{R}^k we shall mean a cell of the form $Q = 2^{-n}a + 2^{-n}W$, where n is a integer ≥ 0 and $a \in \mathbb{Z}^k$. The number n is called the **order** of the cube, the number 2^{-n} is termed the **edge-length** of Q, and the point $2^{-n}a$ will be termed its **vertex**. Thus W is a dyadic cube of order zero, of edge-length 1, and vertex the origin. Note that a cube of edge-length h has diameter $h^k \sqrt{k}$. For each n the set Δ_n of all dyadic cubes of order n is a disjoint cover of \mathbb{R}^k . The set Δ_n is countably infinite, and hence the set $\Delta := \bigcup_{n=0}^{\infty} \Delta_n$ of all dyadic cubes is countably infinite.

Lemma 7. Let Q, Q' be dyadic cubes of orders n, n' respectively, and suppose that $n \ge n'$. Then the following statements are equivalent

- (i) $Q \subseteq Q'$;
- (ii) $Q \cap Q' \neq \emptyset$;
- (iii) $v(Q) \in Q'$, where v(Q) is the vertex of Q.

Proof. By translation and scaling we can suppose for the proof that Q' = W.

 $(i) \Rightarrow (ii)$: This implication is trivial.

(ii) \Rightarrow (iii): Suppose that $Q \cap W \neq \emptyset$, where $Q = 2^{-n}a + 2^{-n}W$. Then there exist $u, v \in W$ such that $2^{-n}a + 2^{-n}u = v$, or $a = 2^n v - u$. Hence $-1 < a_i < 2^n$ with $a_i \in \mathbb{Z}$ for each *i*. Therefore $a_i \in \{0, 1, \ldots, 2^n - 1\}$, and hence $v(Q) = 2^{-n}a \in W$.

(iii) \Rightarrow (i): Suppose that $v(Q) = 2^{-n}a = 2^{-n}(a_1, \dots, a_k) \in W$. Then, for each *i*, we have $a_i \in 2^n W \cap \mathbb{Z}$ and so $a_i \in \{0, 1, \dots, 2^n - 1\}$. Hence $Q = 2^{-n}a + 2^{-n}W \subseteq W$.

Corollary 8. Let Q, Q' be dyadic cubes. Then at least one of the following assertions is true: (i) $Q \subseteq Q'$; (ii) $Q' \subseteq Q$; (iii) $Q \cap Q' = \emptyset$. If two cubes are of the same order then they are either equal or disjoint.

Proof. Obvious, by the preceding Lemma.

Theorem 9. Let G be a non-empty open subset of \mathbb{R}^k . Then there exists a disjoint (infinite) sequence (Q_n) of dyadic cubes such that (a) $G = \bigcup_{n=1}^{\infty} Q_n$ and (b) $\overline{Q}_n \subseteq G$ for all n.

Proof. For each $n \geq 0$ let \mathcal{C}_n denote the set of all dyadic cubes of order n whose closures are subsets of G. Let $\mathcal{A}_0 = \mathcal{C}_0$. and let $A_0 = \bigcup \{Q : Q \in \mathcal{A}_0\}$. Next, let \mathcal{A}_1 be the set of all the cubes in \mathcal{C}_1 that have empty intersection with A_0 , and let $A_1 = \bigcup \{Q : Q \in \mathcal{A}_1\}$. And for n > 1 let \mathcal{A}_n be the set of all cubes in \mathcal{C}_n that have empty intersection with $A_1 \cup \cdots \cup A_{n-1}$, and let $A_n := \bigcup \{Q : Q \in \mathcal{A}_n\}$. For each n let $B_n = A_1 \cup \cdots \cup A_n$.

