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Bilinear forms over arbitrary fields

A symmetric bilinear form on a vector space V over [ is a map
B:VxV—>F
such that B(v,w) = B(w,v) and B is linear in v and w.

The form is nondegenerate or nonsingular if an addition we have that if
B(v,w) =0 for all w € V' then v = 0.

We have the associated quadratic form Q(v) = B(v,v).

A bilinear form is given by B(v,w) = v'Xw for a symmetric matrix X given
by X;; = Ble;, ;).

B is nondegenerate if and only if X is invertible.



Projective quadrics and conics

A projective quadric is
C ={lv]: Qv) =0} CP(V)

where v — Q(v) = B(v,v) is a (not identically zero) quadratic form on V.

In matrix form, we get
C = {[v]: v'Xv =0} Cc P(V)

where X is a nonzero symmetric matrix over F'.

A projective conic is a projective quadric in a projective plane P(V') = FP?.
C = {[v]: Q(v) =0} C FP*

where v — Q(v) = B(v,v) is a (not identically zero) quadratic form on a
three-dimensional vector space V.



Projective quadrics: some examples

Example 1 The simplest example is the identity matrix X = I, for which
we get the quadric

Ci = {[[EOZ T1: ...y

Zn::cf = O} C FP".
i=0

Note that in the most familiar example F = R, this quadric is empty.
However, it has plenty of points over other fields such as F = C.

Extended exercise What happens over FF = [F),7



Projective quadrics: some examples

Example 2 Consider the matrix

~1 0
()

with I,, the n X n identity matrix. We get the quadric

—x%—ka? = 0} C FP".

1=1

Cy = {[:1:0: Ty ...l @)
For F = R, in affine coordinates z;/z, this would give back the equation of
the sphere in R"”. So this has plenty of points over F = R.

Note that for n = 2, all the familiar plane conics were projectively equivalent
to this conic.



Projective quadrics: some examples

Example 3 Let n = 2 and consider the matrix

00 0
X=1010
00 —1

We get the plane conic
Cs = {[xo: 21: 22 ’x% —z3=0} C FP*.
Note that the equation now factorizes:
Cs = {[zo: 21 2] | (21 — 22) (21 + 22) = 0} C FP?.

So we can write

Cs=L_UL, C FP?

a union of the lines L. = {xy & 29 = 0} C FP?. These lines meet at the point
[1:0:0] € FP2



Projective quadrics: some examples

Cs = {[zo: x1: @] |2} —253 =0} = L_U L, C FP*.




Nonsingular quadrics

We say that a quadric is nonsingular, if the associated bilinear form B is
nondegenerate, equivalently the matrix X is invertible.

A singular point of a quadric
€ = {[u]: Q) = 0} < B(V)
is [v] € P(V') for nonzero v such that B(v,w) = 0 for all w € V', equivalently
nonzero v € ker X.
The quadrics C4, Cy in Examples 1-2 above are nonsingular.
The plane conic C3 = L_ U Ly is singular at [1:0:0]=L_N L.

Remark The terminology comes from thinking about conics as submani-
folds (locally) of Euclidean space (see parallel Part A course). At a nonsingular
point, a quadric is a submanifold. At singular points, the Jacobian condition
fails; hence the name.



Singular and nonsingular projective conics

Cy={—aj+ax]+25=0 Cy={2i—25=0}=L_UL,
0

e




Diagonalizing quadratic forms

Over the fields R and C, we can diagonalise quadratic forms.

Theorem Let v — Q(v) = B(v,v) be a quadratic form defined on an
(n + 1)-dimensional vector space V.

(i) Over the base field ' = C, there is a basis {eq, ..., e,} of V, with respect
to which
Qv) = A+ ...+ )\,
where v =Y 1 \e;.
(ii) Over the base field F = R, there is a basis {eq, ..., e,} of V, with respect
to which
Q)= A+ ...+ X=X — . =\

where v =Y | \e;.

Remark Note that () is non-degenerate if and only if » = n, respectively
r + s =mn. More generally, tk X =r + 1, 1tk X =7+ s+ 1 in the two cases.



Proof of the diagonalization theorem: Step 1

Write
Qv) =v'Xv = Z X;jviv;
i,]

in some basis, where X is a nonzero, symmetric matrix.

Step 1 We can assume that some X;; is nonzero. For if all X;; = 0, find a
nonzero X;;. Introduce new variables

1 1
yi = i),y = 5vi =),
Now () has the term
Xijvw; = Xyyi — Xy

with nonzero diagonal terms in the new basis.



