A3: RINGS AND MODULES, EXAMPLES SHEET 3

TOM SANDERS

Feedback to tom.sanders@maths.ox.ac.uk. I am particularly interested in the suitability of the sheet. My thanks to Richard Earl for many of the problems.

1. Show that the set \mathbb{A} of elements in \mathbb{C} that are algebraic over \mathbb{Q} form a field. Show that A is *not* a finite extension of \mathbb{Q} .

It may help to use the Tower Law in the first part, and consider the polynomials $X^n - 2$ in the second.

- **2.** Factorise the following into irreducible elements in the given rings.
 - (i) $36X^3 24X^2 18X + 12$ in $\mathbb{Z}[X]$;
 - (ii) $X^3 + Y^3$ in $\mathbb{Q}[X, Y];$ (iii) $\pi^8 \pi^4 2$ in $\mathbb{Q}[\pi];$
- **3.** Suppose that R is an integral domain and $x, y \in R$, and $r \in R^*$.
 - (i) (a) Show that the ideal $\langle x \rangle \cap \langle y \rangle$ is generated by l if and only if $x \mid l$ and $y \mid l$, and any $m \in R$ with $x \mid m$ and $y \mid m$ has $l \mid m$. We say that l is a lowest common multiple of x and y.
 - (b) Show that the ideal $\bigcap \{ \langle d \rangle : d \in R, \langle x, y \rangle \subset \langle d \rangle \}$ is generated by g if and only if $q \mid x$ and $q \mid y$, and if $d \mid x$ and $d \mid y$ then $d \mid q$. We say that g is a greatest common divisor of x and y.
 - (ii) Write E for the unital subring of polynomials in $\mathbb{F}[X,Y]$ generated by $\{X^iY^j:$ $i + j \equiv 0 \pmod{2}$, so that E is an integral domain.
 - (a) Show that X^2 and XY have a lowest common multiple in $\mathbb{F}[X, Y]$.
 - (b) Show that X^2 and XY do not have a lowest common multiple in E.
 - (c) Show that X^2 and XY have a greatest common divisor in \tilde{E} .
 - (iii) (a) Show that if h is a greatest common divisor of x and y, and k is a greatest common divisor of rx and ry then $k \sim rh$.
 - (b) Show that x and y have a lowest common multiple if and only if rx and ryhave a greatest common divisor for all $r \in R^*$.
 - (c) Show that every pair of elements in R has a greatest common divisor if and only if the intersection of every pair of principal ideals is principal.

Last updated: 16th February, 2020.

TOM SANDERS

[This question may look less accessible than it is. If the sheet seems long then part (iii) could be dropped.]

4. Suppose that R is an integral domain with the ACCP in which every maximal ideal is principal. Show that R is a PID.

[Hint: It may help to suppose that I_0 is a non-principal ideal and create an ascending chain of ideals by dividing out any common factor of all the elements.]

5.

- (i) Show that $\{6, 10, 15\}$ generates \mathbb{Z} as a \mathbb{Z} -module but no proper subset does.
- (ii) Show that \mathbb{Q} is not a finitely generated \mathbb{Z} -module.
- (iii) Show that $\mathbb{R}[X]/\langle X \rangle$ and $\mathbb{R}[X]/\langle X-1 \rangle$ are isomorphic as rings but not as $\mathbb{R}[X]$ -modules.
- 6. Write $Int(\mathbb{Z})$ for the functions $\mathbb{N}_0 \to \mathbb{Z}$ arising as polynomials. Show that the maps

$$e_k : \mathbb{N}_0 \to \mathbb{Z}; x \mapsto \frac{x(x-1)\cdots(x-k+1)}{k!}$$

for $k \in \mathbb{N}_0$ (with e_0 identically 1) form a basis for $\operatorname{Int}(\mathbb{Z})$ so that $\operatorname{Int}(\mathbb{Z})$ is isomorphic to $\mathbb{Z}[X]$ as a \mathbb{Z} -module. On the other hand show that $\operatorname{Int}(\mathbb{Z})$ and $\mathbb{Z}[X]$ are not isomorphic as rings.

[Hint: It may help to prove that if f has degree d then

$$f(x) = \sum_{k=0}^{d} \alpha_k e_k(x) \text{ where } \alpha_k = f(k) - \sum_{i=0}^{k-1} \alpha_i \binom{k}{i} \text{ for } k \in \mathbb{N}_0.$$

]

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, RADCLIFFE OBSERVATORY QUARTER, WOOD-STOCK ROAD, OXFORD OX2 6GG, UNITED KINGDOM

Email address: tom.sanders@maths.ox.ac.uk