D. A. EDWARDS

I claim that $\bigcup_{n=0}^{\infty} \mathcal{A}_n$ is a disjoint covering of G by dyadic cubes. Disjointness is clear, so it will suffice to show that $\bigcup_{n=0}^{\infty} B_n = G$. To see this, let $x \in G$. The distance of x from $\complement G$ is > 0, so we can find a dyadic cube Q such that $x \in Q \subseteq \overline{Q} \subseteq G$, and we can suppose that Q has order $n \ge 1$. If $Q \cap B_{n-1} = \emptyset$ then, by definition, $Q \in \mathcal{A}_n$, so $Q \subseteq A_n \subseteq B_n$. If $Q \cap B_{n-1} \neq \emptyset$ then Q has non-empty intersection with some larger cube Q' belonging to the family $\mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{n-1}$. But then we have $Q \subseteq Q' \subseteq B_{n-1} \subseteq B_n$. Thus in any case $x \in Q \subseteq B_n$. Since $B_n \subseteq G$ for all n, we have thus shown that $\bigcup_{n=0}^{\infty} B_n = G$.

The family of cubes $\bigcup_{n=0}^{\infty} \mathcal{A}_n$ is countably infinite, since otherwise G could be expressed as a finite union $\bigcup_{n=0}^{N} C_n$ in which each term is a dyadic cube whose closure is a subset of G. But that would imply that $\bigcup_{n=0}^{N} \overline{C_n} = G$, and hence that G is both open and compact. But that is impossible, because \mathbb{R}^k is connected and $G \neq \emptyset$.

Taking (Q_n) now to be any sequence that enumerates the elements of $\bigcup_{n=0}^{\infty} \mathcal{A}_n$, we obtain a disjoint infinite sequence of dyadic cubes with the desired properties (a) and (b).

Given an open subset G of \mathbb{R}^k , we denote by $\Delta(G)$ the set of all dyadic cubes Q such that $\overline{Q} \subseteq G$.

Theorem 10. (i) If \mathfrak{C} denotes the set of all cells in \mathbb{R}^k , then $\mathfrak{B}(\mathbb{R}^k) = \sigma(\mathfrak{C}) = \sigma(\Delta)$. Hence all Borel subsets of \mathbb{R}^k are measurable. (ii) Let U be an non-empty open subset of \mathbb{R}^k . Then the σ -algebra of subsets of U generated by $\Delta(U)$ is $\mathfrak{B}(U)$.

Proof. (i) Let P be the cell $\prod_{i=1}^{k} [a_i, b_i) \neq \emptyset$. Then P is σ -compact, and hence Borel, because $P = \bigcup_{n=N}^{\infty} [a_i, b_i - n^{-1}]$ for large N. Thus $\Delta \subseteq \mathfrak{C} \subseteq \mathfrak{B}(\mathbb{R}^k)$ and hence $\sigma(\Delta) \subseteq \sigma(\mathfrak{C}) \subseteq \mathfrak{B}(\mathbb{R}^k)$.

On the other hand, if \mathcal{G} denotes the set of all open subsets of \mathbb{R}^k , then by the preceding theorem $\sigma(\Delta) \supseteq \mathcal{G}$. Hence $\sigma(\Delta) \supseteq \sigma(\mathcal{G}) = \mathfrak{B}(\mathbb{R}^k)$. Putting together these inclusions, we have $\mathfrak{B}(\mathbb{R}^k) = \sigma(\mathfrak{C}) = \sigma(\Delta)$.

It follows that all Borel subsets of \mathbb{R}^k are measurable since, as we noted in §2, all sets belonging to $\sigma(\mathfrak{C})$ are measurable.

(ii) Let \mathcal{A} be the σ -algebra of subsets of U generated by $\Delta(U)$ and let \mathcal{U} be the set of open subsets of U. By Theorem 9 we have $\mathcal{A} \supseteq \mathcal{U}$, and hence $\mathcal{A} \supseteq \mathfrak{B}(U)$. On the other hand $\Delta(U) \subseteq \mathfrak{B}(U)$ so $\mathcal{A} \subseteq \mathcal{U}$. Therefore $\mathcal{A} = \mathcal{U}$.

