
B8.5 Graph Theory
DRAFT NOTES

Michaelmas Term 2019, 16 lectures
Oliver Riordan

Last updated: 4/11/2019

These notes are to accompany the lectures in MT 2019 on graph theory for Part B
Mathematics. They are in rough form, may contain errors1, and are not for distribu-
tion. They owe much to the book Modern Graph Theory, Springer-Verlag, 1998 by
Béla Bollobás, and have developed from notes by Alex Scott and Colin McDiarmid.
The notes may possibly be updated as the course proceeds, although no major changes
are planned.

You need to add figures!

Relationship to Part A Graph Theory.

Part A Graph Theory is recommended but not required as a prerequisite. The
course as lectured should be self-contained, though a few key results covered in Part
A will be stated as exercises to complete yourself if you did not do Part A.

1 Introduction

We need some preliminary definitions and notation (see the separate handout for a
summary). We write [n] for the set {1, 2, . . . , n}. For any set S, we write S(k) for the
set of subsets of S of size k, that is, {A ⊆ S : |A| = k}.

A graph G is an ordered pair (V,E), where V is a non-empty set and E ⊆ V (2). In
this course V will almost always be finite – this is assumed unless stated otherwise.
The elements of V are called the vertices of G and the elements of E the edges of G.
We often write uv for an edge {u, v} (so uv means the same as vu). We say that u
and v are adjacent in G if uv is an edge of G. A vertex v and an edge e are incident
if v is one of the endvertices of e, i.e., one of the two vertices in e. Two edges meet
if they intersect, i.e., share a vertex. Graphically, we represent vertices as points (or
more often blobs) and edges as lines or curves joining pairs of points (blobs); how a
graph is drawn is irrelevant as far as the structure of the graph itself is concerned.
The reason for using blobs is that it makes clear in the drawing where the vertices are:
we may have to draw the lines/curves for two edges so that they cross even though
the edges do not share a vertex.

1If you find any errors, please first check the website to see if the error has already been corrected,
and if not, e-mail riordan@maths.ox.ac.uk.

1

The complete graph on n vertices is Kn = ([n], [n](2)). The empty graph on n
vertices is En = ([n], ∅). The cycle Cn of length n, for n > 3, has V = [n] and E =
{12, 23, . . . , (n− 1)n, n1}. The path Pn of length n, for n > 0, has V = {0, 1, . . . , n}
and E = {01, 12, . . . , (n−1)n}. (Thus a single vertex forms a path of length 0.) Draw
pictures to make sense of these definitions!

Warning: in some books etc the length of a path is the number of vertices, while
in this course it is the number of edges – always check which definition is being used!

If G = (V,E), we write V (G) for V and E(G) for E. The order of a graph G,
denoted by |G| or v(G), is the number of vertices, so |G| = v(G) = |V (G)|. The
size of G is the number of edges, e(G) = |E(G)|; however, sometimes ‘size’ is used to
mean ‘order’, so it is safest to avoid this term.

Graphs G and H are isomorphic if there exists a bijection ϕ : V (G) → V (H) such
that, for each x, y ∈ V (G), we have xy ∈ E(G) iff ϕ(x)ϕ(y) ∈ E(H). We say that ϕ
is an isomorphism, and write G ∼= H. It is easy to check that isomorphism of graphs
is an equivalence relation. Often we do not make a distinction between isomorphic
graphs, treating them as the same. For example, if G is isomorphic to Kn for some n
then we say that G is a complete graph, and so on.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning
subgraph is one that includes all the vertices.

If W ⊆ V (G) is a set of vertices of G, then the subgraph of G induced by W ,
written G[W], is the graph H with V (H) = W and E(H) = W (2) ∩ E(G). Thus the
edges of H are all those edges of G with both ends in W . A subgraph H of G is
induced if it is induced by some set of vertices. The significance of induced subgraphs
is that they describe the same relation, but restricted to a subset of the vertices.

We often say that H is a subgraph of G (or more precisely that G contains (a
copy of) H) to mean that G has a subgraph isomorphic to H.

The complement of a graph G = (V,E) is G = (V, V (2) \ E). Thus Kn = En. For
an edge e, we write G − e 2 for the subgraph (V,E \ {e}), obtained by deleting the
edge e from G. For e ∈ E(G), G+ e = (V,E ∪ {e}) is the graph obtained by adding
the edge e to G. For a vertex v, we write G− v for the subgraph induced by V \ {v},
i.e., the subgraph obtained from G by deleting v and (as we must) all edges incident
with v.

In much of the following, unless otherwise indicated, the implicitly assumed setting
is an arbitrary graph G = (V,E).

Degrees

The degree of a vertex v is the number of incident edges,

d(v) = |{w ∈ V : vw ∈ E}|.
2Some people write G \ e for G− e. I will avoid this as it looks too much like G/e, defined later.

2

We write dG(v) if we want to specify the graph. A vertex w is a neighbour of v if v
and w are adjacent, i.e., vw ∈ E. The set Γ(v) = ΓG(v) = {w ∈ V : vw ∈ E} is the
neighbourhood of v, so d(v) = |Γ(v)|.

