Calculus of Variations - Problem Sheet 2

Trinity Term 2020

1. It is required to find an extremal of the functional
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among all smooth functions y(z) which satisfy the boundary conditions

Show that such an extremal must be a solution of the differential equation
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and must satisfy the natural boundary conditions
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=0 at z=a and z=0.

2. An elastic beam has vertical displacement y(z), z€[0,1]. (The z-axis is horizontal
and the y-axis is vertical and directed upwards.) The ends of the beam are supported,
that is, y(0) = y(I) = 0, and the displacement minimizes the energy
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where D, p and g are positive constants. Write down the differential equation and
the boundary conditions that y(x) must satisfy and show that

y(x) = —%x(l — ) (I + 2(l — ).

3. Find an extremal corresponding to
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when subject to y(—1) = y(1) = 0 and
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4 (a) Suppose that F: R” - R isa C?-function and that the C?-function
u: R® — R gives a stationary value to the integral
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and satisfies u = f on the smooth simple closed surface 9V which bounds the open
set V in R3. Show that u satisfies the Euler equation
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(b) Let V = {(x,y, 2)eR? : 2% + y* + z* < 1}. Find an extremal u = u(z,y, z) for
the problem of minimizing the integral
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when subject to the constraints
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and u = 1 on the boundary of Vv

5. Let p be a positive real-valued function differentiable on the bounded interval [a, b]
and let ¢ and r be positive real-valued continuous functions on [a, b]. Show that the
extremals of
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subject to the constraint

must satisfy

with py’ =0 at £ = a and x = b.

Show that if y; and y, are solutions to (A) for A = A, Ay respectively, where
)\1 7é /\2, then

b
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Find the extremals of / y"?dz subject to / y*dz =1 and the corresponding
0 0
values of A.Verify that these extremals satisfy (B).
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