5. Linear transformations

By an **elementary transformation** in \mathbb{R}^k we shall mean an invertible linear map $T : \mathbb{R}^k \to \mathbb{R}^k$ of one of the following three types: (i) T is a permutation of coordinates. That is to say

$$T(x_1,\ldots,x_k)=(x_{\pi 1},\ldots,x_{\pi k}),$$

where π is a permutation of the set $\{1, 2, \dots, k\}$. (ii) T is of the form

$$T(x_1,\ldots,x_k)=(\alpha x_1,x_2,\ldots,x_k),$$

where α is a non-zero scalar.

(iii) T adds the second coordinate to the first, leaving all others unchanged, thus

$$T(x_1, \ldots, x_k) = (x_1 + x_2, x_2, \ldots, x_k).$$

Lemma 11. If $T : \mathbb{R}^k \to \mathbb{R}^k$ is an elementary transformation and Q is a dyadic cube, then Q and TQ are Borel sets and

$$\lambda(TQ) = |\det T| \,\lambda(Q).$$

Proof. Since $T : \mathbb{R}^k \to \mathbb{R}^k$ is continuous and Q, being a cell, is σ -compact, the image TQ is σ -compact. Hence both Q and TQ are Borel sets.

We first prove the theorem for the case Q = W, taking the three types of elementary transformation in turn. Note that $\lambda(W) = 1$.

(i) In this case det $T = \pm 1$, TW = W, and so $\lambda(TW) = \lambda(W) = |\det T|$.

(ii) Here

 $TW = \{ x : x_1 \in J, \ 0 \le x_i < 1 \text{ for } i = 2, \dots, k \},\$

where $J = [0, \alpha)$ if $\alpha > 0$, and $J = (\alpha, 0]$ if $\alpha < 0$. In both cases $\lambda(TW) = |\alpha| = |\det T|$.

(iii) Here

 $TW = \{ x : 0 \le x_2 \le x_1 < x_2 + 1, \ 0 \le x_i < 1 \text{ for } i = 2, \dots, k \}.$

Let $A_1 = \{ x \in TW : x_1 < 1 \}$, $A_2 = TW \setminus A_1$. Denote by e_1 the first vector in the standard basis for \mathbb{R}^k :

$$e_1 = (1, 0, \dots, 0).$$

Then W is the disjoint union $A_1 \cup (A_2 - e_1)$ and

$$\lambda(TW) = \lambda(A_1 \cup A_2) = \lambda(A_1) + \lambda(A_2)$$
$$= \lambda(A_1) + \lambda(A_2 - e_1)$$
$$= \lambda(A_1 \cup (A_2 - e_1)) = \lambda(W) = 1$$

Here we have assumed that the sets in play are measurable. But that is easily proved. For A_1 is the intersection of the two Borel sets TW and $\{x : x_1 < 1\}$ and hence it is Borel. Consequently, A_2 is also a Borel set; and finally $(A_2 - e_1)$ is a Borel set because it is equal to $W \setminus A_1$. Since det T = 1 in this case, we again have $\lambda(TW) = |\det T|$.

Now let $Q = 2^{-n}W$ and let T be an elementary transformation of any one of the three types defined above. Then W is the disjoint union of 2^{nk} translates of Q, so, by the translation-invariance of λ , $2^{nk}\lambda(Q) = \lambda(W) = 1$, hence $\lambda(Q) = 2^{-nk}$. For all $v \in \mathbb{R}^k$, $\lambda(T(v + Q)) = \lambda(TQ)$. Now TW is the disjoint union of 2^{nk} sets of the form T(v+Q). Therefore $2^{nk}\lambda(TQ) = \lambda(TW) = |\det T|$, so

$$\lambda(TQ) = |\det T| \, 2^{-nk} = |\det T| \, \lambda(Q).$$

By the translation-invariance of λ , this formula remains valid if we have $Q = v + 2^{-n}W$ instead of $Q = 2^{-n}W$.

We pass now to consideration of an arbitrary invertible linear transformation $T : \mathbb{R}^k \to \mathbb{R}^k$. Note that such a T is a homeomorphism of \mathbb{R}^k , and hence it preserves open sets, and, by Lemma 6, also Borel sets.