A graph G is r-regular if every vertex has degree r. If d(v) = 0, v is an isolated ver-
tex. If V = {v1, . . . , vn}, the degree sequence ofG is the sequence d(v1), d(v2), . . . , d(vn),
often arranged in nondecreasing order.

Lemma 1.1 (Handshaking Lemma). For any graph G = (V,E),

∑

v∈V

d(v) = 2e(G).

Proof. We count the number of pairs (v, e) where v is a vertex of G and e is an edge
of G incident with v in two different ways. Firstly, each vertex v is in exactly d(v)
such pairs, so there are

∑

v∈V d(v) pairs in total. Secondly, each edge e of G is in
exactly two such pairs, so there are 2|E| = 2e(G) pairs.

Corollary 1.2. For any graph G, the number of vertices with odd degree is even.

Paths, cycles and walks in graphs

A path of length t in G is a subgraph of G isomorphic to Pt; a cycle of length t in
G is a subgraph isomorphic to Ct. We usually just list the vertices to describe a path
or cycle. Thus v0v1 · · · vt is a path of length t in G if and only if v0, . . . , vt are distinct
vertices of G and v0v1, v1v2, . . . , vt−1vt are edges of G.3 Similarly, v1v2 · · · vt is a cycle
in G if and only if t > 3, v1, . . . , vt are distinct vertices of G, and v1v2, . . . , vt−1vt, vtv1
are edges of G. A graph is acyclic if it contains no cycles.

v0v1 · · · vt is a walk in G if v0, v1, . . . , vt are (not necessarily distinct) vertices of G
such that vivi+1 ∈ E for each i = 0, 1, . . . , t− 1. The length of a walk is the number
of steps, here t. If x = v0 and y = vt then we speak of a walk from x to y, or an x–y
walk; an x–y path is defined similarly. A walk v0v1 · · · vt is closed if vt = v0.

Exercise. Let G be a graph and x, y ∈ V (G). Then G contains an x–y walk if and
only if G contains an x–y path.

In other words, if we want to get from x to y, then allowing ourselves to revisit
vertices does not help. This simple observation is useful, allowing us to switch back
and forth between using paths and walks to define connectedness, at any point using
whichever definition is easiest to work with. The cleanest proof is to consider a
shortest x–y walk and show that it is a path.

A graph G is connected if for all x, y ∈ V there is at least one x–y path in G. The
components of a general graph G are the maximal connected subgraphs. It is easy

3The two definitions of path in G are not quite the same: for existence, they are equivalent, but
for counting paths, they differ by a factor of 2 for t > 1. A similar comment applies to cycles with
a different factor.

3

to check that G is the disjoint union of its components. Indeed, consider the relation
∼ on V (G) defined by “x ∼ y iff there exists a path/walk from x to y”. (We may
consider either paths or walks in the definition – it makes no difference.) It is easy to
check that this is an equivalence relation (consider walks), and that the components
are the subgraphs induced by the equivalence classes.

We finish this section with a simple lemma giving a condition under which we are
guaranteed that G contains a cycle.

Lemma 1.3. Let G be a graph in which every vertex has degree at least 2. Then G
contains a cycle.

Proof. Pick v0 ∈ V (G) and v1 ∈ Γ(v0). Now for each i > 1 we can successively pick
vi+1 ∈ Γ(vi) such that vi+1 6= vi−1 (since |Γ(vi)| > 2). Thus we have a sequence
v0, v1, v2, . . . such that vi−1vi ∈ E(G) for every i, and vi−1, vi and vi+1 are always
distinct. Since G has only finitely many vertices, some vertex must appear more
than once. Pick i < j such that vi = vj and j is minimal. Then j − i > 3, and by
minimality vi, . . . , vj−1 are distinct. Thus vi · · · vj−1 is a cycle in G.

4

2 Trees

A tree is simply an acyclic connected graph. A general acyclic graph, or equivalently,
a graph in which each component is a tree, is called a forest.

Lemma 2.1. The following are equivalent, where minimality/maximality is with re-
spect to deleting/adding edges.

(i) T is a tree,

(ii) T is a minimal connected graph,

(iii) T is a maximal acyclic graph.

The precise meaning of (ii) is that T = (V,E) is connected, but that for any strict
subset E ′ of E, (V,E ′) is not connected. Equivalently, T is connected, but for any
edge e of T , T − e is not connected.

Proof. Revision from Part A or exercise, as applicable.

A spanning tree of a graph G is a spanning subgraph of G that is a tree, i.e., a
subgraph of G that is a tree containing all the vertices of G.

Corollary 2.2. Every connected graph G has at least one spanning tree.

Proof. Remove edges one-by-one, keeping the graph connected, until we can remove
no more. The graph T that remains is a minimal connected graph with vertex set
V (G); by Lemma 2.1, T is a tree.

A vertex v of any graph G is called a leaf if d(v) = 1. This term is most often
used in the context of trees/forests.

