Introduction to Manifolds Lecture 4

Balázs Szendrői, University of Oxford, Trinity term 2020

**Proposition** (Chain Rule) Let  $\Omega \subseteq \mathbb{R}^n$  and  $V \subseteq \mathbb{R}^m$  be open and connected sets, let  $g: \Omega \to V$  and  $f: V \to \mathbb{R}^k$ . Suppose that g is differentiable at  $x \in \Omega$ and f is differentiable at  $y = g(x) \in V$ . Then the map

$$f \circ g \colon \Omega \to \mathbb{R}^k$$

is differentiable at x and

$$d(f\circ g)(x)=d\!f(g(x))dg(x)\,.$$

**Corollary** (Derivative of the Inverse) Let  $\Omega \subseteq \mathbb{R}^n$  and  $V \subseteq \mathbb{R}^n$  be open and connected sets, and suppose  $f: V \to \Omega$  is invertible with inverse  $g: \Omega \to V$ . Suppose further that f is differentiable at  $x \in V$  and that g is differentiable at  $g = f(x) \in \Omega$ . Then

$$dg(f(x)) = (df(x))^{-1}.$$

The rule for the derivative and its invese in action

**Example** (Coordinate change) Let  $f: \mathbb{R}_+ \times (0, 2\pi) \subset \mathbb{R}^2 \to \mathbb{R}^2$  be given by

$$(x, y) = f(r, \varphi) = (r \cos \varphi, r \sin \varphi).$$

Let g be the inverse function to f. Then

$$Df(r,\varphi) = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix}$$

so we compute

$$\det Df(r,\varphi) = r > 0$$

and indeed  $Df(r, \varphi)$  is invertible. Also

$$Dg(x,y) = Df(r,\varphi)^{-1} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\frac{1}{r}\sin\varphi & \frac{1}{r}\cos\varphi \end{pmatrix} = \begin{pmatrix} \frac{x}{\sqrt{x^2+y^2}} & \frac{y}{\sqrt{x^2+y^2}} \\ -\frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} \end{pmatrix}$$

**Corollary** (The gradient is perpendicular to level sets) Let

$$f\colon \Omega\subseteq\mathbb{R}^n\to\mathbb{R}$$

be differentiable and let  $\gamma : (\alpha, \beta) \subset \mathbb{R} \to \Omega$  be a differentiable curve segment. Assume that the curve lies in a level set of f, that is  $f(\gamma(t)) = c$  for all  $t \in (\alpha, \beta)$ . Then for all  $t \in (\alpha, \beta)$ , we have

$$0 = \left\langle \nabla f(\gamma(t)), \gamma'(t) \right\rangle.$$



**Corollary** (The gradient is perpendicular to level sets) Let

$$f\colon \Omega\subseteq\mathbb{R}^n\to\mathbb{R}$$

be differentiable and let  $\gamma : (\alpha, \beta) \subset \mathbb{R} \to \Omega$  be a differentiable curve segment. Assume that the curve lies in a level set of f, that is  $f(\gamma(t)) = c$  for all  $t \in (\alpha, \beta)$ . Then we have for all  $t \in (\alpha, \beta)$  that

$$0 = \left\langle \nabla f(\gamma(t)), \gamma'(t) \right\rangle.$$

**Proof** By the constancy of  $f(\gamma(t))$  and the Chain Rule, we have

$$0 = d(f \circ \gamma)(t)$$
  
=  $df(\gamma(t))\gamma'(t)$   
=  $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle$ 

**Classical Mean Value Theorem** for a continuous function  $f \colon \mathbb{R} \to \mathbb{R}$  differentiable on the interval (x, y): for some  $\xi \in (x, y)$ ,

$$f(x) - f(y) = f'(\xi)(x - y).$$

This does not readily generalise to the vector-valued context, since in general we get a different  $\xi$  for every component.

## **Proposition** Suppose that

$$f\colon \Omega\subseteq\mathbb{R}^n\to\mathbb{R}$$

is differentiable. Let  $x, y \in \Omega$  be such that the line segment

$$[x;y] = \{tx + (1-t)y \,|\, t \in [0,1]\}$$

is also contained in  $\Omega$ .

Then there exists  $\xi \in [x; y]$  such that

$$f(x) - f(y) = df(\xi)(x - y) = \left\langle \nabla f(\xi), x - y \right\rangle.$$

A version of the Mean Value Theorem: illustration

For  $x, y \in \Omega$ , the line segment [x; y] is also contained in  $\Omega$ :



**Remark**: if  $[x; y] \subset \Omega$  is true for all pairs of points  $x, y \in \Omega \subset \mathbb{R}^n$ , then  $\Omega$  is called **convex**:



**Proposition** Suppose that  $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$  is differentiable. Let  $x, y \in \Omega$  be such that the line segment [x; y] is also contained in  $\Omega$ . Then there exists  $\xi \in [x; y]$  such that  $f(x) - f(y) = df(\xi)(x - y) = \langle \nabla f(\xi), x - y \rangle$ . **Proof** Let  $\gamma(t) = tx + (1 - t)y, t \in [0, 1]$ , and  $F(t) = f(\gamma(t))$ . Then f(x) = F(1) and f(y) = F(0). The Chain Rule implies that F is differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}t}F(t) = df(\gamma(t))\gamma'(t)\,.$$

By the classical Mean Value Theorem, there exists  $\tau \in (0, 1)$  such that

$$F(1) - F(0) = F'(\tau).$$

Hence finally, with  $\xi = \gamma(\tau)$ ,

$$f(x) - f(y) = df(\gamma(\tau))(x - y) = df(\xi)(x - y).$$

The Inverse Function Theorem and the Implicit Function Theorem are two of the most important theorems in multivariable analysis.