Theorem 12. Let B be a Borel set in \mathbb{R}^k and $T : \mathbb{R}^k \to \mathbb{R}^k$ an invertible linear transformation. Then TB is a Borel set and

$$\lambda(TB) = |\det T| \,\lambda(B).$$

Proof. We prove first that if T is an elementary linear transformation and G an open set in \mathbb{R}^k then $\lambda(TG) = |\det T| \lambda(G)$.

Dismissing the trivial case where $G = \emptyset$, we suppose that $G \neq \emptyset$. Then there exists a disjoint sequence of dyadic cubes (Q_n) whose union is G. Then, by the preceding lemma,

$$\lambda(TG) = \sum_{n=1}^{\infty} \lambda(TQ_n) = \sum_{n=1}^{\infty} |\det T| \,\lambda(Q_n) = |\det T| \,\lambda(G).$$

Suppose next that T_1, T_2 are invertible linear transformations such that $\lambda(T_rG) = |\det T_r|\lambda(G)$ for open G and r = 1, 2. Noting that T_2G is an open set, we see that

$$\lambda(T_1 T_2 G) = |\det T_1| \lambda(T_2 G)$$

= $|\det T_1| |\det T_2| \lambda(G) = |\det(T_1 T_2)| \lambda(G).$

This reasoning can be extended to finite products. But a theorem of elementary algebra states that an arbitrary invertible linear transformation can be represented as the product of a finite sequence of elementary transformations. Thus, if $T = T_1 T_2 \dots T_n$ is such a product, we shall have

$$\lambda(TG) = |\det(T_1| \times \cdots \times |\det T_n)| \lambda(G) = |\det T| \lambda(G)$$

for all open G. We have already noted that if $T : \mathbb{R}^k \to \mathbb{R}^k$ an invertible linear transformation then $TB \in \mathfrak{B}(\mathbb{R}^k)$ for all $B \in \mathfrak{B}(\mathbb{R}^k)$. For such B we have, by the regularity of λ ,

$$\lambda(B) = \inf\{\,\lambda(G) : G \text{ open}, G \supseteq B\,\}$$

and

$$\lambda(TB) = \inf\{\,\lambda(O) : O \text{ open}, O \supseteq TB\,\}.$$

But T is a homeomorphism of \mathbb{R}^k , so

$$\{O: O \text{ open}, O \supseteq TB\} = \{TG: G \text{ open}, G \supseteq B\}$$

and hence

$$\lambda(TB) = \inf\{ \lambda(TG) : G \text{ open}, G \supseteq B \}$$

= $\inf\{ |\det T| \lambda(G) : G \text{ open}, G \supseteq B \}$
= $|\det T| \times \inf\{ \lambda(G) : G \text{ open}, G \supseteq B \}$
= $|\det T| \lambda(B)$

6. Some important estimates

Theorem 13. Suppose that $x_0 \in U$ and $\epsilon > 0$ Then there exists $\delta > 0$ such that, for every cube Q for which $x_0 \in \overline{Q} \subseteq U$ and $e(Q) < \delta$, we have

$$\frac{\lambda(\phi(Q))}{\lambda(Q)} < |\det \phi'(x_0)| + \epsilon.$$

Proof. In this proof the norm in \mathbb{R}^k , denoted simply by $\|\cdot\|$, will be $\|\cdot\|_{\infty}$.

Case (i). Suppose that $x_0 = 0$, $\phi(x_0) = 0$, and $\phi'(x_0) = I$. So, for small x,

$$\phi(x) = x + \|x\|\rho(x),$$

where $\rho(x) \to 0$ as $x \to 0$. For r > 0 and $y \in U$ let C(y, r) be the closed cube $\{x : ||x - y|| \le r\}$. Choose $\eta > 0$ to satisfy

$$(1+2\eta)^k < 1+\epsilon,$$

and let $\delta > 0$ be such that $x \in U$ and $\|\rho(x)\| < \eta$, whenever $\|x\| < \delta$.