Lemma 2.3. Every tree on n > 2 vertices has at least one leaf.

Proof. T is connected, so it has no isolated vertices (vertices of degree 0). But T has
no cycle, so by Lemma 1.3 it must have a vertex of degree less than 2. Therefore it
has a vertex v with degree 1.

In fact, every tree with at least 2 vertices has at least two leaves; there are many
proofs of this fact. One involves modifying the argument above slightly. The signifi-
cance of leaves is shown by the following simple result.

Lemma 2.4. Let v be a leaf of a graph G. Then G is a tree iff G− v is a tree.

Proof. Revision/Exercise.

Lemma 2.5. If T is a tree on n vertices, then e(T) = n− 1.

5

Proof. We use induction on n; the case n = 1 is trivial.

Let n > 2, and suppose that the result holds for all trees with n − 1 vertices;
we must show that it holds for all trees with n vertices. Let T be any tree with n
vertices. By Lemma 2.3, T has a leaf v. By Lemma 2.4, T ′ = T − v is a tree. Since
T ′ has n− 1 vertices, by induction it has n− 2 edges. Thus T has n− 1 edges.

Combining Lemmas 2.1 and 2.5 gives some further characterisations of trees.

Corollary 2.6. Let G be a graph with n vertices. TFAE (the following are equivalent):

(i) G is a tree,

(ii) G is connected and e(G) = n− 1,

(iii) G is acyclic and e(G) = n− 1.

Proof. (i) implies (ii) and (iii) by the definition of a tree and Lemma 2.5. Suppose that
(ii) holds. ThenG has a spanning tree T which, by Lemma 2.5, has n−1 = e(G) edges.
A spanning subgraph includes all the vertices by definition, and since e(T) = e(G),
in this case it includes all the edges too. Thus T = G and so G is a tree, completing
the proof that (ii) implies (i). (iii) implies (i) is similar.

Counting trees

Let’s start with a simpler question: how many graphs G = (V,E) are there with
vertex set [n]? Each of the

(

n
2

)

possible edges may or may not be included in E, with

all possibilities allowed, so the answer is 2(
n

2). Note that we are not asking how many
isomorphism classes there are: this is a much harder question. [Sometimes, counting
graphs on a given vertex set is referred to as ‘counting labelled graphs’; counting
isomorphism classes is referred to as ‘counting unlabelled graphs’.]

Counting trees is much harder than counting all graphs. The answer was found
(but not really proved) by Cayley in 1889, though implicitly earlier by Borchardt in
1860; it is now known as Cayley’s formula.

Theorem 2.7. For any n > 1 there are exactly nn−2 trees T with vertex set [n].

Proof. The result is trivial for n = 1, 2, so fix n > 3. We shall map each tree on [n] to
its Prüfer code c = (c1, c2, . . . , cn−2), where 1 6 ci 6 n. (The ci need not be distinct.)
Since there are nn−2 possible codes, it suffices to show that the map gives a bijection
between trees on [n] and codes.

Given a tree T on [n] we construct its code as follows:

T has at least one leaf. Find the leaf v1 with the smallest number, remove it, and
write down the number c1 of the (unique) vertex v1 was adjacent to. Repeat until
exactly two vertices remain. Thus, for example, v2 is the smallest leaf of T − v1, and
c2 is the vertex of T − v1 that v2 is adjacent to. Note that c1, . . . , cn−2 form the code,
not v1, . . . , vn−2.

6

The following observation is key to the proof: a vertex w with degree d in T
appears exactly d− 1 times in the code c. Indeed, we write w down in the code each
time we delete a neighbour of w, i.e., each time its degree decreases. The final degree
of w is always 1: either w is deleted when it is a leaf, or w is left at the end as one of
the two final vertices, which are then leaves. It follows from this that

v1 = min
{

[n] \ {c1, . . . , cn−2}
}

v2 = min
{

[n] \ {v1, c2 . . . , cn−2}
}

. . .

vi = min
{

[n] \ {v1, . . . , vi−1, ci, . . . , cn−2}
}

i 6 n− 2. (1)

Let us write vn−1 and vn (with WLOG vn−1 < vn) for the two vertices left at the end
when we constructed the code, so

{vn−1, vn} = [n] \ {v1, . . . , vn−2}. (2)

Then, since we deleted the edge vici at step i, and were left with the edge vn−1vn
between the final two vertices,

E(T) = {v1c1, . . . , vn−2cn−2, vn−1vn}. (3)

The formulae above describe T , the tree that we started with, in terms of its code
c = (c1, . . . , cn−2). Does this mean that the proof is complete? No! We started by
assuming that T was a tree, with code c, and then showed that given c, we could
identify T . So for any code coming from a tree, there is a unique tree with that code.
We still need to show that for every code c, there is a tree with code c.

The formulae above tell us where to look: if there is a tree with code c, it must
be as described above. So let us check.

