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Summary

I Lagrange’s ideas (1770/71)

I Cauchy and substitutions (1815)

I ‘Classical age’ of theory of equations ‘ends’ (1799–1826)

I The invention of groups by Galois and Cauchy

I ‘Symbolical algebra’

I Groups, rings, and fields: the emergence of ‘modern algebra’
(1854–1900)



‘Modern’ or ‘abstract’ algebra

19th century: emergence of mathematics whose subject-matter is
no longer space or number:

I permutations

I abstract structures (groups, rings, fields, ...)

I linear algebra [see Lecture XIV]



Lagrange’s ‘Réflexions’ 1770/71

J.-L. Lagrange, ‘Réflexions sur la
résolution algébrique des équations’,
Berlin (1770/71):

Asserted that there had been little
advance in equation-solving since
Cardano, but that there was little
left to do

Examined all known methods of
solving cubics and quartics

Found that in every case the

solutions of the ‘reduced’ (or

‘resolvent’) equation are ‘functions’

of the roots of the equation to be

solved
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Resolvents for cubics

For a cubic with roots x1, x2, x3 there is a reduced equation whose
roots are values of

y =
1

3

(
x1 + α2x2 + αx3

)
where α3 = 1, α 6= 1.

Lagrange: since y3 takes just 2 values as x1, x2, x3 are permuted,
it satisfies a quadratic equation: the resolvent of the cubic

Lagrange identified this idea as a feature common to the methods
for solving cubics presented by Cardano, Tschirnhaus, Bézout, and
Euler



Resolvents for quartics

For a quartic with roots x1, x2, x3, x4 there is a reduced equation
whose roots are values of

y =
1

2
(x1x2 + x3x4)

Lagrange: since y takes just 3 values as x1, x2, x3, x4 are
permuted, it satisfies a cubic equation.

There is also reduced equation whose roots are values of

z =
1

2
[(x1 + x2)− (x3 + x4)]

Lagrange: since z2 takes just 3 values as x1, x2, x3, x4 are
permuted, it satisfies a cubic equation.



Resolvents in general

Let the given equation be of degree n with roots
x1, x2, x3, · · · , xn

Theorem: Let y = f (x1, x2, x3, · · · , xn). Then y is a root of an
equation of degree m, where m is the number of values taken by y
(that is, by f ) under permutations of x1, x2, x3, · · · , xn

Theorem: The number of values of f will always be a divisor of n!

Note 1: The insight is wonderful; the proof is not

Note 2: This theorem mutated several times, finally morphing into
Lagrange’s Theorem in group theory.

(See Mathematics emerging, §12.3.1.)



Resolvents for equations of degree 5

For a quintic equation the general resolvent equation will be of
degree 120. But if

y := x1 + ϕ4x2 + ϕ3x3 + ϕ2x4 + ϕ x5

then y5 takes only 24 values, so satisfies a resolvent equation of
degree 24.

This can be reduced to another resolvent equation of degree 6.

Is there any hope of reducing it further?



Those influenced by Lagrange: Paolo Ruffini

Paolo Ruffini (1765–1822), Teoria
generale delle equazione (1799) and a
number of articles 1804–1819:

I showed that a function of 5
variables cannot take 3 or 4 values

I claimed to have proved that
equations of degree 5 were not in
general solvable by radicals

I sent book to Lagrange in 1802 and
to Paris academy; no response

I further explanatory papers 1802,
1806, ...

A long, confused and confusing account,
which seems to have persuaded no-one
except Italian pupils and colleagues?



Those influenced by Lagrange: A.-L. Cauchy

A.-L. Cauchy (1789–1857), ‘Mémoire sur le nombre de valeurs
qu’une fonction peut acquérir, lorsqu’on y permute de toutes les
manières possibles les quantités qu’elle renferme’, Journal de
l’École polytechnique, 1815:

Established notation and some theory for substitutions

Theorem: Let N be the number of values of a function of n
variables. Either N ≤ 2 or N ≥ p for any prime number p ≤ n.

Conjecture: For n ≥ 5, either N ≤ 2 or N ≥ n.

Proved his conjecture for n = 6

(See Mathematics emerging, §13.1.1.)



Those influenced by Lagrange: N. H. Abel

Niels Henrik Abel (1802–1829), ‘Beweis der
Unmöglichkeit, algebraische Gleichungen von
höheren Graden als dem vierten allgemein
aufzulösen’, Crelle’s Journal, 1826:

For n = 5, refined Cauchy’s 1815 theorem

Used this to proved conclusively that the
general equation of degree 5 is not soluble by
radicals.

That is, there is no formula involving radicals
for a solution of equations of degree 5.

The end of ‘classical algebra’ (?)