Let Q be a cube for which $0 \in \overline{Q} \subseteq U$ and $s := e(Q) < \delta$, and let a denote the centre of Q. Then $\overline{Q} = C(a; \frac{s}{2})$. Since $0 \in C(a; \frac{s}{2})$ we have $||a|| = ||0 - a|| \leq \frac{s}{2}$. Hence, for $x \in Q$,

$$||x|| = ||x - a|| + ||a|| \le \frac{s}{2} + \frac{s}{2} = s < \delta,$$

and therefore $\|\rho(x)\| < \eta$.

Thus for $x \in Q$ we have

$$\begin{aligned} |\phi(x) - a|| &\leq ||x - a|| + ||x|| ||\rho(x)| \\ &< \frac{s}{2} + s\eta = \frac{s}{2}(1 + 2\eta). \end{aligned}$$

Consequently, $\phi(x) \in C(a, \frac{s}{2}(1+2\eta)).$

So we have proved that

$$\phi(Q) \subseteq C(a, \frac{s}{2}(1+2\eta))$$

Comparing the Lebesgue measures of these terms we see that

$$\lambda(\phi(Q)) \le s^k (1+2\eta)^k.$$

But $\lambda(Q) = s^k$, so

$$\frac{\lambda(\phi(Q))}{\lambda(Q)} \le (1+2\eta)^k < 1+\epsilon,$$

as desired.

Case (ii). Assume now that $x_0 = 0$, $\phi(x_0) = 0$, and let $T = \phi'(x_0)$ and let $\chi = T^{-1}\phi$. Then χ is a C^1 diffeomorphism of U onto $T^{-1}V$ and $\chi'(x_0) = I$. By our proof for Case (i) there exists $\delta > 0$ such that, for every cube Q such that $x_0 \in \overline{Q}$ with $e(Q) < \delta$, we have $\overline{Q} \subseteq U$ and

$$\frac{\lambda(\chi(Q))}{\lambda(Q)} < 1 + \frac{\epsilon}{|\det T|}$$

But

$$\lambda(\chi(Q)) = \lambda(T^{-1}\phi(Q))$$
$$= |\det T^{-1}|\lambda(\phi(Q)) = \frac{\lambda(\phi(Q))}{|\det T|}$$

Therefore

$$\frac{\lambda(\phi(Q))}{\lambda(Q)} < |\det T| + \epsilon.$$

Case (iii). Now we consider the general case. So assume that $x_0 \in \overline{Q} \subseteq U$ and, as above, denote by T the linear operator $\phi'(x_0)$. For $x \in U - x_0$ let $\sigma(x) := \phi(x + x_0) - \phi(x_0)$. Then σ is a C^1 diffeomorphism of $U_0 := U - x_0$ onto $V_0 := V - \phi(x_0)$, $0 \in U_0$, $\sigma(0) = 0$, and $\sigma'(0) = T$.

Now write $Q_0 := Q - x_0$. Then $0 \in \overline{Q}_0 \subseteq U_0$, and by Case (ii) there exists $\delta > 0$ such that when $e(Q_0) < \delta$ we have

$$\frac{\lambda(\sigma(Q_0))}{\lambda(Q_0)} < |\det T| + \epsilon.$$

10

Now $e(Q) = e(Q_0)$, and $\lambda(Q) = \lambda(Q_0)$. Moreover $\sigma(Q_0) = \phi(Q) - \phi(x_0)$, so $\lambda(\sigma(Q_0)) = \lambda(\phi(Q))$. Thus, for $e(Q) < \delta$, the preceding inequality yields

$$\frac{\lambda(\phi(Q))}{\lambda(Q)} < |\det \phi'(x_0)| + \epsilon,$$

as desired.

Corollary 14. Let (Q_n) be a decreasing sequence of cubes in \mathbb{R}^k such that $\overline{Q}_n \subseteq U$ for all n, and and suppose that $e(Q_n) \to 0$ as $n \to \infty$. Let x_0 be the unique point that belongs to every \overline{Q}_n . Then

$$\limsup_{n \to \infty} \frac{\lambda(\phi(Q_n))}{\lambda(Q_n)} \le |\det \phi'(x_0)|.$$

Proof. By Theorem 13 we have, for all $\epsilon > 0$,

$$\limsup_{n \to \infty} \frac{\lambda(\phi(Q_n))}{\lambda(Q_n)} \le |\det \phi'(x_0)| + \epsilon.$$

	ъ
	н
	н
	л.

