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Recap from the end of last lecture

Proposition (Chain Rule) Let Ω ⊆ Rn and V ⊆ Rm be open and connected

sets, let g : Ω→ V and f : V → Rk. Suppose that g is differentiable at x ∈ Ω

and f is differentiable at y = g(x) ∈ V . Then the map

f ◦ g : Ω→ Rk

is differentiable at x and

d(f ◦ g)(x) = df (g(x))dg(x) .

Corollary (Derivative of the Inverse) Let Ω ⊆ Rn and V ⊆ Rn be open and

connected sets, and suppose f : V → Ω is invertible with inverse g : Ω → V .

Suppose further that f is differentiable at x ∈ V and that g is differentiable at

g = f (x) ∈ Ω.

Then

dg(f (x)) = (df (x))−1.



The rule for the derivative and its invese in action

Example (Coordinate change)

Let f : R+ × (0, 2π) ⊂ R2 → R2 be given by

(x, y) = f (r, ϕ) = (r cosϕ, r sinϕ).

Let g be the inverse function to f . Then

Df (r, ϕ) =

(
cosϕ −r sinϕ

sinϕ r cosϕ

)
so we compute

detDf (r, ϕ) = r > 0

and indeed Df (r, ϕ) is invertible. Also

Dg(x, y) = Df (r, ϕ)−1 =

(
cosϕ sinϕ

−1
r sinϕ 1

r cosϕ

)
=

(
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)



Gradient and level set

Corollary (The gradient is perpendicular to level sets) Let

f : Ω ⊆ Rn → R

be differentiable and let γ : (α, β) ⊂ R→ Ω be a differentiable curve segment.

Assume that the curve lies in a level set of f , that is f (γ(t)) = c for all

t ∈ (α, β). Then for all t ∈ (α, β), we have

0 = 〈∇f (γ(t)), γ′(t)〉 .



Gradient and level set

Corollary (The gradient is perpendicular to level sets) Let

f : Ω ⊆ Rn → R

be differentiable and let γ : (α, β) ⊂ R→ Ω be a differentiable curve segment.

Assume that the curve lies in a level set of f , that is f (γ(t)) = c for all

t ∈ (α, β). Then we have for all t ∈ (α, β) that

0 = 〈∇f (γ(t)), γ′(t)〉 .

Proof By the constancy of f (γ(t)) and the Chain Rule, we have

0 = d(f ◦ γ)(t)

= df (γ(t))γ′(t)

= 〈∇f (γ(t)), γ′(t)〉 .



A version of the Mean Value Theorem

Classical Mean Value Theorem for a continuous function f : R → R
differentiable on the interval (x, y): for some ξ ∈ (x, y),

f (x)− f (y) = f ′(ξ)(x− y).

This does not readily generalise to the vector-valued context, since in general

we get a different ξ for every component.

Proposition Suppose that

f : Ω ⊆ Rn → R

is differentiable. Let x, y ∈ Ω be such that the line segment

[x; y] = {tx + (1− t)y | t ∈ [0, 1]}

is also contained in Ω.

Then there exists ξ ∈ [x; y] such that

f (x)− f (y) = df (ξ)(x− y) = 〈∇f (ξ), x− y〉 .



A version of the Mean Value Theorem: illustration

For x, y ∈ Ω, the line segment [x; y] is also contained in Ω:

Remark: if [x; y] ⊂ Ω is true for all pairs of points x, y ∈ Ω ⊂ Rn, then Ω is

called convex:



A version of the Mean Value Theorem: proof

Proposition Suppose that f : Ω ⊆ Rn → R is differentiable. Let x, y ∈ Ω

be such that the line segment [x; y] is also contained in Ω. Then there exists

ξ ∈ [x; y] such that f (x)− f (y) = df (ξ)(x− y) = 〈∇f (ξ), x− y〉.
Proof Let γ(t) = tx + (1− t)y, t ∈ [0, 1], and F (t) = f (γ(t)).

Then f (x) = F (1) and f (y) = F (0).

The Chain Rule implies that F is differentiable and

d

dt
F (t) = df (γ(t))γ′(t) .

By the classical Mean Value Theorem, there exists τ ∈ (0, 1) such that

F (1)− F (0) = F ′(τ ).

Hence finally, with ξ = γ(τ ),

f (x)− f (y) = df (γ(τ ))(x− y) = df (ξ)(x− y).



The Inverse and Implicit Function Theorems: Introduction

The Inverse Function Theorem and the Implicit Function Theorem are two of

the most important theorems in multivariable analysis.

• The Inverse Function Theorem tells us when we can locally invert a function:

y = f (x)
?

