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Recap from the end of last lecture

Proposition (Chain Rule) Let Q@ C R" and V' C R"™ be open and connected
sets, let g: @ — V and f: V — R*. Suppose that ¢ is differentiable at z € Q
and f is differentiable at y = g(x) € V. Then the map

fog: Q—R"
is differentiable at  and

d(f og)(z)=df(g(z))dg(z).

Corollary (Derivative of the Inverse) Let Q C R" and V' C R" be open and
connected sets, and suppose f: V — () is invertible with inverse g: €2 — V.
Suppose further that f is differentiable at £ € V' and that g is differentiable at
g=flz) e

Then

dg(f(x)) = (df ()"



The rule for the derivative and its invese in action

Example (Coordinate change)
Let f: R, x (0,27) C R?* — R? be given by

(@,y) = f(r,p) = (rcosp,rsing).
Let g be the inverse function to f. Then

Df(r, o) = (coscp —rsingp)
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SO we compute
det Df(r,p) =7 >0

and indeed D f(r, ) is invertible. Also

. z Y
Dg(x,y) = Df(r,o) ' = ( P ) = (\_/502;?/2 Vi )

—=sing —cos T o




Gradient and level set

Corollary (The gradient is perpendicular to level sets) Let
f:QCR"—> R

be differentiable and let v: (a, 8) C R — Q be a differentiable curve segment.
Assume that the curve lies in a level set of f, that is f(v(t)) = ¢ for all
t € (a, ). Then for all t € (a, ), we have

0 —

(VI(y(1),7'(1)) -




Gradient and level set

Corollary (The gradient is perpendicular to level sets) Let
f:QCR"—> R

be differentiable and let v: (a, 8) C R — Q be a differentiable curve segment.
Assume that the curve lies in a level set of f, that is f(v(t)) = ¢ for all
t € (a, 8). Then we have for all t € (a, 8) that

0= (Vf(~(2).7 (1))
Proof By the constancy of f(v(¢)) and the Chain Rule, we have

0 = d(fov)(t)
= df(v(t))y'(t)
= (Vf((),7 (1))



A version of the Mean Value Theorem

Classical Mean Value Theorem for a continuous function f: R — R
differentiable on the interval (z,y): for some & € (x,y),

fl@) = fly) = f(&x —y).
This does not readily generalise to the vector-valued context, since in general
we get a different ¢ for every component.

Proposition Suppose that
f:QCR"—= R
is differentiable. Let z,y € ) be such that the line segment
zyl = {tz+ (1 - t)y[¢ € [0,1]}

is also contained in €2.
Then there exists € € [x; y] such that

f(x) = fly) =df(§)(x —y) =(Vf(§),z—y).



A version of the Mean Value Theorem: illustration

For x,y € ), the line segment [x; 3] is also contained in €2

Remark: if [x;y] C € is true for all pairs of points x,y € 2 C R”, then (Q is
called convex:
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A version of the Mean Value Theorem: proof

Proposition Suppose that f: {2 C R" — R is differentiable. Let z,y €
be such that the line segment [x;y] is also contained in €2. Then there exists

§ € [z;y] such that f(z) — f(y) = df (§)(z —y) = (V (), z —y).
Proof Let v(t) =tz + (1 — t)y,t € [0,1], and F(t) = f(y(t)).
Then f(z) = F(1) and f(y) = F(0).

The Chain Rule implies that F' is differentiable and

CR) = diG R ().

By the classical Mean Value Theorem, there exists 7 € (0, 1) such that
F(1) — F(0) = F'(7).

Hence finally, with £ = (1),

f(x) = fly) = df(v(7))(z — y) = df (§)(z — y).



The Inverse and Implicit Function Theorems: Introduction

The Inverse Function Theorem and the Implicit Function Theorem are two of
the most important theorems in multivariable analysis.

e The Inverse Function Theorem tells us when we can locally invert a function:
?
y=flz) =z =gy)

e The Implicit Function Theorem tells us when a set of variables is given
implicitly as a function of other variables.

