Projective Geometry Lecture 6

Balázs Szendrői, University of Oxford, Trinity term 2020

Duality on projective planes

Recall abstract projective plane $\Pi = \{\mathcal{P}, \mathcal{L}, \mathcal{I}\}$

- \mathcal{P} is the set of points;
- \mathcal{L} is the set of lines;
- $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$ is the incidence relation between points and lines;
- subject to some axioms.

Duality: Following Hilbert, we can think instead of \mathcal{L} is the set of points; \mathcal{P} is the set of lines; axioms will remain the same!

This allows us to deduce new theorems from old, dualizing an earlier statement. Example: Desargues' Theorem.

To extend duality to higher dimensions, linear algebra will again be very helpful.

We recall that to any vector space V over a field \mathbb{F} we can associate the **dual** space

$$V^* = \{ f : V \to \mathbb{F} \text{ linear} \}.$$

If dim V = n, then V and V^{*} are isomorphic, since V^{*} also has dimension n. However, this isomorphism depends on a choice of basis. Recall that if $\{e_1, \ldots, e_n\}$ is a basis of V, then a basis of V^{*} is given by the **dual basis** $\{E_1, \ldots, E_n\}$, defined by

$$E_i(e_j) = \delta_{ij}$$

and extended linearly.

The double dual V^{**} , that is, the dual of V^* , **is canonically** isomorphic to V. Explicitly, the map

$$\begin{array}{rcl} \varphi: \ V & \to V^{**} \\ & v & \mapsto (f \mapsto f(v) \ \text{for} \ f \in V^*) \end{array}$$

defines an isomorphism between V and V^{**} .

Further, given a linear subspace $U \leq V$, we have its annihilator

$$U^{\circ} = \{ f \in V^* : f(u) = 0 \text{ for all } u \in U \}.$$

Proposition For subspaces U, U_1, U_2 of a finite-dimensional vector space V

(i) if $U_1 \leq U_2$, then $U_2^{\circ} \leq U_1^{\circ}$; that is, taking the annihilator reverses inclusion;

(ii)
$$(U_1 + U_2)^\circ = U_1^\circ \cap U_2^\circ;$$

- (iii) $(U_1 \cap U_2)^\circ = U_1^\circ + U_2^\circ;$
- (iv) $\dim U + \dim U^\circ = \dim V;$

(v) $(U^{\circ})^{\circ} = \varphi(U).$

Conclusion: get an inclusion-reversing one-to-one correspondence $U \leftrightarrow U^{\circ}$ between linear subspaces of V and linear subspaces of V^* .

Note: We shall use the canonical isomorphism φ to identify spaces with their double duals, and subspaces with their double annihilators, without further comment.

Let now dim V = n + 1 and consider *n*-dimensional projective spaces $\mathbb{P}(V)$ and $\mathbb{P}(V^*)$.

We obtain an inclusion-reversing **duality correspondence**

 $\{\text{linear subspaces } \mathbb{P}(U) \subset \mathbb{P}(V)\} \longleftrightarrow \{\text{linear subspaces } \mathbb{P}(U^{\circ}) \subset \mathbb{P}(V^{*})\}.$

By the dimension formula, if $\mathbb{P}(U)$ is an *m*-dimensional linear subspace of $\mathbb{P}^n = \mathbb{P}(V)$, then...

 $\dots U$ has dimension m+1

...so U° has dimension (n+1) - (m+1) = n - m

...and hence $\mathbb{P}(U^{\circ})$ is a linear subspace of $\mathbb{P}(V^*)$ of dimension n - m - 1.

From the Proposition above, we also get

 $\langle \mathbb{P}(U_1), \mathbb{P}(U_2) \rangle^{\circ} = \mathbb{P}(U_1^{\circ}) \cap \mathbb{P}(U_2^{\circ})$ $(\mathbb{P}(U_1) \cap \mathbb{P}(U_2))^{\circ} = \langle \mathbb{P}(U_1^{\circ}), \mathbb{P}(U_2^{\circ}) \rangle.$

Points of $\mathbb{P}(V^*)$ represent 1-dimensional subspaces of V^* . These correspond to hyperplanes in $\mathbb{P}(V)$, which represent *n*-dimensional subspaces of V.

The correspondence assigns to $\langle f \rangle$, where $f \in V^* - \{0\}$, the hyperplane $\mathbb{P}(\ker(f))$ in $\mathbb{P}(V)$.

In homogeneous coordinates, the point $[a_0 : \ldots : a_n]$ in the dual projective space $\mathbb{P}(V^*)$ corresponds to the hyperplane

$$\{a_0x_0+\ldots+a_nx_n=0\}\subset \mathbb{P}(V).$$

Note that scaling all the a_i does not alter the hyperplane.

Conversely, hyperplanes in $\mathbb{P}(V^*)$ correspond to points in $\mathbb{P}(V^{**})$ and thus to points in $\mathbb{P}(V)$.

Assume dim V = 3 so dim $\mathbb{P}(V) = 2$.

Duality interchanges points of $\mathbb{P}(V) = \mathbb{FP}^2$ and lines in $\mathbb{P}(V^*) = \mathbb{FP}^2$.

