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Recollections

Definition (Diffeomorphism) Let

f : U ⊆ Rn → V ⊆ Rn

with U, V domains in Rn. We say that f is a diffeomorphism if f is bijective,

that is there exists f−1 : V → U , and if f ∈ C1(U, V ) and f−1 ∈ C1(V, U).

Theorem (The Inverse Function Theorem in Rn) Let Ω ⊆ Rn be open, let

f ∈ C1(Ω,Rn) and let x0 ∈ Ω. Assume that Df (x0) is invertible.

Then there exists an open neighbourhood U of x0 such that f (U) is open and

f |U : U → f (U)

is a diffeomorphism, i.e. it has a differentiable inverse g : f (U)→ U .

Furthermore, for this local inverse g of f , we have

Dg(f (x0)) =
(
Df (x0)

)−1
.



A simple example revisited

Let f : R→ R, f (x) = x2. df (x0) 6= 0 is equivalent to x0 6= 0.

If x0 > 0, we can choose U = (0,∞), to get a diffeomorphism

f : (0,∞) → (0,∞)

x 7→ x2√
y ←[ y

If x0 < 0, we can choose U = (−∞, 0) to get a diffeomorphism

f : (−∞, 0) → (0,∞)

x 7→ x2

−√y ← [ y



A coordinate transformation, revisited

Let f : R+ × R→ R2 be given by (r, ϕ) 7→ (r cosϕ, r sinϕ).

We computed before

Df (r, ϕ) =

(
cosϕ −r sinϕ

sinϕ r cosϕ

)
so detDf (r, ϕ) = r > 0.

Hence f is invertible everywhere locally, by the Inverse Function Theorem.

f is not globally invertible: it is 2π-periodic in the ϕ variable.

In fact it is easy to check (homework!) that f : U → V is a diffeomorphism

between the sets

U =
{

(r, ϕ) | ϕ ∈
(
−π

2
,
π

2

)}
and V = {(x, y) ∈ R2 | x > 0}.

Its inverse g = f−1 : V → U is given by

g(x, y) =
(√

x2 + y2, arctan
y

x

)
.



Implicit Function Theorem from the Inverse Function Theorem

The setup of the Implicit Function Theorem: we write a point of Rk+m as (x, y)

with x ∈ Rk and y ∈ Rm. We have a C1 map f : Ω ⊂ Rk+m → Rm.

We assume the m×m submatrix Dyf of Df at (x0, y0) is invertible.

Assume also f (x0, y0) = 0 for simplicity.

We want to find a function g locally such that f (x, y) = 0 iff y = g(x).

In order to apply the Inverse Function Theorem, expand f to a function

F : Ω ⊂ Rk+m → Rk+m by

F (x, y) = (x, f (x, y)).

We compute

DF =

(
I 0

Dxf Dyf

)
.

The invertibility ofDyf at (x0, y0) then clearly means thatDF is also invertible

at (x0, y0).



Implicit Function Theorem from the Inverse Function Theorem

From a C1 map f : Ω ⊂ Rk+m → Rm we created a C1 map

F : Ω ⊂ Rk+m → Rk+m

with DF invertible at (x0, y0).

The Inverse Function Theorem now tells us F has a local differentiable inverse

h : (x, y) 7→ (h1(x, y), h2(x, y)).

We have

(x, y) = (F ◦ h)(x, y) = (h1(x, y), (f ◦ h)(x, y))

so h1(x, y) = x, and hence

h(x, y) = (x, h2(x, y))

with f (x, h2(x, y)) = (f ◦ h)(x, y) = y.

In particular, f (x, h2(x, 0)) = 0, and we can take

g(x) = h2(x, 0).

This proves the existence of the parametrization g asked for in the I.F.T.



Maps of full rank

Question: For n ≥ m, given a map

f : Ω ⊂ Rn → Rm,

what is the maximal value of rank Df (a)?

Answer: As Df (a) is an n×m matrix, its rank is at most m.

Simplest example of a map of maximal rank: the projection map

f : Rn → Rm

given by

f (x1, . . . , xn) = (xn−m+1, . . . , xn).

Indeed, Df (a) consists of a lot of zeros and an m×m identity matrix.

The level sets of this map f are just (affine) linear subspaces Rn−m ⊂ Rn

given by xi = ci for i ≥ n−m + 1.



Simplifying maps of full rank

From our argument for the Implicit Function theorem, we can deduce the fol-

lowing useful fact about general maps which have maximal rank.

Theorem Let m ≤ n and f : Rn → Rm a C1 function such that f (a) = 0

and rank Df (a) = m. Then there is an open neighbourhood V ⊂ Rn of a and

a diffeomorphism h : U ⊂ Rn → V such that

(f ◦ h)(x1, . . . , xn) = (xn−m+1, . . . , xn)

is just projection onto the last m coordinates.

Proof After applying a permutation of coordinates (which is a diffeomorphism

of Rn), we can assume that the m×m matrix formed from the m last columns

of Df (a) is invertible. Now the proof we saw just now shows the existence of

a local diffeomorphism h such that (f ◦ h)(x, y) = y, as required.