Formally, let c be any possible code (c1, . . . , cn−2). Then we may use (1) to
define v1, . . . , vn−2. (Each time we take the minimum of a non-empty set, which
makes sense.) Also, from (1) we see that vi is not equal to any of v1, . . . , vi−1. Thus
v1, . . . , vn−2 are distinct.

Next, we define vn−1 < vn to be the two remaining elements of [n], as in (2), so
v1, . . . , vn are distinct; they are 1, 2, . . . , n in some order.

Finally, we let T be the graph with vertex set [n] and edge set given by (3). We
need to check that T is indeed a tree, and that it has code c. We do this step-by-step:
first note that from our definition (1) of vi, it is distinct from cj, j > i. Thus cj is
distinct from vi, i 6 j, so for each j, cj ∈ {vj+1, . . . , vn}. Let Ti be the graph with

V (Ti) = {vi, . . . , vn} and E(Ti) = {vici, . . . , vn−2cn−2, vn−1vn}.
(This makes sense since the ends of the edges are all vertices.) Then Tn−1 is a tree
with two vertices. Also, Ti is constructed from Ti+1 by adding a new vertex vi and one
edge vici. So, by Lemma 2.4, Ti is a tree for i = n− 2, n− 3, . . . , 2, 1. In particular,
T = T1 is a tree. That the code of T is c is an exercise; see Problem Sheet 1.

7

3 Long circuits, paths and cycles

An Euler circuit in a graph G is a closed walk that contains every edge of G exactly
once. (If |G| = 1 we say that G has a trivial Euler circuit.)

Theorem 3.1. Let G be a connected graph. Then G has an Euler circuit if and only
if the degree of every vertex is even.

Proof. For the (easier) ‘only if’ direction, pick v ∈ V (G). If an Euler circuit enters v
k times then it leaves v k times, and so it uses 2k edges incident with v. Thus d(v)
must be even.

For the converse, we proceed by induction on e(G), with the result being trivial
for e(G) = 0. For the induction step, take any G with e(G) > 0 and assume the
result holds for all graphs with fewer edges than G. Since G is connected, each vertex
has degree at least 1. So by the assumption, all vertices have degree at least 2.4 By
Lemma 1.3, G contains a cycle C. The graph H obtained from G by removing the
edges of C still satisfies the condition that all of its vertices have even degree. It is
possibly no longer connected, but all of its components Hi are, and have fewer edges
than G. Therefore, by the induction hypothesis, we can find an Euler circuit Ei in
each component Hi. Moreover, each of the components Hi must have at least one
vertex in common with the cycle C, otherwise G would have been disconnected in
the first place. We can thus join each of the Ei into C to obtain an Euler circuit of
the original graph G.

A Hamilton cycle in a graph G is a cycle in G that contains every vertex; a graph
is called Hamiltonian if it has a Hamilton cycle.

Superficially, the following two problems may seem similar: in a given graph G,
is there a closed walk using every edge exactly once (Euler circuit), and is there a
closed walk using every vertex exactly once (Hamilton cycle)? But it’s easy to tell
(using Theorem 3.1) what the answer to the first question is. The second is much
harder; for those interested in complexity theory, it is an NP-complete problem.

The minimum degree of a graph G is δ(G) = minv∈V d(v), the maximum degree
is ∆(G) = maxv∈V d(v), and the average degree is

d̄(G) =
1

|G|
∑

v∈V

d(v) =
2 e(G)

|G| .

It is not hard to see that any graph with δ(G) > d contains a path of length at
least d: start at any v0 and, given v0 · · · vi with i < d, choose vi+1 to be a neighbour
of vi not among v0, . . . , vi−1. In fact, for connected graphs with many more than d
vertices, we can find a path of roughly twice this length.

4This is because 1 is not even.

8

Lemma 3.2. If G is a connected graph which is not Hamiltonian, then the length of
a longest path in G is at least the length of a longest cycle.

Proof. Let C be a longest cycle in G, with length ℓ. We have ℓ < n since G is not
Hamiltonian, so there are vertices not on C. Since G is connected, there is at least
one edge vw with v ∈ V (C) and w /∈ V (C) (otherwise V (C) is not connected to the
rest of the graph). But then the edge vw and C between them contain a path of
length ℓ (draw a picture!).

Theorem 3.3. Let G be a connected graph with n > 3 vertices in which every pair
v, w of non-adjacent vertices satisfies d(v) + d(w) > k. If k < n then G contains a
path of length k; if k > n then G is Hamiltonian.

Proof. If G has a Hamilton cycle, then it also has a path of length n−1 (the maximum
possible) and we are done. So suppose not. Let P = v0v1 · · · vℓ be a longest path
in G. Since G is connected and has at least 3 vertices, ℓ > 2. By Lemma 3.2, G
contains no cycle of length ℓ + 1. In particular, v0vℓ /∈ E(G), so d(v0) + d(vℓ) > k.
If, for some 1 6 i 6 ℓ, both v0vi and vi−1vℓ were edges, then we would have a cycle
v0v1 · · · vi−1vℓvℓ−1 · · · vi of length ℓ + 1. Hence A = {i ∈ [ℓ] : v0vi ∈ E(G)} and
B = {i ∈ [ℓ] : vℓvi−1 ∈ E(G)} are disjoint subsets of [ℓ]. Thus, noting that all
neighbours of v0 and vℓ are on P , we have

ℓ > |A|+ |B| = d(v0) + d(vℓ) > k.

