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The Implicit Function Theorem in Rn: setup

We write

• Rn = Rk × Rm 3 (x, y) = (x1, . . . , xk, y1, . . . , ym)

• f : Ω ⊆ Rn → Rm, (x0, y0) ∈ Ω ⊆ Rn,

• z0 = f (x0, y0)

We are looking for open neighbourhoods U of x0 and V of y0, as well as a

function g : U → V , such that

∀(x, y) ∈ U × V : f (x, y) = z0 ⇐⇒ y = g(x)



The Implicit Function Theorem in Rn: setup



The Implicit Function Theorem in Rn: the linear case

Consider first the linear case.

Let

f (x, y) = Ax + By

with

A ∈Mm×k(R), B ∈Mm×m(R).

Our target value is at (x0, y0) is

z0 = Ax0 + By0.

Then the “level set”equation becomes

Ax + By = z0.

This can be solved for y as

y = B−1
(
z0 − Ax

)
if B is invertible.



The Implicit Function Theorem in Rn: the linear case

So indeed we get

∀(x, y) : Ax + By = z0 ⇐⇒ y = B−1
(
z0 − Ax

)
as long as B is invertible.

Notice that the matrix B is precisely the matrix of partial derivatives of

f with respect to the y variables, a certain m×m submatrix of Df .

The general Theorem will be a generalization of this observation for a non-linear

situation.



The Implicit Function Theorem in Rn: separating derivatives

Consider the nonlinear case. Let Ω ⊂ Rn = Rk × Rm.

For f ∈ C1(Ω,Rm), write

Df (x, y) = (Dxf (x, y), Dyf (x, y)) ,

where

Dxf (x, y) =

(
∂fj
∂xi

)
∈Mm×k(R) (j = 1, . . . ,m; i = 1, . . . , k)

and

Dyf (x, y) =

(
∂fj
∂yi

)
∈Mm×m(R) (j = 1, . . . ,m; i = 1, . . . ,m) .



The Implicit Function Theorem in Rn: approximation

Then by the definition of derivative, we can write

f (x, y) = f (x0, y0) + Dxf (x0, y0)(x− x0) + Dyf (x0, y0)(y − y0)

+o(|(x, y)− (x0, y0)|)
where o(h) is a quantity such that o(h)/h tends to 0 as h→ 0.

If the remainder term in the second line were zero, then we would have

f (x, y) = z0

if and only if

Dxf (x0, y0)(x− x0) = −Dyf (x0, y0)(y − y0) .

If Dyf (x0, y0) is invertible, this is equivalent to

y = y0 −
(
Dyf (x0, y0)

)−1
Dxf (x0, y0)(x− x0)

Hence there would exist a function g(x) such that f (x, y) = z0 iff y = g(x), as

desired.



The Implicit Function Theorem in Rn: full statement

Theorem (The Implicit Function Theorem) Let

f : Ω ⊆ Rn = Rk+m → Rm,

f ∈ C1(Ω,Rm). Let (x0, y0) ∈ Ω with z0 = f (x0, y0).

Assume that the m×m matrix Dyf (x0, y0) is invertible.

Then there exist open neighbourhoods U ⊂ Rk of x0 and V ⊂ Rm of y0, and

a function g ∈ C1(U, V ) such that

{(x, y) ∈ U × V | f (x, y) = z0} = {(x, y) | x ∈ U, y = g(x)}.

Furthermore

Dg(x0) = −
(
Dyf (x0, y0)

)−1
Dxf (x0, y0) .

Summary: y ∈ V ⊂ Rm is defined implicitly as a function of x ∈ U ⊂ Rk

via the relation f (x, y) = 0, equivalently explicitly as y = g(x).



The Implicit Function Theorem in Rn



The Implicit Function Theorem in Rn: an example

Let h : Ω ⊂ R3 → R for Ω = R× R+ × R be given by

h(x, y, z) = xy − z log y + exz − 1.

Consider

S = {(x, y, z) ∈ Ω |h(x, y, z) = 0} ⊂ R3.

This is a surface in R3, given by a single equation.

We would like to parametrize a piece of this surface, by “two parameters”. In

other words, we would like to choose one coordinate, say x, and write

(x, y, z) ∈ S ⇐⇒ x = g(y, z).