If P = [p], Q = [q] are two distinct points on the line $L = \mathbb{P}U \subset \mathbb{P}(V)$ with $U = \langle p, q \rangle$, then the lines $\mathbb{P}\langle p \rangle^{\circ}, \mathbb{P}\langle q \rangle^{\circ}$ meet at the point $\mathbb{P}U^{\circ}$ of $\mathbb{P}(V^{*})$.

More generally, a set of collinear points in $\mathbb{P}(V)$ corresponds under duality to a set of **concurrent** lines in $\mathbb{P}(V^*)$ (lines passing through a common point).

three collinear points

three concurrent lines

On a projective plane $\mathbb{P}(V) = \mathbb{FP}^2$ we can define four **lines** to be in general position if no three of them are concurrent.

This is equivalent to the four points they represent in $\mathbb{P}(V^*)$ being in general position.

Under duality, a line

$$\{\alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2 = 0\} \subset \mathbb{P}(V)$$

corresponds to the point

$$[\alpha_0: \alpha_1: \alpha_2] \in \mathbb{P}(V^*).$$

So by the General Position Theorem, four lines in $\mathbb{P}(V)$ which are in general position can be assumed to have the equations

$$x_0 = 0,$$
 $x_1 = 0,$ $x_2 = 0,$ $x_0 + x_1 + x_2 = 0.$

Lines in general position in the projective plane

Four lines in $\mathbb{P}(V)$ which are in general position can be assumed to have the equations

 $x_0 = 0,$ $x_1 = 0,$ $x_2 = 0,$ $x_0 + x_1 + x_2 = 0.$

In affine coordinates $x = x_1/x_0$, $y = x_2/x_0$, we get the following picture.

A **conic** is a plane curve given by a quadratic equation.

A real (affine) conic is a curve $C \subset \mathbb{R}^2$ given by a quadratic equation of the form

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0.$$

Three types of conics: ellipse, parabola, hyperbola

Real conics in the plane \mathbb{R}^2 and their asymptotes

Where do these conics meet the **ideal line**?

Recall that the transformation between projective and affine coordinates is $x = x_1/x_0, y = y_1/y_0.$

We get the projective plane \mathbb{RP}^2 with coordinates $[x_0 : x_1 : x_2]$, its ideal line $L_{\infty} = [0 : x_1 : x_2]$ and the ordinary plane $\mathbb{R}^2 = [1 : x : y]$.

We get the projective equations

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = x_0^2 \qquad \qquad x_0 x_2 = a x_1^2 \qquad \qquad \frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} = x_0^2$$

The real projective solutions with $x_0 = 0$ (ideal points) are

$$\emptyset \qquad \qquad [0:0:1] \qquad \qquad [0:a:\pm b]$$

Note that, after a linear change coordinates, all three equations have the form

$$-y_0^2 + y_1^2 + y_2^2 = 0.$$

A symmetric bilinear form on a vector space V over \mathbb{F} is a map

$$B:V\times V\to \mathbb{F}$$

such that

- (i) B(v, w) = B(w, v);
- (ii) B is linear in v (and hence, by (i), in w).

If an addition we have that

(iii) if B(v, w) = 0 for all w, then v = 0,

then we say the form is **nondegenerate** or **nonsingular**.

Remark Note that the conditions are different from those seen in other contexts. Over $\mathbb{F} = \mathbb{R}$, we could require positive definiteness instead of (iii). Over $\mathbb{F} = \mathbb{C}$, we could require sesquilinearity instead of (i)-(ii). Our conditions make sense for any field.

If we choose a basis $\{e_0, \ldots, e_n\}$ of V, then a bilinear form is given by

$$B(v,w) = v^t X w$$

for a symmetric matrix X given by

$$X_{ij} = B(e_i, e_j).$$

Nondegeneracy of the form is equivalent to nonsingularity (invertibility) of the matrix X.

A bilinear form is determined (if the characteristic of \mathbb{F} is $\neq 2$), by the associated **quadratic form**

$$Q(v) = B(v, v),$$

for we can recover B via the polarisation identity

$$B(v,w) = \frac{1}{4}(B(v+w,v+w) - B(v-w,v-w)) = \frac{1}{4}(Q(v+w) - Q(v-w))$$

A **projective quadric** is the locus of points in a projective space $\mathbb{P}(V)$ defined by an equation Q(v) = 0, where $v \mapsto Q(v) = B(v, v)$ is a (not identically zero) quadratic form on V.

A **projective conic** is a projective quadric in a projective plane $\mathbb{P}(V) = \mathbb{FP}^2$.

Projective transformations send quadrics to quadrics. If we write the quadratic form in terms of a symmetric matrix X, then its image under a projective transformation is the form defined by the symmetric matrix $M^t X M$, where M defines the projective transformation.

Note also that if Q and Q' are proportional, that is $Q'(v) = \lambda Q(v)$ for all v, then they define the same quadric.

Definition We say a quadric is **nonsingular**, if the associated symmetric bilinear form is nondegenerate.