Évariste Galois (1811–1832)



Galois and his groups (1)

Évariste Galois (1811–1832), ‘Mémoire sur les conditions de
résolubilité des équations par radicaux’, manuscript known as the
Premier mémoire

Explored the question of which numerical equations are soluble by
radicals, which not:

I submitted his ideas to the Academy in 1829, withdrew his
articles January 1830 on Cauchy’s advice

I resubmitted February 1830; lost after Fourier died in 1830

I resubmitted January 1831, rejected by Academy on Poisson’s
advice in July 1831

I corrected by Galois up to his death by duel in 1832

I to be read in conjunction with Galois’ Testamentary Letter of
29 May 1832 to Auguste Chevalier



Galois and his groups (2)

Galois, in his writings 1829/30 (published 1846):

I invented groups (of permutations) [note: Cauchy invented
groups in 1845, almost certainly independently]

I pre-invented fields (in ‘Théorie des nombres’ [published 1830]
and as his ‘rationally known quantities’)

I showed how to associate a group to a polynomial (its Galois
group)

I discovered a necessary and sufficient condition for solubility of
an equation by radicals expressed in terms of the structure of
its group

I as an application, gave a necessary and sufficient condition for
solubility of an irreducible equation of prime degree by radicals



Galois and his groups (3)

Premier mémoire, dossier 1,
folio 3 verso

Proposition I relates a given
polynomial to a group of
permutations (its Galois group)

Eleventh-hour marginal additions
provide further explanation



Galois and his groups (4)

The eleventh-hour marginal addition in translation:

Substitutions are the passage from one permutation to
another.

The permutation from which one starts in order to indicate
substitutions is completely arbitrary, ...

... one must have the same substitutions, whichever per-
mutation it is from which one starts. Therefore, if in such
a group one has substitutions S and T , one is sure to have
the substitution ST .

Évariste Galois, 29th May 1832, published 1846

(See Mathematics emerging, §13.1.2.)



Galois and his groups: publication

Publication of Galois’ results:

1829–30: 5 articles inc. ‘Sur la théorie des nombres’

1832: Testamentary Letter to Chevalier

1846: letter and all other major papers by Liouville

1897: Liouville’s edition re-published by Picard

1906/07/08: minor manuscripts published by Tannery

1962: complete Bourgne & Azra edition

25 Oct 2011: English/French bilingual edition by Peter Neumann



Galois in English (2011)



Cauchy and his ‘groups’ (1)

Meanwhile, in 1845 . . .

Joseph Bertrand proved Cauchy’s conjecture from 1815 (subject to
a Postulate) ...

and submitted a paper to the Paris Academy in March 1845;

in April 1845, Cauchy was given Bertrand’s paper for review . . .

and from September 1845 to January 1846 published a stream of
papers on the same topic (and introducing a version of groups),

giving his report on Bertrand’s paper in November 1845,

which was eventually published in November 1848

(Peter M. Neumann, ‘On the date of Cauchy’s contributions to the founding

of the theory of groups’, Bull. Austral. Math. Soc. 40 (1989), 293–302.)

http://dx.doi.org/10.1017/S000497270000438X
http://dx.doi.org/10.1017/S000497270000438X


Cauchy and his ‘groups’ (2)

Cauchy’s definition of a ‘group’ (1845):

Consider substitutions
(A
B

)
,
(C
D

)
,
(E
F

)
, . . . and all those derived

from them by multiplying them together one or more times in any
order. These form a système de substitutions conjuguées (a system
of conjoined substitutions).

His purpose: for any function f (x1, x2, . . . , xn) the substitutions
that leave it unchanged (yielding ‘valeurs égales’) form such a
system. The number of values of the function (‘valeurs
différentes’) is the index of this system — that is n!

N , where N is
the number of its members.

Hence — a proof of his 1815 conjecture and more.



The Paris Grand Prix of 1860

Académie des Sciences, Paris, Grand Prix de Mathématiques,
1860: subject announced April 1857 (Cauchy on committee, he
died a month later):

What are the possibilities for the number of values of well
defined functions containing a given number of letters, and
how can one form the functions for which there exist a
given number of values?



Grand Prix 1860: responses

Three competitors:

I Émile Mathieu;

I Camille Jordan

(submitted their Paris doctoral dissertations);

I Rev. Thomas Penyngton Kirkman

(submitted his essay ‘The complete theory of groups’).

None successful.

All interpreted the problem as ‘find all subgroups of Sym(n)’.

The competition stimulated:

I development of theory of (finite permutation) groups;

I merger of Galois’ and Cauchy’s independent theories.



Meanwhile, in Britain...

A sideline in the development of algebra in the 19th century was
the notion of symbolical algebra that emerged in Britain c. 1830

This was a response to an argument advanced by a (persistent)
minority of British mathematicians that the notion of a negative
number is invalid

It first appeared in print in the 1830 A Treatise of Algebra by
George Peacock (1791–1858)



Symbolical algebra

In symbolical algebra, symbols are regarded initially as being
without interpretation, but may be manipulated according to
specified rules; interpretation comes at the end of the process.

