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Duality on projective planes

Recall abstract projective plane [l = {P, L, 7}
e P is the set of points;
e L is the set of lines;
e 7 C P x L is the incidence relation between points and lines;

e subject to some axioms.

Duality: Following Hilbert, we can think instead of L is the set of points; P
is the set of lines; axioms will remain the samel!

This allows us to deduce new theorems from old, dualizing an earlier statement.
Example: Desargues’ Theorem.

To extend duality to higher dimensions, linear algebra will again be very helpful.



A little bit of Part A Linear Algebra

We recall that to any vector space V' over a field I we can associate the dual
space

V*={f:V — F linear}.
If dimV = n, then V and V* are isomorphic, since V* also has dimension n.
However, this isomorphism depends on a choice of basis.

Recall that if {ey,...e,} is a basis of V| then a basis of V* is given by the
dual basis {F1, ..., E,}, defined by

Ei(e;) = 0y
and extended linearly.

The double dual V**, that is, the dual of V*, is canonically isomorphic to V.
Explicitly, the map
p: V. =V
v = (f= f(v) for feV?)

defines an isomorphism between V' and V**.



A little bit more Part A Linear Algebra

Further, given a linear subspace U < V', we have its annihilator
U ={feV": flu)=0forallu e U}.
Proposition For subspaces U, Uy, U, of a finite-dimensional vector space V'
(i) if Uy < Us, then Us < Uy; that is, taking the annihilator reverses inclusion;
(ii) (U + Uy)° = Uy NUS;
(iii) (U NUy)° = Uy + Us;
(iv) dim U + dim U° = dim V;
(V) (U9 = p(U),

Conclusion: get an inclusion-reversing one-to-one correspondence U <+ U°
between linear subspaces of V' and linear subspaces of V*.

Note: We shall use the canonical isomorphism ¢ to identify spaces with their double duals, and subspaces

with their double annihilators, without further comment.



Duality of projective subspaces

Let now dim V' = n+ 1 and consider n-dimensional projective spaces P(V') and
P(V*).
We obtain an inclusion-reversing duality correspondence

{linear subspaces P(U) C P(V')} <+— {linear subspaces P(U°) C P(V*)}.

By the dimension formula, if P(U) is an m-dimensional linear subspace of
P" = P(V), then...

..U has dimension m + 1

...50 U° has dimension (n+1) —(m+1)=n—m

...and hence P(U®) is a linear subspace of P(V*) of dimension n —m — 1.

From the Proposition above, we also get
(P(Uh), P(Us))° = P(UY) N P(U3)
(P(U1) NP(U2))° = (P(Uy), P(Uy)).



Duality of points and hyperplanes

Points of P(V*) represent 1-dimensional subspaces of V*. These correspond to
hyperplanes in P(V'), which represent n-dimensional subspaces of V.

The correspondence assigns to (f), where f € V* — {0}, the hyperplane
P(ker(f)) in P(V).

In homogeneous coordinates, the point [ag : ... : a,] in the dual projective
space P(V*) corresponds to the hyperplane

{apxo + ...+ apx, =0} CP(V).
Note that scaling all the a; does not alter the hyperplane.

Conversely, hyperplanes in P(V*) correspond to points in P(V**) and thus to
points in P(V).



Duality of points and lines in the projective plane

Assume dim V' = 3 so dimP(V') = 2.
Duality interchanges points of P(V') = FP? and lines in P(V*) = FP2,

If P=[p|,Q = |q] are two distinct points on the line L = PU C P(V) with
U = (p, q), then the lines P(p)°, P(q)° meet at the point PU° of P(V*).

More generally, a set of collinear points in P(V') corresponds under duality to
a set of concurrent lines in P(V*) (lines passing through a common point).

three collinear points three concurrent lines




Points and lines in general position in the projective plane

On a projective plane P(V) = FP? we can define four lines to be in general
position if no three of them are concurrent.

This is equivalent to the four points they represent in P(V*) being in general
position.

Under duality, a line
{agry + ayry + avxe = 0} C P(V)
corresponds to the point
lag: a1t ag] € P(V7).

So by the General Position Theorem, four lines in P(V') which are in general
position can be assumed to have the equations

o = 0, r1 =0, r9 = 0, xo+ 1+ 29 = 0.



Lines in general position in the projective plane

Four lines in P(V') which are in general position can be assumed to have the
equations

xo =0, x1 =0, x9 =0, To+ 21+ x9 = 0.

In affine coordinates x = x1/xg, y = x2/ 0, we get the following picture.




Real conics in the plane R?

A conic is a plane curve given by a quadratic equation.

A real (affine) conic is a curve C' C R? given by a quadratic equation of the
form
ax® + bry + cy* + dx 4+ ey + f = 0.

Three types of conics: ellipse, parabola, hyperbola
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Real conics in the plane R? and their asymptotes

Where do these conics meet the ideal line?
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Real conics: extending to the projective plane

Recall that the transformation between projective and affine coordinates is

T =21/%0, Y = Y1/Yo.

We get the projective plane RP? with coordinates [zg : 71 : x3], its ideal line

Lo = [0: 21 : @9) and the ordinary plane R* = [1: z : y].

We get the projective equations

2 2 2 2
Ly X 2 2 Ty 2 2
? ﬁ:CCO oo = Ay ?—ﬁzxo
The real projective solutions with xy = 0 (ideal points) are
) 0:0:1] 0:a: =+

Note that, after a linear change coordinates, all three equations have the form

—y5 +yi + 5 = 0.



Bilinear forms over arbitrary fields

A symmetric bilinear form on a vector space V over [ is a map

B:VxV =F
such that
(i) B(v, w) = B(w,v);
(ii) B is linear in v (and hence, by (i), in w).
If an addition we have that
(iii) if B(v,w) = 0 for all w, then v =0,
then we say the form is nondegenerate or nonsingular.

Remark Note that the conditions are different from those seen in other
contexts. Over F = R, we could require positive definiteness instead of (iii).

Over F = C, we could require sesquilinearity instead of (i)-(ii). Our conditions
make sense for any field.



Bilinear forms over arbitrary fields

If we choose a basis {ey, ..., e,} of V, then a bilinear form is given by
B(v,w) = v'Xw
for a symmetric matrix X given by

X@‘j = B(Gi, Gj).

Nondegeneracy of the form is equivalent to nonsingularity (invertibility) of the
matrix X.

A bilinear form is determined (if the characteristic of F is # 2), by the associated
quadratic form

Q(v) = B(v,v),
for we can recover B via the polarisation identity

B(v,w) = i(B(zH—w,zH—w) — Bv—w,v—w)) = E(Q(U%—w) — Qv —w))



Projective quadrics and conics over arbitrary fields

A projective quadric is the locus of points in a projective space P(V') defined
by an equation Q(v) = 0, where v — Q(v) = B(v,v) is a (not identically zero)
quadratic form on V.

A projective conic is a projective quadric in a projective plane P(V') = FP?,

Projective transformations send quadrics to quadrics. If we write the quadratic
form in terms of a symmetric matrix X, then its image under a projective
transformation is the form defined by the symmetric matrix M*X M, where M
defines the projective transformation.

Note also that if @) and @ are proportional, that is Q'(v) = AQ(v) for all v,
then they define the same quadric.

Definition We say a quadric is nonsingular, if the associated symmetric
bilinear form is nondegenerate.