7. An upper bound for $\lambda(\phi(E))$

Lemma 15. If Q is a dyadic cube such that $\overline{Q} \subseteq U$ then

(2)
$$\lambda(\phi(Q)) \le \int_{Q} |\det \phi'(x)| \lambda(dx).$$

Proof. Suppose that there is a dyadic cube Q such that $\overline{Q} \subseteq U$ and for which the equation (2) is false. Then for some $\epsilon > 0$ we shall have

(3)
$$\lambda(\phi(Q)) > \int_{Q} |\det \phi'(x)|\lambda(dx) + \epsilon \lambda(Q).$$

Divide Q into a disjoint family $\{Q_i\}$ of 2^k congruent little dyadic cubes with $e(Q_i) = 2^{-1}e(Q)$. I claim that for at least one of these, Q_1 say, we shall then have

$$\lambda(\phi(Q_1)) > \int_{Q_1} |\det \phi'(x)| \lambda(dx) + \epsilon \lambda(Q_1)$$

For otherwise each little cube Q_i would satisfy

$$\lambda(\phi(Q_i)) \le \int_{Q_i} |\det \phi'(x)| \lambda(dx) + \epsilon \lambda(Q_i).$$

By summation that would lead to

$$\lambda(\phi(Q)) \le \int_Q |\det \phi'(x)|\lambda(dx) + \epsilon\lambda(Q),$$

which contradicts the inequality (3).

Now write $C_1 := Q$, $C_2 = Q_1$. Continue thus to obtain, by successively subdividing, a decreasing sequence $C_1 \supseteq C_2 \supseteq C_3 \supseteq \ldots$ of dyadic cubes such that $e(C_{n+1}) = 2^{-1}e(C_n)$ for all $n \ge 1$ and for which

(4)
$$\frac{\lambda(\phi(C_n))}{\lambda(C_n)} > \frac{1}{\lambda(C_n)} \int_{C_n} |\det \phi'(x)|\lambda(dx) + \epsilon$$

for all n. By the continuity of $|\det \phi'|$ we have

$$\lim_{n \to \infty} \frac{1}{\lambda(C_n)} \int_{C_n} |\det \phi'(x)| \lambda(dx) = |\det \phi'(x_0)|.$$

where $\{x_0\} = \bigcap_{n=1}^{\infty} \overline{C}_n$. And, by Corollary 14,

$$\limsup_{n \to \infty} \frac{\lambda(\phi(C_n))}{\lambda(C_n)} \le |\det \phi'(x_0)|.$$

These two limits lead, via the inequality (4), to the impossible conclusion that

$$|\det \phi'(x_0)| \ge |\det \phi'(x_0)| + \epsilon.$$

We conclude that every dyadic cube Q such that $\overline{Q} \subseteq U$ satisfies the equation (2). \Box

Lemma 16. If G is a open subset of U then $\phi(G)$ is a open subset of V and

$$\lambda(\phi(G)) \le \int_G |\det \phi'(x)|\lambda(dx).$$

(The case in which both terms are infinite is not excluded.)

Proof. Let G be a non-empty open subset of U. Then we can find a disjoint sequence (Q_n) of cubes whose union is G and which satisfy $\overline{Q_n} \subseteq G$ for all n. Then

$$\lambda(\phi(Q_n)) \le \int_{Q_n} |\det \phi'(x)|\lambda(dx).$$

Summing, we see that

$$\lambda(\phi(G)) \le \int_G |\det \phi'(x)|\lambda(dx).$$

Lemma 17. There exists a sequence (K_n) of compact subsets of U such that $\bigcup_{n=1}^{\infty} K_n = U$ and $K_n \subseteq \mathring{K}_{n+1}$ for all n.

Proof. It suffices to take

$$K_n := \{ x \in U : d(x, \mathcal{C}U) \ge 1/n, ||x|| \le n \}$$

where d(x, CU) denotes the distance of x from CU.

