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Duality on projective planes

Recall abstract projective plane Π = {P ,L, I}

• P is the set of points;

• L is the set of lines;

• I ⊂ P × L is the incidence relation between points and lines;

• subject to some axioms.

Duality: Following Hilbert, we can think instead of L is the set of points; P
is the set of lines; axioms will remain the same!

This allows us to deduce new theorems from old, dualizing an earlier statement.

Example: Desargues’ Theorem.

To extend duality to higher dimensions, linear algebra will again be very helpful.



A little bit of Part A Linear Algebra

We recall that to any vector space V over a field F we can associate the dual

space

V ∗ = {f : V → F linear}.
If dimV = n, then V and V ∗ are isomorphic, since V ∗ also has dimension n.

However, this isomorphism depends on a choice of basis.

Recall that if {e1, . . . en} is a basis of V , then a basis of V ∗ is given by the

dual basis {E1, . . . , En}, defined by

Ei(ej) = δij

and extended linearly.

The double dual V ∗∗, that is, the dual of V ∗, is canonically isomorphic to V .

Explicitly, the map

ϕ : V → V ∗∗

v 7→ (f 7→ f (v) for f ∈ V ∗)
defines an isomorphism between V and V ∗∗.



A little bit more Part A Linear Algebra

Further, given a linear subspace U ≤ V , we have its annihilator

U ◦ = {f ∈ V ∗ : f (u) = 0 for all u ∈ U}.

Proposition For subspaces U,U1, U2 of a finite-dimensional vector space V

(i) if U1 ≤ U2, then U ◦2 ≤ U ◦1 ; that is, taking the annihilator reverses inclusion;

(ii) (U1 + U2)
◦ = U ◦1 ∩ U ◦2 ;

(iii) (U1 ∩ U2)
◦ = U ◦1 + U ◦2 ;

(iv) dimU + dimU ◦ = dimV ;

(v) (U ◦)◦ = ϕ(U).

Conclusion: get an inclusion-reversing one-to-one correspondence U ↔ U ◦

between linear subspaces of V and linear subspaces of V ∗.

Note: We shall use the canonical isomorphism ϕ to identify spaces with their double duals, and subspaces

with their double annihilators, without further comment.



Duality of projective subspaces

Let now dimV = n+1 and consider n-dimensional projective spaces P(V ) and

P(V ∗).

We obtain an inclusion-reversing duality correspondence

{linear subspaces P(U) ⊂ P(V )} ←→ {linear subspaces P(U ◦) ⊂ P(V ∗)}.

By the dimension formula, if P(U) is an m-dimensional linear subspace of

Pn = P(V ), then...

...U has dimension m + 1

...so U ◦ has dimension (n + 1)− (m + 1) = n−m

...and hence P(U ◦) is a linear subspace of P(V ∗) of dimension n−m− 1.

From the Proposition above, we also get

〈P(U1),P(U2)〉◦ = P(U ◦1 ) ∩ P(U ◦2 )

(P(U1) ∩ P(U2))
◦ = 〈P(U ◦1 ),P(U ◦2 )〉.



Duality of points and hyperplanes

Points of P(V ∗) represent 1-dimensional subspaces of V ∗. These correspond to

hyperplanes in P(V ), which represent n-dimensional subspaces of V .

The correspondence assigns to 〈f〉, where f ∈ V ∗ − {0}, the hyperplane

P(ker(f )) in P(V ).

In homogeneous coordinates, the point [a0 : . . . : an] in the dual projective

space P(V ∗) corresponds to the hyperplane

{a0x0 + . . . + anxn = 0} ⊂ P(V ).

Note that scaling all the ai does not alter the hyperplane.

Conversely, hyperplanes in P(V ∗) correspond to points in P(V ∗∗) and thus to

points in P(V ).



Duality of points and lines in the projective plane

Assume dimV = 3 so dimP(V ) = 2.

Duality interchanges points of P(V ) = FP2 and lines in P(V ∗) = FP2.