This approach was not accepted by all mathematicians in Britain,
and sparked a debate about the nature of mathematical truth: can
operation really precede interpretation?

Contributors to symbolical algebra included George Peacock
(1791–1858), Duncan Gregory (1813–1844), Augustus De Morgan
(1806–1871), George Boole (1815–1864), and William Rowan
Hamilton (1805–1865).

But the idea of symbolical algebra had largely faded away by the
middle of the century: one could work with arbitrary operations in
an entirely abstract setting, but why would one want to?



Cayley and his groups (1)

Arthur Cayley, ‘On the theory of groups, as depending on the
symbolic equation θn = 1’ (1854):

A set of symbols

1, α, β, ...

all of them different, and such that the product

of any two of them (no matter in what order), or

the product of any one of them into itself belongs

to the set, is said to be a group.

Cayley widely attributed with introducing ‘abstract’ theory of
groups

(See Mathematics emerging, §13.1.4.)



Cayley and his groups (2)

Examples of groups of order 4:

I roots of x4 − 1 = 0

I other examples from elliptic functions, quadratic forms

I matrices (A,A−1,AT , (AT )−1)

Examples of groups of order 6:

I permutations of three letters

I operations from his previous paper ‘properties of a caustic’

Key question for Cayley later: how many groups of order n?

Cayley, ‘On the theory of groups’ (1878):

A group is defined by means of the laws of combinations
of its symbols.



Weber’s axioms, 1882

A System G of h elements of any kind, Θ1, Θ2, . . . , Θh is called a
group of degree h, if it satisfies the following conditions:

I. By some rule, which will be called composition or
multiplication, from two elements of the system a new
element of the system may be derived. In symbols:

ΘrΘs = Θt .

II. Always:
(ΘrΘs)Θt = Θr (ΘsΘt) = ΘrΘsΘt .

III. From ΘΘr = ΘΘs and from ΘrΘ = ΘsΘ follows Θr = Θs .

Existence of identity and inverses appear as deductions from the
axioms — incorporated as axioms by later authors



On axiomatisation of groups

Peter M. Neumann, ‘What groups were: a study of the
development of the axiomatics of group theory’, Bull. Austral.
Math. Soc. 60 (1999), 285–301.

Christopher D. Hollings, “‘Nobody could possibly misunderstand
what a group is”: a study in early twentieth-century group
axiomatics’, Arch. Hist. Exact Sci. 71(5) (2017), 409–481.

http://dx.doi.org/10.1017/S0004972700036406
http://dx.doi.org/10.1017/S0004972700036406
http://dx.doi.org/10.1017/S0004972700036406
http://dx.doi.org/10.1007/s00407-017-0193-8
http://dx.doi.org/10.1007/s00407-017-0193-8
http://dx.doi.org/10.1007/s00407-017-0193-8


Rings and ideals

Ernst Kummer (1844):

I concerned with Fermat’s last theorem, and quadratic forms

I worked with arithmetic of ‘cyclotomic integers’
a0 + a1θ + a2θ

2 + · · ·+ an−1θ
n−1 where θ is primitive n-th

root of 1

I discovered that unique factorisation need not hold

I devised the concept of ‘ideal’ factors

Richard Dedekind, ‘Sur la théorie des nombres entiers algébriques’
(1877) and famous appendices to his editions of Dirichlet’s
Lectures on Number Theory :

I changed Kummer’s ‘ideal numbers’ to ‘ideals’

I worked also with rings of numbers [domains] and fields of
numbers [Körper]



‘Abstract algebra’ begins to form

Specific instances of fields studied by Galois, Kronecker, Dedekind,
and others. First axiomatic definition due to Weber, 1893.

Ernst Steinitz, ‘Algebraische Theorie der Körper’, 1910: first
comprehensive presentation of the theories of fields, modules, and
vector spaces [to be revisited in a later lecture]

Specific rings studied by Dedekind, Hilbert, ... Early axiomatic
definition given by Fraenkel in 1914: not quite the same as the
modern definition.

Abstract algebra given an early boost (in the USA) via a
short-lived obsession with ‘postulate analysis’: the study of systems
of axioms for their own sake



‘Abstract algebra’ takes off

Comprehensive abstract study of
(commutative) rings initiated by
Emmy Noether in the 1920s,
sometimes mirroring the earlier
‘concrete’ work of Dedekind: ‘Es
steht alles schon bei Dedekind’.

Noether’s lectures (in Göttingen)
united with those of Emil Artin
(Hamburg) in B. L. van der
Waerden’s highly influential
textbook Moderne Algebra
(1930).

Abstract point of view now dominant, with many different objects
studied: groups, fields, rings, integral domains, semigroups,
algebras, lattices, semirings, quasigroups, ...



Overviews of the topics of lectures IX and X

(Princeton Univ. Press, 2014) (Springer, 2018)