Theorem 18. If E is a measurable subset of U then $\phi(E)$ is a measurable subset of V and

$$\lambda(\phi(E)) \le \int_E |\det \phi'(x)| \,\lambda(dx).$$

Proof. Consider first the case in which E is a Borel set such that $E \subset \subset U$. Then \overline{E} is a compact subset of $U = \bigcup_{n=1}^{\infty} \mathring{K}_n$, so there exists an integer N such that $\overline{E} \subseteq \mathring{K}_N$. By the outer regularity of λ there exists a decreasing sequence (G_n) of open sets such that $E \subseteq G_n \subseteq \mathring{K}_N$ for all n, with $\lambda(G_n) \downarrow \lambda(E)$ as $n \to \infty$. Then $\lambda(G_1) \leq \lambda(K_N) < \infty$, so $\lambda(G_n) \downarrow \lambda(F)$ as $n \to \infty$, where $F = \bigcap_{n=1}^{\infty} G_n$. Thus $E \subseteq F$ with $\lambda(E) = \lambda(F) < \infty$, so $\lambda(F \setminus E) = 0$, and therefore $\mu(E) = \mu(F)$, where

$$\mu(S) = \int_{S} |\det \phi'(x)| \,\lambda(dx)$$

for each measurable subset S of U.

Observe now that $\mu(G_1) \leq \mu(K_N) < \infty$. Hence, by the countable additivity of the indefinite integral, $\mu(G_n) \downarrow \mu(F) = \mu(E)$ as $n \to \infty$. But, by Lemma 6, $\phi(E) \in \mathfrak{B}(V)$ and by Lemma 16 we have $\lambda(\phi(E)) \leq \lambda(\phi(G_n)) \leq \mu(G_n)$. and therefore $\lambda(\phi(E)) \leq \lim_n \mu(G_n) = \mu(E)$.

Now let E an arbitrary Borel subset of U. Writing $E_n = E \cap K_n$, we see that E_n is a Borel set and that $E_n \subset \subset U$, and thus $\lambda(\phi(E_n)) \leq \mu(E_n)$ for all n. Passing to the limit as $n \to \infty$, we see that $\lambda(\phi(E)) \leq \mu(E)$, as claimed. Note the consequence that if $E \in \mathfrak{B}(U)$ and $\lambda(E) = 0$ then $\lambda(\phi(E)) = 0$.

Now suppose that E is a measurable subset of \mathbb{R}^k . Then, by Lemma 4, there exist $A, B \in \mathfrak{B}(\mathbb{R}^k)$ such that $A \subseteq E \subseteq B$ and $\lambda(B \setminus A) = 0$. If also $E \subseteq U$ then, replacing B by $B \cap U$ if necessary, we can suppose that $B \subseteq U$. But then, by Lemma 5, $A, B \in \{S \in \mathfrak{B}(\mathbb{R}^k) : S \subseteq U\} = \mathfrak{B}(U)$. Consequently, by Lemma 6, $\phi(A), \phi(B) \in \mathfrak{B}(V) \subseteq \mathfrak{B}(\mathbb{R}^k)$. Moreover, $\phi(A) \subseteq \phi(E) \subseteq \phi(B)$ and $\lambda(\phi(B) \setminus \phi(A)) = \lambda(\phi(B \setminus A)) = 0$. Hence, by Lemma 4, the set $\phi(E)$ is measurable and we have

$$\lambda(\phi(E)) = \lambda(\phi(A)) \le \mu(A) = \mu(E).$$

8. Proof of Theorem 1

Now let F be a measurable subset of V. Reversing the roles of U and V we see, by Theorem 16, that $E := \psi(F)$ is a measurable subset

of U. Since $1_E = 1_F \circ \phi$, we have

$$\int_{V} 1_{F}(x)\lambda(dx) = \lambda(\phi(E)) \leq \int_{U} 1_{E}(x) |\det \phi'(x)| dx$$
$$= \int_{U} (1_{F} \circ \phi(x)) |\det \phi'(x)| dx.$$