This is impossible if k = n; if k < n it shows that G contains a path of length k, as
required.

Corollary 3.4. If G is connected, |G| = n, and δ(G) > d, then G contains a path of
length (at least) min{2d, n− 1}.

Proof. Trivial for n = 1, 2. For n > 3, apply Theorem 3.3 with k = 2d.

As another corollary we obtain the following result.

Theorem 3.5 (Dirac’s Theorem). Let G be a graph with n > 3 vertices. If δ(G) > n
2
,

then G contains a Hamilton cycle.

Proof. If δ(G) > n/2 then any two non-adjacent vertices have at least one common
neighbour, so G is connected and Theorem 3.3 applies with k = n. [Or: if G is
not connected then there is a component C with at most n/2 vertices. Then any
v ∈ V (C) has degree at most |C| − 1 < n/2.]

This result is best possible, in that we cannot replace the lower bound by ⌈n
2
⌉− 1

(for n even, consider 2Kn/2, the disjoint union of two complete graphs Kn/2).

9

Theorem 3.3 of course implies a slightly stronger result than Dirac’s Theorem,
known as Ore’s Theorem: if G has order n > 3, and if d(x) + d(y) > n whenever
xy ∈ E(G), then G has a Hamilton cycle.

Theorem 3.3 also lets us relate the length of the longest path in G to the average
degree of G.

Theorem 3.6. Let k > 2. If G is a graph with n vertices containing no path of length
k, then e(G) 6 k−1

2
n.

Proof. Induction on n. For n 6 k we have e(G) 6 e(Kn) =
n−1
2
n 6

k−1
2
n, so we are

done.

Suppose n > k. We may assume G is connected; otherwise apply the induction
hypothesis to the components (which do not contain Pk).

Now G is connected and n > k + 1 > 3. So by Theorem 3.3 there are (non-
adjacent) vertices v, w of G such that d(v) + d(w) 6 k − 1; otherwise, G would
contain a Pk, which it does not. WLOG d(v) 6 d(w), so d(v) 6

k−1
2
. Since G − v

has n− 1 vertices and contains no Pk, applying the induction hypothesis to G− v we
have

e(G) = d(v) + e(G− v) 6 k−1
2

+ k−1
2
(n− 1) = k−1

2
n,

completing the proof.

The result above can be rephrased to say that if G contains no Pk, then d̄(G) 6
k−1. In other words, if the average degree d̄(G) is greater than k−1, then G contains
a path of length k. We do not get the extra factor of 2 we had in Corollary 3.4, but we
assuming something only about average degree, not about the degree of every vertex.

10

4 Vertex colourings

A (proper) vertex colouring (or simply colouring) of a graph G is an assignment of a
colour to each vertex such that adjacent vertices receive different colours. The least
number of colours in such a colouring is the chromatic number χ(G). For example
χ(Kn) = n, χ(En) = 1, χ(C4) = 2 and χ(C5) = 3. In fact, any even cycle (cycle of
even length) has chromatic number 2, and any odd cycle has chromatic number 3.

Often we use positive integers as the colours: a (proper) k-colouring of G is a
function f : V (G) → {1, . . . , k} so that f(u) 6= f(v) whenever uv ∈ E(G). G is
k-colourable if it has a k-colouring, so χ(G) is the least k for which G is k-colourable.

Suppose we have to schedule exams, where each exam takes one period. Construct
a graph G with a vertex for each exam and an edge uv whenever one or more students
need to take both exams u and v. Then a feasible exam schedule corresponds to a
colouring of G, and the least number of periods possible is χ(G).

Certainly, if H is a subgraph of G, then χ(H) 6 χ(G). Clearly, a disconnected
graph is k-colourable if and only if its components are, so the chromatic number of G
is the maximum of the chromatic numbers of its components. In fact, we can extend
this to graphs overlapping in certain ways.

The union of two graphs G1 and G2 is the graph with vertex set V (G1) ∪ V (G2)
and edge set E(G1) ∪ E(G2).

Lemma 4.1. Let G1 and G2 be graphs with V (G1) ∩ V (G2) = W such that G1[W]
and G2[W] are complete. Then χ(G1 ∪G2) = max{χ(G1), χ(G2)}.

Proof. The lower bound on χ(G1 ∪ G2) is trivial, since each Gi is a subgraph of
G1 ∪ G2. For the upper bound suppose both G1 and G2 are k-colourable; we must
show that G1 ∪ G2 is also. Let ci be a k-colouring of Gi, and let W = {w1, . . . , wr}.
Since c1 assigns distinct colours to w1, . . . , wr, we may permute the colours (i.e., keep
fixed which sets of vertices get the same colour, but assign different colours to these
sets) to obtain a new k-colouring c̃1 of G1 in which w1, . . . , wr get colours 1, 2, . . . , r
in this order. Do the same for G2, and then combine the colourings c̃1 and c̃2, which
agree on W , to obtain a k-colouring of G1 ∪G2.