Simplifying maps of full rank

Theorem Let m ≤ n and f : Ω ⊂ Rn → Rm a C1 function such that

f (a) = 0 and rank Df (a) = m. Then there is an open neighbourhood V ⊂ Rn

of a and a diffeomorphism h : U → V such that f ◦ h is the projection onto

the last m coordinates.

Comments

• Should think of the diffeomorphism appearing in the theorem as a ”nonlin-

ear change of coordinates” in the source Ω ⊂ Rn.

• What this says is: if f : Rn → Rm and Df has maximal rank at a point

of Rn, we can locally apply a ”change of coordinates” which makes f into

the simplest possible rank m map: the projection Rm+k → Rm.

• In particular, the local structure of level sets of f around points of maximum

rank is very simple, up to a ”change of coordinates”.



Simplifying maps of full rank



Introduction to submanifolds of Rn: hypersurfaces

Let

f : Ω ⊂ Rn → R
be a C1-function, with zero set

M = {x ∈ Ω | f (x) = 0} = f−1(0) ⊂ Rn.

If Df (a) 6= 0 for some a ∈ M , then we know from the Implicit Function

Theorem that, after a suitable reordering of coordinates, we can represent M

in a neighbourhood of a as a graph of a function of n− 1 variables:

xn = g(x1, . . . , xn−1).

Equivalently, since f is maximal rank (= 1) at a ∈ M , a neighbourhood of a

is diffeomorphic to an open set in Rn−1, as, up to a diffeomorphism, f is just

the projection to the last coordinate.

Under these conditions,M ⊂ Rn is called a hypersurface or n−1-dimensional

submanifold of Rn.



Introduction to submanifolds of Rn: hypersurfaces



General submanifolds of Rn

Definition (Submanifolds of Rn) Let 0 < k < n be an integer. A setM ⊆ Rn

is called a k-dimensional submanifold of Rn, if for every x0 ∈ M there

exist

• an open neighbourhood Ω of x0 in Rn and

• f ∈ C1(Ω,Rn−k), such that

M ∩ Ω = f−1(0)

and

rank Df (x) = n− k for all x ∈ Ω .

Remark It suffices to require rank Df (x) = n − k for all x ∈ M ∩ Ω, since

having maximal rank is an open condition (see the Lecture Notes for details).



A simple example

Let us return to our running example, the unit circle. We have

S1 =
{

(x1, x2) |x21 + x22 = 1
}

= f−1(0) ⊂ R2

for

f (x1, x2) = x21 + x22 − 1.

Then

Df (x1, x2) = 2(x1, x2)

which is nonzero on the domain Ω = R2 \ {(0, 0)} which contains S1.

So indeed, S1 is a one-dimensional submanifold of R2.



Submanifolds of Rn are locally graphs of functions

Proposition (Submanifolds can be locally represented as graphs)

For a set M ⊆ Rn, the following properties are equivalent.

(1) M is a k-dimensional submanifold of Rn.

(2) For each x ∈ M we can, after suitably relabelling the coordinates, write

x = (z0, y0) with z0 ∈ Rk, y0 ∈ Rn−k and find an open neighbourhood U of

z0 in Rk, an open neighbourhood V of y0 in Rn−k, and a map g ∈ C1(U, V )

with g(z0) = y0, such that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.

Proof of (1)⇒ (2) After possibly relabelling the coordinates we can write x

as x = (z0, y0) such that Dyf (x) is invertible. Then property (2) follows from

the Implicit Function Theorem.



Submanifolds of Rn are locally graphs

Proposition (Submanifolds can be locally represented as graphs) For a set

M ⊆ Rn, the following properties are equivalent.

(1) M is a k-dimensional submanifold of Rn

(2) For each x ∈ M we can, after suitably relabelling the coordinates, write

x = (z0, y0) with z0 ∈ Rk, y0 ∈ Rn−k and find an open neighbourhood U of

z0 in Rk, an open neighbourhood V of y0 in Rn−k, and a map g ∈ C1(U, V )

with g(z0) = y0, such that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.

Proof of (2) ⇒ (1) Assume that (2) is satisfied. Define Ω = U × V and

f ∈ C1(Ω,Rn−k) via

f (z, y) = y − g(z).

Then M ∩ Ω = f−1(0) and Df (z, y) = (−Dg(z), Idn−k).

It follows that rank Df (z, y) = n− k.



Revisiting the simple example

Let us look one final time at the circle

S1 =
{

(x1, x2) |x21 + x22 = 1
}

= f−1(0) ⊂ R2

for f (x1, x2) = x21 + x22 − 1.

How to write it as a graph?

If x = (1, 0) ∈ S1, we have

S1 ∩
(
(0, 2)× (−1, 1)

)
=
{

(
√

1− z2, z) | |z| < 1
}
.

Hence, to get the statement in (2) in the last result, we have to relabel (x1, x2)

as (x2, x1).

Exercise: Draw a picture!