We deduce immediately that

(5)
$$\int_{V} f(x)\lambda(dx) \leq \int_{U} (f \circ \phi)(x) |\det \phi'(x)|\lambda(dx)$$

for every simple measurable function $f \geq 0$ on V. Then, by passing to the limit via an increasing sequence of simple measurable functions, we conclude that the equation (5) is true for every measurable function $f: V \to \overline{\mathbb{R}}_+$. Now write $g(y) = (f \circ \phi(y)) |\det \phi'(y)|$. Then, reversing again the roles of U and V we have

$$\begin{split} \int_{V} f(x)\lambda(dx) &\leq \int_{U} (f \circ \phi)(x) |\det \phi'(x)|\lambda(dx) \\ &= \int_{U} g(x)\lambda(dx) \\ &\leq \int_{V} (g \circ \psi)(x) |\det \psi'(x)|\lambda(dx) \\ &= \int_{V} (f \circ \phi \circ \psi)(x) |\det \phi' \circ (\psi)| |\det \psi'(x)|\lambda(dx) \\ &= \int_{V} f(x)\lambda(dx) \end{split}$$

If f is integrable then so, obviously, is the function $(f \circ \phi) |det\phi'|$ over U. The case of a function $f: U \to \mathbb{R}$ now follows by consideration of its positive and negative parts. We have thus proved Theorem 1.

9. Concluding remarks

The present subject has a large literature, and the references that follow are only a representative sample. Various proofs of Therem 1 or variants thereof can be found in [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Some of these authors obtain variants of Theorem 1 that are valid under weaker conditions than those studied here. For the argument of the present note I have drawn particularly on passages in [4, 6, 11, 12].

It should perhaps be mentioned that some of the terminology in this note is not standard. It should also be noted that, whereas we have defined a **cell** as a product of the form $\prod_{i=1}^{k} [a_i, b_i)$, many authors,

14

especially in probability theory, prefer to work with products of the form $\prod_{i=1}^{k} (a_i, b_i]$.

References

- H. Amann and J. Escher, Analysis III, Zweite Auflage, Birkhäuser, Basel, 2008.
- [2] E. Asplund and L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, New York, 1966.
- [3] H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, W. de Gruyter, Berlin, 1968.
- [4] P. Billingsley, Probability and Measure, Wiley, New York, 1979.
- [5] V. I. Bogachev, Measure Theory, vol. I, Springer, Berlin, 2007.
- [6] S. D. Chatterji, Cours d'Analyse: 1, Analyse vectorielle, Presses polytechniques et universitaires romandes, Lausanne, 1997.
- [7] J. A. Dieudonné, Éléments d'analyse, Tome III, Gauthiers-Villars, Paris, 1970.
- [8] W. H. Fleming, *Functions of Several Variables*, Addison-Wesley, Reading, Massachusetts, 1965.
- [9] D. H. Fremlin, Measure Theory, vol. 2, Torres Fremlin, Colchester, 2001.
- [10] F. Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett, Boston MA, 1993.
- [11] B. Makarov and A. Podkorytov, Real Analysis: Measures, Integrals and Applications, Springer, Heidelberg, 2011.
- [12] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [13] R. L. Schilling, *Measures, Integrals and Martingales*, Cambridge University Press, London, 2005.
- [14] J. Schwartz, The Formula for Change in Variables in a Multiple Integral, American Math. Monthly 61, No.2, (1954) 81–85.
- [15] K. T. Smith, Primer of Modern Analysis, Springer, New York, 1983.
- [16] K. R. Stromberg, Introduction to Classical Real Analysis, Wadsworth, Belmont CA, 1981.
- [17] D. W. Strook, A Concise Introduction to the Theory of Integration, 2nd edition, Birkhäuser, Boston MA, 1994.
- [18] A. J. Weir, Lebesgue Integration and Measure, Cambridge University Press, London, 1973.
- [19] J. H. Williamson, Lebesgue Integration, Holt, Rinehart and Winston, New York, 1962.

Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road Oxford OX2 6GG November 2016

David.Edwards@maths.ox.ac.uk