• The Inverse Function Theorem tells us when we can locally invert a function:

$$y = f(x) \xrightarrow{?} x = g(y)$$

• The Implicit Function Theorem tells us when a set of variables is given implicitly as a function of other variables.

$$f(x,y)=0 \stackrel{?}{\Longrightarrow} y=g(x)$$

The flavour of these results is similar:

- We linearise the problem at a point p by considering the derivative df(p).
- If a certain nondegeneracy condition on df(p) holds, we obtain a result that works on a neighbourhood of the point p.

## An example

We start with a simple example. Consider

$$S^1 = \{(x, y) \in \mathbb{R}^2 \, | \, x^2 + y^2 = 1\} \subset \mathbb{R}^2$$

the unit circle in the plane. We can write

$$S^1 = \{(x,y) \in \mathbb{R}^2 \,|\, f(x,y) = 0\}$$

for

$$f(x, y) = x^2 + y^2 - 1.$$

Can we find a function y = y(x) such that  $x^2 + y(x)^2 = 1$ ? Well, we could naively write

$$y(x) = \sqrt{1 - x^2}.$$

But there are issues: choice of sign; also issues in a neighbourhood of "bad" points.



The conclusion is that we can find y = y(x) **locally**, in a neighbourhood of a point  $(x_0, y_0) \in S^1$ , as long as  $y_0 \neq 0$ . We can write explicitly  $y(x) = \sqrt{1 - x^2}$  if  $y_0 > 0$  and  $y(x) = -\sqrt{1 - x^2}$  if  $y_0 < 0$ , both for |x| < 1. If  $y_0 = 0$ , we cannot find such a function y = y(x). **Theorem** (Implicit Function Theorem in  $\mathbb{R}^2$ ) Let  $\Omega \subseteq \mathbb{R}^2$  be open and  $f \in C^1(\Omega) = C^1(\Omega, \mathbb{R})$ . Let  $(x_0, y_0) \in \Omega$  and assume that

$$f(x_0, y_0) = 0$$
 and  $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$ .

Then there exist open intervals  $I, J \subseteq \mathbb{R}$  with  $x_0 \in I, y_0 \in J$  and a unique function  $g: I \to J$  such that  $y_0 = g(x_0)$  and

f(x,y) = 0 if and only if y = g(x) for all  $(x,y) \in I \times J$ . Furthermore,  $g \in C^1(I)$  with

$$g'(x_0) = -rac{rac{\partial f}{\partial x}(x_0,y_0)}{rac{\partial f}{\partial y}(x_0,y_0)}$$

The Implicit Function Theorem in  $\mathbb{R}^2$ : illustration



I will not prove this result here. The proof in this case is easier than the general case, and can be found in the full set of Lecture Notes (non-examinable).

Consider again the unit circle

$$S^1 = \{(x,y) \in \mathbb{R}^2 \,|\, f(x,y) = 0\}$$

for

$$f(x, y) = x^2 + y^2 - 1.$$

At a point  $(x_0, y_0) \in S^1$ , we have

$$\frac{\partial f}{\partial y}(x_0, y_0) = 2y_0.$$

So the condition  $y_0 \neq 0$  that we found "by hand" for the existence of y = y(x) precisely matches the condition of the Implicit Function Theorem.

Also, the function  $y(x) = \sqrt{1 - x^2}$  is differentiable away from  $x = \pm 1$ :

$$y'(x) = \frac{d}{dx}\sqrt{1-x^2} = \frac{-2x}{\sqrt{1-x^2}}$$

and for example at  $(x_0, y_0) = (0, 1)$  we have

$$y'(0) = -\frac{\frac{\partial f}{\partial x}(0,1)}{\frac{\partial f}{\partial y}(0,1)} = -\frac{0}{2} = 0$$

so has horizontal tangent at x = 0 (check on the picture!).

Finally, note that while at  $(\pm 1, 0)$  an expression y = y(x) does not exist, we can switch the roles of x and y. In a neighbourhood of these points, we can write

$$x = \sqrt{1 - y^2}$$

in agreement with the Implicit Function Theorem, since

$$\frac{\partial f}{\partial x}(\pm 1,0) \neq 0.$$

## Another example

Consider

$$C = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = 0\} \subset \mathbb{R}^2$$

for

$$f(x,y) = x^5 + x^2y^2 - 5x + 2y + y^5.$$

At the point  $(0,0) \in C$ , we have

$$\frac{\partial f}{\partial y}(0,0) = 2 \neq 0.$$

So by the Implicit Function Theorem, there exists a  $C^1$  function  $g: I \to J$ for small intervals I, J around 0 which can be used explicitly parametrise Cby y = g(x) in a neighbourhood of (0, 0). This is however not going to be a function given by an explicit formula: all we can deduce is the existence of the function, its differentiability, as well as the value of its derivative at 0.

$$g'(0) = -\frac{\partial f}{\partial x}(0,0) \Big/ \frac{\partial f}{\partial y}(0,0) = 5/2.$$

## Conclusion

For an arbitrary

$$C=\{(x,y)\in \mathbb{R}^2\,|\,f(x,y)=0\}\subset \mathbb{R}^2$$

with  $f \in C^1(\Omega)$  for  $\Omega \subset \mathbb{R}^2$  and a point  $(x_0, y_0) \in C$  on this level set,

$$\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$$

then we can parametrise C by y = g(x) in a neighbourhood of  $(x_0, y_0) \in C$ ;

• if

• if

$$\frac{\partial f}{\partial x}(x_0, y_0) \neq 0$$

then we can parametrise C by x = h(y) in a neighbourhood of  $(x_0, y_0) \in C$ ;

• if

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

then such a parametrization is (in general) **not possible**.