=⇒ x = g(y)

• The Implicit Function Theorem tells us when a set of variables is given

implicitly as a function of other variables.

f (x, y) = 0
?

=⇒ y = g(x)

The flavour of these results is similar:

• We linearise the problem at a point p by considering the derivative df (p).

• If a certain nondegeneracy condition on df (p) holds, we obtain a result that

works on a neighbourhood of the point p.



An example

We start with a simple example. Consider

S1 = {(x, y) ∈ R2 |x2 + y2 = 1} ⊂ R2

the unit circle in the plane. We can write

S1 = {(x, y) ∈ R2 | f (x, y) = 0}

for

f (x, y) = x2 + y2 − 1.

Can we find a function y = y(x) such that x2 + y(x)2 = 1?

Well, we could naively write

y(x) =
√

1− x2.

But there are issues: choice of sign; also issues in a neighbourhood of ”bad”

points.



An example (continuted)

The conclusion is that we can find y = y(x) locally, in a neighbourhood of a

point (x0, y0) ∈ S1, as long as y0 6= 0.

We can write explicitly y(x) =
√

1− x2 if y0 > 0 and y(x) = −
√

1− x2 if

y0 < 0, both for |x| < 1.

If y0 = 0, we cannot find such a function y = y(x).



The Implicit Function Theorem in R2

Theorem (Implicit Function Theorem in R2) Let Ω ⊆ R2 be open and

f ∈ C1(Ω) = C1(Ω,R). Let (x0, y0) ∈ Ω and assume that

f (x0, y0) = 0 and
∂f

∂y
(x0, y0) 6= 0 .

Then there exist open intervals I, J ⊆ R with x0 ∈ I , y0 ∈ J and a unique

function g : I → J such that y0 = g(x0) and

f (x, y) = 0 if and only if y = g(x) for all (x, y) ∈ I × J.

Furthermore, g ∈ C1(I) with

g′(x0) = −
∂f
∂x(x0, y0)
∂f
∂y (x0, y0)

.



The Implicit Function Theorem in R2: illustration

I will not prove this result here. The proof in this case is easier than the general

case, and can be found in the full set of Lecture Notes (non-examinable).



The Implicit Function Theorem in R2: return to the example

Consider again the unit circle

S1 = {(x, y) ∈ R2 | f (x, y) = 0}

for

f (x, y) = x2 + y2 − 1.

At a point (x0, y0) ∈ S1, we have

∂f

∂y
(x0, y0) = 2y0.

So the condition y0 6= 0 that we found ”by hand” for the existence of y = y(x)

precisely matches the condition of the Implicit Function Theorem.



The Implicit Function Theorem in R2: return to the example

Also, the function y(x) =
√

1− x2 is differentiable away from x = ±1:

y′(x) =
d

dx

√
1− x2 =

−2x√
1− x2

and for example at (x0, y0) = (0, 1) we have

y′(0) = −
∂f
∂x(0, 1)
∂f
∂y (0, 1)

= −0

2
= 0

so has horizontal tangent at x = 0 (check on the picture!).

Finally, note that while at (±1, 0) an expression y = y(x) does not exist, we

can switch the roles of x and y. In a neighbourhood of these points, we can

write

x =
√

1− y2

in agreement with the Implicit Function Theorem, since

∂f

∂x
(±1, 0) 6= 0.



Another example

Consider

C = {(x, y) ∈ R2 | f (x, y) = 0} ⊂ R2

for

f (x, y) = x5 + x2y2 − 5x + 2y + y5.

At the point (0, 0) ∈ C, we have

∂f

∂y
(0, 0) = 2 6= 0.

So by the Implicit Function Theorem, there exists a C1 function g : I → J

for small intervals I, J around 0 which can be used explicitly parametrise C

by y = g(x) in a neighbourhood of (0, 0). This is however not going to be a

function given by an explicit formula: all we can deduce is the existence of the

function, its differentiability, as well as the value of its derivative at 0.

g′(0) = −∂f
∂x

(0, 0)
/∂f
∂y

(0, 0) = 5/2.



Conclusion

For an arbitrary

C = {(x, y) ∈ R2 | f (x, y) = 0} ⊂ R2

with f ∈ C1(Ω) for Ω ⊂ R2 and a point (x0, y0) ∈ C on this level set,

• if
∂f

∂y
(x0, y0) 6= 0

then we can parametrise C by y = g(x) in a neighbourhood of (x0, y0) ∈ C;

• if
∂f

∂x
(x0, y0) 6= 0

then we can parametrise C by x = h(y) in a neighbourhood of (x0, y0) ∈ C;

• if
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0

then such a parametrization is (in general) not possible.