If P = [p], Q = [q] are two distinct points on the line L = PU ⊂ P(V ) with

U = 〈p, q〉, then the lines P〈p〉◦,P〈q〉◦ meet at the point PU ◦ of P(V ∗).

More generally, a set of collinear points in P(V ) corresponds under duality to

a set of concurrent lines in P(V ∗) (lines passing through a common point).



Points and lines in general position in the projective plane

On a projective plane P(V ) = FP2 we can define four lines to be in general

position if no three of them are concurrent.

This is equivalent to the four points they represent in P(V ∗) being in general

position.

Under duality, a line

{α0x0 + α1x1 + α2x2 = 0} ⊂ P(V )

corresponds to the point

[α0 : α1 : α2] ∈ P(V ∗).

So by the General Position Theorem, four lines in P(V ) which are in general

position can be assumed to have the equations

x0 = 0, x1 = 0, x2 = 0, x0 + x1 + x2 = 0.



Lines in general position in the projective plane

Four lines in P(V ) which are in general position can be assumed to have the

equations

x0 = 0, x1 = 0, x2 = 0, x0 + x1 + x2 = 0.

In affine coordinates x = x1/x0, y = x2/x0, we get the following picture.



Real conics in the plane R2

A conic is a plane curve given by a quadratic equation.

A real (affine) conic is a curve C ⊂ R2 given by a quadratic equation of the

form

ax2 + bxy + cy2 + dx + ey + f = 0.

Three types of conics: ellipse, parabola, hyperbola
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Real conics in the plane R2 and their asymptotes

Where do these conics meet the ideal line?



Real conics: extending to the projective plane

Recall that the transformation between projective and affine coordinates is

x = x1/x0, y = y1/y0.

We get the projective plane RP2 with coordinates [x0 : x1 : x2], its ideal line

L∞ = [0 : x1 : x2] and the ordinary plane R2 = [1 : x : y].

We get the projective equations

x21
a2

+
x22
b2

= x20 x0x2 = ax21
x21
a2
− x22
b2

= x20

The real projective solutions with x0 = 0 (ideal points) are

∅ [0 : 0 : 1] [0 : a : ±b]

Note that, after a linear change coordinates, all three equations have the form

−y20 + y21 + y22 = 0.



Bilinear forms over arbitrary fields

A symmetric bilinear form on a vector space V over F is a map

B : V × V → F

such that

(i) B(v, w) = B(w, v);

(ii) B is linear in v (and hence, by (i), in w).

If an addition we have that

(iii) if B(v, w) = 0 for all w, then v = 0,

then we say the form is nondegenerate or nonsingular.

Remark Note that the conditions are different from those seen in other

contexts. Over F = R, we could require positive definiteness instead of (iii).

Over F = C, we could require sesquilinearity instead of (i)-(ii). Our conditions

make sense for any field.



Bilinear forms over arbitrary fields

If we choose a basis {e0, . . . , en} of V , then a bilinear form is given by

B(v, w) = vtXw

for a symmetric matrix X given by

Xij = B(ei, ej).

Nondegeneracy of the form is equivalent to nonsingularity (invertibility) of the

matrix X .

A bilinear form is determined (if the characteristic of F is 6= 2), by the associated

quadratic form

Q(v) = B(v, v),

for we can recover B via the polarisation identity

B(v, w) =
1

4
(B(v+w, v+w)−B(v−w, v−w)) =

1

4
(Q(v+w)−Q(v−w))



Projective quadrics and conics over arbitrary fields

A projective quadric is the locus of points in a projective space P(V ) defined

by an equation Q(v) = 0, where v 7→ Q(v) = B(v, v) is a (not identically zero)

quadratic form on V .

A projective conic is a projective quadric in a projective plane P(V ) = FP2.

Projective transformations send quadrics to quadrics. If we write the quadratic

form in terms of a symmetric matrix X , then its image under a projective

transformation is the form defined by the symmetric matrix M tXM , where M

defines the projective transformation.

Note also that if Q and Q′ are proportional, that is Q′(v) = λQ(v) for all v,

then they define the same quadric.

Definition We say a quadric is nonsingular, if the associated symmetric

bilinear form is nondegenerate.