A cutvertex v in a connected graph G is a vertex such that G− v is disconnected.
(In a general graph, it’s a vertex whose deletion disconnects a component of the
graph.) Lemma 4.1 may be applied in particular to any graph G with a cutvertex.

A graph G has χ(G) = 1 if and only if G has no edges.

A graph G = (V,E) is bipartite if V can be split into disjoint sets X and Y such
that E ⊆ {xy : x ∈ X, y ∈ Y }. (We allow one of X or Y to be empty, so K1 is
bipartite.) The complete bipartite graph Km,n has V = {a1, . . . , am, b1, . . . , bn} and
E = {aibj : i = 1, . . . ,m, j = 1, . . . , n}. The connection to colouring is that χ(G) 6 2
if and only if G is bipartite: consider X = {v : c(v) = 1} and Y = {v : c(v) = 2}.

11

Deciding whether a (connected) graph is 2-colourable (i.e., bipartite) is very easy:
start somewhere with one colour (it doesn’t matter which) and work outwards from
there – having coloured a vertex, the colours of its neighbours are forced, and we
either get stuck or we don’t. The next simple lemma gives a criterion.

Lemma 4.2. A graph G is 2-colourable (bipartite) if and only if it contains no odd
cycles.

Proof. If G is 2-colourable then, in any 2-colouring, the colours around any cycle C
alternate, implying that C has even length.

For the reverse implication we use induction on |G|; the base case |G| = 1 is
trivial. For the induction step let G be a graph with n > 2 vertices with no odd
cycle. We may assume that G is connected (else colour its components). It follows
that there is (at least) one vertex v such that G− v is connected (take v to be a leaf
of a spanning tree of G). By induction we may 2-colour G − v. If all neighbours of
v have the same colour in this colouring, then we may extend the colouring to G by
using the opposite colour for v. So we may suppose that v has neighbours x and y
with different colours. Then G − v contains a path P from x to y; along this path
the colours alternate, so P has odd length and together with vx and vy forms an odd
cycle in G, contradicting our assumption.

In general, finding the chromatic number of a graph is very hard; even the question
‘is χ(G) 6 3’ is hard. However, we can give some general bounds on χ(G).

A copy of Kk in a graph G is called a complete subgraph or a clique. The clique
number ω(G) of G is the largest k such that G contains a copy of Kk. A set S
of vertices is an independent set in G (or stable set) if G[S] has no edges, i.e., no
two vertices of S are adjacent in G. Thus, a (proper) colouring of G corresponds
to a partition of V (G) into independent sets. The independence number α(G) is the
maximum size of an independent set in G. For example, ω(C5) = α(C5) = 2. Note
that α(G) = ω(G).

Lemma 4.3. χ(G) > max{ω(G), |G|
α(G)

}.

Proof. All vertices in a clique must get different colours in any colouring, so χ(G) >
ω(G). Also, since the vertices of each colour form an independent set, each colour is

used on at most α(G) vertices, so we need at least |G|
α(G)

colours.

Given an ordering v1, . . . , vn of the vertices of a graph G, the greedy algorithm
constructs a (proper) colouring of G with positive integers by colouring the vertices
in order: each vertex receives the least colour not already assigned to one of its
neighbours.

Lemma 4.4. χ(G) 6 ∆(G) + 1.

12

Proof. Take any ordering of the vertices and apply the greedy algorithm: each vertex
has at most ∆(G) forbidden colours, and so will get a colour from {1, 2, . . . ,∆(G) +
1}.

This bound is tight in some cases: in particular if G is complete or an odd cycle.
But usually we can do better; we start with two simple lemmas.

Lemma 4.5. Let G be a connected graph with n vertices and let v ∈ V (G). Then we
may order the vertices as v1, . . . , vn−1, vn = v so that each vertex other than v has at
least one neighbour coming after it.

Proof. See problem sheet 2.

Lemma 4.6. Let G be a connected graph with ∆(G) 6 d and δ(G) < d. Then
χ(G) 6 d.

Proof. Pick a vertex v with d(v) < d, take an ordering as in the last lemma, and
apply the greedy algorithm: each vertex has at most d− 1 forbidden colours.

(We won’t need this lemma in the proof that follows, but it encapsulates one key
idea of that proof.)

Dealing with the d-regular case will be significantly harder, though we now have
the tools we need.

Theorem 4.7 (Brooks’ Theorem). Let G be a connected graph. If G is neither an
odd cycle nor a complete graph then χ(G) 6 ∆(G).

