Matlab Practical II: Solving ODEs etc.

This practical concentrates on quadrature and solving ordinary differential equations in Matlab. Try some of the examples on the handout "Matlab Practical II: Solving ODEs etc." to satisfy yourself that no black magic was involved. Then answer the following questions.

1. Consider the function $g(x)=-\log |\cos (x)|$.

Write an m-file g.m that defines $g(x)$ (like $\mathrm{f} . \mathrm{m}$ on this morning's handout). Compute the integral $\int_{0}^{1} g(x) \mathrm{d} x$ using the function quad or quadl. Adjust the tolerance to convince yourself that you've computed the first eight digits accurately, and copy them down here. \square
2. Solve the initial value problem $y^{\prime}(x)=x y, y(0)=1$ on the interval $x \in[0,2]$ using both ode23 and ode45. (You will need to write your own m-file, similar to f1.m on this morning's handout.)
Compare the numerical results to the exact solution (which you can find via separation of variables) at the point $x=2$.

How many digits after the decimal point are correct?
ode23:
ode45:
3. Type help ode23 and help odeset to learn more about the parameter choices for Matlab's ODE solvers.

Which property "displays computational cost statistics"? \square
Adjust the reltol and abstol parameters to force the steplength to be shorter. For example, to set the relative tolerance in the example using $\mathrm{f} 1 . \mathrm{m}$ in this morning's handout:

```
options = odeset('reltol', 1e-12)
[x,y] = ode23('f1', [0 10], 0, options)
```

How many digits of accuracy can you now obtain for $y(2)$ in Problem 2? \square
4. Produce a quiver plot of the phase plane for the nonlinear system of equations

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}+y_{2}-y_{1}\left(y_{1}^{2}+y_{2}^{2}\right) \\
y_{2}^{\prime} & =-y_{1}+y_{2}-y_{2}\left(y_{1}^{2}+y_{2}^{2}\right)
\end{aligned}
$$

for $y_{1} \in[-2,2], y_{2} \in[-2,2]$.
Type in the plottraj.m script from the lecture handout and plot a few solutions. What limiting behaviour is observed in this phase plane?

For more information on this example and those shown in the lecture, see Chapter 4 of Advanced Mathematical Methods for Scientists and Engineers by Bender and Orszag, a book you may find useful for your Mathematical Methods lectures.
5. Use help bvp4c and help bvpinit to learn how to solve boundary value ODEs in Matlab. We will now solve a boundary value problem for the ODE specified in $\mathrm{f} 2 . \mathrm{m}$ in the lecture sheeet, $y^{\prime \prime}=-y$. (You will need to type in that function.) Now define the function $\mathrm{f} 2 \mathrm{bc} . \mathrm{m}$ to contain:

```
function bc = f2bc(ya,yb);
    bc = [ya(1)+1; yb(1)-2];
```

This file defines the boundary conditions $y(a)=-1, y(b)=2$. We shall take $a=0$ and $b=1$. To solve the boundary value problem using bvp4c, type:

```
solinit = bvpinit([0:.1:1],[1 0]);
sol = bvp4c('f2','f2bc',solinit);
plot(sol.x, sol.y(1,:));
```

Figure out how to change the second boundary condition to $y^{\prime}(1)=0$. (Hint: Study the parameters to the f 2 bc function.) Solve this equation with the new boundary conditions. What is the approximate value of $y(x)$ at $x=0.5$? \square
(Please do this using bvp4c, not by solving the equation analytically!)