This is precisely what the Implicit Function Theorem achieves,

• in a neighbourhood of a point (x0, y0, z0) ∈ S on the surface,

• under the non-degeneracy assumption

∂xh(x0, y0, z0) 6= 0.



The Implicit Function Theorem in Rn: an example

h : Ω ⊂ R3 → R be h(x, y, z) = xy − z log y + exz − 1, and

S = {(x, y, z) ∈ Ω |h(x, y, z) = 0} ⊂ R3.

The Jacobian matrix of h is

Dh(x, y, z) = (y + zexz, x− z

y
,− log y + xexz).

We have (0, 1, 1) ∈ S and thus Dh(0, 1, 1) = (2,−1, 0).

The Implicit Function Theorem tells us that we can represent the surface locally

as x = f (y, z) or y = g(x, z) using a differentiable parametrization. No

formula for f or g.



The Implicit Function Theorem in R3: an example

h : Ω ⊂ R3 → R be h(x, y, z) = xy − z log y + exz − 1, and

S = {(x, y, z) ∈ Ω |h(x, y, z) = 0} ⊂ R3.



The Implicit Function Theorem in R3: another example

For f : R3 → R2 given by f (x, y, z) = (x2 − y + z2, x2 − 2y + z) and

C = f−1(0, 0) ⊂ R3,

a differentiable parametrisation g : I → R2 for C exists near (0, 0, 0).



The Inverse Function Theorem: introduction

We consider the following problem. Given a function

f : Ω ⊆ Rn → Rn,

we would like to understand when does there exist, locally around a point x0,

an inverse function

g = f−1.

Once again, consider the linear case first. This is trivial now.

We have

f (x) = Ax

with

A ∈Mn×n(R).

Then

y = Ax

is invertible if and only if A is invertible.



The Inverse Function Theorem: linearizing the problem

Consider a general

f : Ω ⊆ Rn → Rn.

Let x0 ∈ Ω, y0 = f (x0) and assume that the Jacobian matrix Df (x0) is invert-

ible. Then we find for general x that

f (x) = y0 + Df (x0)(x− x0) + o(|x− x0|) .

Now, if the remainder term were not present, then we could just invert the

function by

y = f (x) ⇐⇒ x = x0 + Df (x0)
−1(y − y0).

Example Let f : R→ R be given by f (x) = x2.

• For x0 > 0 or x0 < 0 we have that f is invertible in a neighbourhood of x0.

• For x0 = 0 there is no neighbourhood of x0 where f has an inverse. Indeed,

f ′(0) = 0 is not invertible.



Diffeomorphisms

The following concept will be convenient to use.

Definition (Diffeomorphism) Let

f : U ⊆ Rn → V ⊆ Rn

with U, V domains in Rn. We say that f is a diffeomorphism if f is bijective,

that is there exists f−1 : V → U , and if f ∈ C1(U, V ) and f−1 ∈ C1(V, U).

Important caveat: f ∈ C1(U, V ) and f invertible do not imply that f is a

diffeomorphism!

Example Let f : (−1, 1)→ (−1, 1) be given by f (x) = x3.

f is bijective with inverse g : (−1, 1)→ (−1, 1) given by g(y) = y
1
3 .

Furthermore, f ∈ C∞(−1, 1).

However, f−1 is not differentiable in any neighbourhood of 0.

Hence, f is not a diffeomorphism.



The Inverse Function Theorem

Theorem (The Inverse Function Theorem in Rn) Let Ω ⊆ Rn be open, let

f ∈ C1(Ω,Rn) and let x0 ∈ Ω.

Assume that Df (x0) is invertible.

Then there exists an open neighbourhood U of x0 such that f (U) is open and

f |U : U → f (U)

is a diffeomorphism, i.e. it has a differentiable inverse g : f (U)→ U .

Furthermore, for this local inverse g of f , we have

Dg(f (x0)) =
(
Df (x0)

)−1
.

Remark Notice that the last conclusion is identical to the conclusion of our

earlier result about the derivative of the inverse, discussed in the section on the

Chain Rule. The big difference is that in that result, we needed to assume

existence and differentiability of the inverse, whereas here the existence of g

follows from a much weaker assumption.