Proof. For ∆(G) 6 2 the result is easy, so suppose ∆(G) > 3. It is convenient to
restate the result slightly as follows: let d > 3 and let G be any graph with ∆(G) 6 d
which does not contain a copy of Kd+1. Then χ(G) 6 d. Since a connected graph
with maximum degree d that contains a copy of Kd+1 must be Kd+1, this restatement
(applied with d = ∆(G)) implies the theorem. We prove the restated result by
induction on n = |G|.

If G is disconnected we are done by induction, so suppose G is connected. If G
has a cutvertex v, then we may write G = G1∪G2 where G1 and G2 overlap precisely
in v and |G1|, |G2| < n. By induction χ(G1) 6 d and χ(G2) 6 d, so by Lemma 4.1
χ(G) 6 d. Hence we may assume G has no cutvertex.

Let v be a vertex of G with degree d. (If there is none, then χ(G) 6 ∆(G)+1 6 d.)
Since G contains no Kd+1, we can find neighbours x and y of v such that xy /∈ E(G).
Suppose that G − x − y is connected. Then we may order the vertices of G − x − y
as in Lemma 4.5, ending at v. Putting x and y at the beginning of this ordering, we
obtain an ordering of the vertices of G in which each vertex apart from v precedes at
least one of its neighbours. Moreover, the greedy algorithm gives x and y the same

13

colour, so when it comes to assign a colour to v, at most d− 1 colours are forbidden.
Therefore the greedy algorithm uses at most d colours with this ordering.

Suppose instead that G − x − y is not connected. Then V (G) \ {x, y} can be
partitioned into non-empty sets A and B with e(A,B) = 05. Let G1 = G[A ∪ {x, y}]
and G2 = G[B ∪ {x, y}], so G consists of its subgraphs G1 and G2 overlapping in
the non-adjacent vertices x and y. Both x and y must have neighbours in each of
A and B (if say x had no neighbours in A then G − y would be disconnected, so G
would have a cutvertex). Hence x and y have degree at most d− 1 in G1 and in G2.
Let G+

j = Gj + xy. Then ∆(G+
j) 6 d. If neither G+

1 nor G+
2 contains Kd+1 then by

Lemma 4.1 and induction

χ(G) 6 χ(G+ xy) = χ(G+
1 ∪G+

2) = max{χ(G+
1), χ(G

+
2)} 6 d.

So suppose that one, say G+
1 , contains a copy of Kd+1. Note that this copy must

include x and y, since G1 ⊆ G contains no Kd+1. Since G is connected, in fact G+
1 is

isomorphic to Kd+1. Since x and y have degree d− (d− 1) = 1 in G2, we can d-colour
G2 with x and y having the same colour. Indeed, by induction we can d-colour G[B],
and each of x and y has only one colour ruled out, so since d > 3 we can choose the
same colour for both. But now we can extend this colouring to all of G.

The chromatic polynomial

Given a graph G, for k = 1, 2, . . . , let NG(k) be the number of (proper) k-
colourings of G, i.e., colourings with [k] as the set of available colours (not all colours
have to be used). For example, NKn

(k) = k(k−1)(k−2) . . . (k−n+1) and, trivially,
NEn

(k) = kn. (This is not standard notation and we will only use it temporarily.)

It turns out that with k fixed we can calculate NG(k) inductively, using two
operations on graphs.

If e = uv is an edge in a graph G, we let G/e denote the graph obtained by
contracting e; that is, G/e is obtained from G by deleting the vertices u and v and
adding a new vertex adjacent to each vertex in (Γ(u) ∪ Γ(v)) \ {u, v}. (There is a
slightly different notion of contraction for multigraphs.)

Lemma 4.8. For each edge e of G and positive integer k, NG−e(k) = NG(k)+NG/e(k).

Proof. Suppose that e = uv. Let S be the set of k-colourings of G − e, let S1 =
{c ∈ S : c(u) 6= c(v)} and let S2 = {c ∈ S : c(u) = c(v)}. Clearly |S| = |S1| + |S2|.
Also, NG−e(k) = |S|, NG(k) = |S1| (since these are exactly the colourings of G), and
NG/e(k) = |S2| (since these correspond to the colourings of G/e, taking the common
colour of u and v for the new vertex and vice versa).

5e(A,B) is the number of edges ab of G with a ∈ A and b ∈ B

14

Theorem 4.9. For every graph G there is a unique polynomial pG(x) ∈ Z[x], the
chromatic polynomial of G, such that

pG(k) = NG(k) for each k = 1, 2, (4)

Moreover, for every edge e of G we have pG(x) = pG−e(x)− pG/e(x).

Proof. Uniqueness is immediate since two polynomials that agree on all positive in-
tegers must be the same. For existence we use induction on e(G). For the base case
e(G) = 0, G = En for some n, so NG(k) = kn for every k and the polynomial xn has
the required properties.

For the inductive step, pick any edge e of G and note that G − e and G/e have
fewer edges than G. So by induction there are polynomials pG−e and pG/e satisfying
(4) for the corresponding graphs. Consider pG = pG−e − pG/e; this is a polynomial.
By Lemma 4.8, for every positive integer k we have pG(k) = pG−e(k) − pG/e(k) =
NG−e(k) − NG/e(k) = NG(k), as required. The final statement follows immediately:
we have shown that there is a polynomial pG satisfying (4), and know that it is
unique. We have also shown that for any edge e, pG−e − pG/e is such a polynomial,
so pG−e − pG/e = pG.