?
flz,y) =0=y = g(x)
The flavour of these results is similar:

e We linearise the problem at a point p by considering the derivative df (p).

e If a certain nondegeneracy condition on df (p) holds, we obtain a result that
works on a neighbourhood of the point p.



An example

We start with a simple example. Consider
St ={(z,y) e R?|2* +4° =1} C R?
the unit circle in the plane. We can write

St = {(z,y) e R?| f(z,y) = 0}
for
flz,y) =2*+9° — 1.

Can we find a function y = y(z) such that z* + y(z)* = 17
Well, we could naively write

y(x) =+1— a2

But there are issues: choice of sign; also issues in a neighbourhood of "bad”
points.



An example (continuted)
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The conclusion is that we can find y = y(x) locally, in a neighbourhood of a
point (zg, o) € St, as long as yg # 0.

We can write explicitly y(z) = V1 — 22 if yyp > 0 and y(z) = —V1 — 22 if
Yo < 0, both for |z| < 1.

If yo = 0, we cannot find such a function y = y(x).



The Implicit Function Theorem in R?

Theorem (Implicit Function Theorem in R?) Let Q@ C R? be open and
fe i) =CYHO,R). Let (zg,y0) € © and assume that
0
Flow) =0 and (g ) £0,
Y
Then there exist open intervals I,J C R with zy € I, yg € J and a unique
function ¢g: I — J such that yy = g(xy) and
flz,y)=0 if and only if y=g(x) forall (z,y)elxJ
Furthermore, g € C*(I) with

i)

g'(xo) = o)
(@0, o)

ay \ L0, Yo



The Implicit Function Theorem in R?: illustration

N
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[ will not prove this result here. The proof in this case is easier than the general

£ (o)

flxg)=0 © y=g(x)
Andde T x T

case, and can be found in the full set of Lecture Notes (non-examinable).



The Implicit Function Theorem in R?: return to the example

Consider again the unit circle

S' = {(z,y) e R?| f(a,y) = 0}
for
flz,y) =2*+y* — 1.
At a point (zg, o) € St, we have
d
a—g(ﬂfoayo) = 2yo.

So the condition yy # 0 that we found by hand” for the existence of y = y(x)
precisely matches the condition of the Implicit Function Theorem.



The Implicit Function Theorem in R?: return to the example

Also, the function y(z) = v/1 — x? is differentiable away from = = +1:

d —2
V() = T = =

dx V1 — a2
and for example at (xg, yo) = (0, 1) we have
af
yo) =20
#0,1) 2

so has horizontal tangent at x = 0 (check on the picture!).

Finally, note that while at (41,0) an expression y = y(x) does not exist, we
can switch the roles of x and y. In a neighbourhood of these points, we can

r=1+/1—1y>

in agreement with the Implicit Function Theorem, since
of

5 o(EL0) £0.

write



Another example

Consider

C={(z,y) € R*| f(z,y) =0} CR
for

f(z,y) = 2° 4+ 2*y* — 5z + 2y + 9.
At the point (0,0) € C, we have

of
0.0/ =240

So by the Implicit Function Theorem, there exists a C* function g : I — J
for small intervals I, .J around 0 which can be used explicitly parametrise C
by y = g(x) in a neighbourhood of (0,0). This is however not going to be a
function given by an explicit formula: all we can deduce is the existence of the
function, its differentiability, as well as the value of its derivative at 0.

v =-500/7

- (0,0) = 5/2.



Conclusion

For an arbitrary
C={(x,y) e R*| f(z,y) =0} CR

with f € C1(Q) for © C R* and a point (g, y) € C on this level set,

o if of

oy (0, 90) # 0
then we can parametrise C' by y = g(x) in a neighbourhood of (xg, yo) € C;

o if ot

a—x(ﬂfo, Yo) # 0

then we can parametrise C' by x = h(y) in a neighbourhood of (xg, yo) € C;
o if of o
— = = =0
ax (x()ay()) ay ($07y0)

then such a parametrization is (in general) not possible.