Proof of the diagonalization theorem: Steps 2-3

Step 2
Now we complete the square.
2

1 . . .
X_Z.Z. Z Xijvj | = Xiivz'Q + 2 Z X,jvv; + terms inv; (5 # 1)
J j#i
so by introducing the new variable y; = > Xijv;j, we can put () into the form

1
Q(U) — v @2 + Q/(v()a ceey Ui 1, Uil - - 7Un)
Xii
for some quadratic form @ with one less variable.

Step 3

Now we repeat the process until we have diagonalised (). Finally rescaling the
variables appropriately, we can assume that we have the stated forms; note that
over R, we cannot change the sign of 37 by rescaling.



Classification of complex projective quadrics

Turning to quadrics, for the field F = C, our diagonalization theorem says that
every complex projective quadric in CIP" is projectively equivalent to

iazf = O} c CP".

1=0

D, = {[a:oz Ty ... Ty

for some 0 < r < n.

The quadric D, is nonsingular if and only if » = n.



Classification of complex projective conics

Specializing to n = 2, we get that every complex projective conic is projectively
equivalent to one of the following:

(i) The nonsingular conic Dy = {[zo: z1: x5 |23 + 2} + 23 = 0} C CP%
(ii) The line pair Dy = {[zo: z1: 9] |x% +z} =0} C CP2
Indeed, as before, we can write

Dy =M, UM_ c CP*

for
My = {330 +ix; = 0} C C]PQ

(iii) The double line Dy = {[zy: z1: z2] |2} =0} C CP2

Indeed, this is “twice the line” M, where

M = {xy =0} C CP*



Classification of nonsingular real projective conics

Let us now see what we get in the case of conics with F = R, restricting to
the nonsingular case. (Exercise: think about the singular cases!)

Writing v = > x;e;, there are four nonsingular quadratic forms to consider.
(i) Q1(v) = x5 + 2% + 3.

(i) Q2(v) = CC(Q) + 2§ — 3.

(iii) Q3(v) = % — 2% — 3.

(iv) Qu(v) = —af — a1 — 3.

The conics corresponding to ()1 and (4 are empty. The conics corre-

sponding to (o, ()3 are the same, as the forms are constant multiples of
each other (up to change of variables).

Hence indeed, up to projective equivalence there is a unique nonempty
nonsingular real projective conic

C:{—x%+x%+x§:0} C RP?.



Parametrising conics

Work over an arbitrary field F again, only assuming char F # 2.

Consider a nonsingular conic C' C FP?, a point X € C, and a projective line
L C FP? not containing X .

We will give a description of C' using the following geometric idea: projection
from X onto the line L sets up a bijection between the conic C' and the line L.




Parametrising conics: the theorem

Theorem Let C be a nonsingular conic in the projective plane P(V') = FP?,
over a field F with char F #£ 2. Let X be a point of C. Let L = P(U) be a
projective line in the plane not containing X. Then there is a bijection

a: L —C
such that X, Y, a(Y) are collinear for each Y € L.




Parametrising conics: the proof

Proof Let B denote the nondegenerate bilinear form whose quadratic form
() defines the conic C'. Let X = [z] be a point on C, so that B(z,z) = 0.

For each Y € P(U), we want to see where (other than at X) the projective line
XY meets the conic. We will find that there is a unique such point and this
will be a(Y).

Let Y € P(U) have representative vector y € U, so that x,y are linearly
independent, as we are assuming X ¢ L = P(U).

Consider the 2-dimensional subspace W, = (z,y) C V, so the projective line
we are considering is XY = P(W,).

Key Claim: The bilinear form B cannot be identically zero on the space W),
(See Lecture 8.)



Parametrising conics: the proof

With respect to the basis {x, y}, the form @ restricted to W, is
QMo + \y) = 20\ B(z,y) + A1 B(y, ).

B(x,y), B(y,y) are not both zero by the Key Claim. So the projective line
P(W, ) meets the conic C' at two points, corresponding to the solutions [Ag : Ay].

One intersection point is the basepoint X = [z], corresponding to
Ao A =[1:0].
Defined a(Y") to be the other intersection point, corresponding to
Aoz M) =[Bly,y) - —2B(x,y)].
So X, Y, a(Y) are collinear by construction.

« 1s bijective: given any point Z # X on the conic, the projective line X Z
meets the line L in a unique point Y, and then a(Y) = Z.



Parametrising conics: the proof

For Z = X itself, the image a(X) = X, coming from the intersection point Y’
of the tangent line at X with the line L.

= o[(X)

This corresponds to the case then the quadratic above has a double root. (Think
about this!)