From now on we write pG(k) for the number of k-colourings of G, since this number
is an evaluation of the chromatic polynomial. In general, identities for numbers of
k-colourings valid for all k give polynomial identities. As a simple example, if G has
components G1, . . . , Gj then pG(x) = pG1

(x) · · · pGj
(x); this is valid for each x ∈ N

(since pH(k) is the number of k-colourings of H), and both sides are polynomials.

Theorem 4.10. Let G be a graph with n vertices and m edges. Then

pG(x) =
n−1
∑

i=0

(−1)iaix
n−i = a0x

n − a1x
n−1 + · · ·+ (−1)n−1an−1x

where a0 = 1, a1 = m and ai > 0 for all i.

Proof. We argue by induction on m. For m = 0 we have G = En, so pG(x) = xn, and
we are done. For m > 0, pick an edge e of G. Then |G− e| = n and e(G− e) = m−1
so by the induction hypothesis,

pG−e(x) = xn − (m− 1)xn−1 +
n−1
∑

i=2

(−1)iaix
n−i

where each ai > 0. Also |G/e| = n− 1 and e(G/e) 6 m− 1, so

pG/e(x) = xn−1 +
n−2
∑

j=1

(−1)jbjx
n−1−j = xn−1 +

n−1
∑

i=2

(−1)i−1bi−1x
n−i

15

where each bj > 0. By the last part of Theorem 4.9,

pG(x) = pG−e(x)− pG/e(x) = xn −mxn−1 +
n−1
∑

i=2

(−1)i(ai + bi−1)x
n−i,

and ai + bi−1 > 0 for each i.

16

5 Edge colourings

A function f : E(G) → [k] is a proper edge-colouring of G if edges that intersect
(i.e., share an endvertex) always receive distinct colours. The edge-chromatic number
χ′(G) (also called the chromatic index) is the smallest k such that G has such an
edge-colouring.

Proposition 5.1. If e(G) > 0, then ∆(G) 6 χ′(G) 6 2∆(G)− 1.

Proof. Since the edges incident with a given vertex must get different colours we have
χ′(G) > ∆(G). For the upper bound, list the edges in any order and apply the greedy
algorithm to colour the edges. When we come to colour an edge uv, the number of
colours unavailable is at most d(u)− 1 + d(v)− 1 6 2∆(G)− 2.

Amazingly, given the maximum degree ∆ of a graph, there are only two possible
values for the edge-chromatic number, ∆ and ∆ + 1. The proof involves a ‘colour
chasing’ argument. (More precisely, the proof combines two simple colour chasing
arguments in a clever way.)

Theorem 5.2 (Vizing’s Theorem). χ′(G) = ∆(G) or ∆(G) + 1.

Proof. We need to prove that χ′(G) 6 ∆(G)+1. We argue by induction onm = e(G).
The result is trivial if m is 0 (or 1), so let G be a graph with m > 0 edges, let xy1 be
any edge of G, and assume (applying the induction hypothesis to G − xy1) that we
have coloured every edge of G except xy1 with colours 1, . . . ,∆(G) + 1. Our aim is
to show that we can recolour so that we can colour the edge xy1 as well.

For any vertex v, since d(v) < ∆(G) + 1, there is at least one colour missing at v,
i.e., not appearing on any edges incident with v. Let t1 be a colour missing at y1. We
define a sequence y1, y2, . . . , yj of distinct neighbours of x and a sequence t1, t2, . . . , tj
of colours as follows.

If colour t1 is missing at x, colour xy1 with t1 and we are done. If not, there is an
edge xy2 with colour t1, and some colour t2 (6= t1) is missing at y2. If t2 is missing at
x, colour xy2 with t2 and xy1 with t1, and we are done. Otherwise, there is an edge
xy3 with colour t2, and there is a colour t3 missing at y3. If t3 is missing at x we can
recolour as above; otherwise there is an edge xy with colour t3. This could be a ‘new’
edge, but it could instead be xy2.

In general, suppose that we have distinct neighbours y1, . . . , yj of x and distinct
colours t1, . . . , tj−1 such that ti is missing at yi for each i = 1, . . . , j − 1, the edge xy1
is uncoloured, and xyi has colour ti−1 for each i = 2, . . . , j. We call this a fan of size
j. Note that there is a fan of size 1, consisting of the uncoloured edge xy1. Let tj be
a colour missing at yj.

If tj is missing at x, then recolour xyi with ti for each i = 1, . . . , j, and we are
done. (There are no conflicts at the yi since ti was missing at yi, and no conflicts at x

17

since t1, . . . , tj−1 were already present on xy2, . . . , xyj and tj was missing.) Otherwise
there is an edge xy with colour tj. Note that y 6= y1 (since xy1 is uncoloured), and
y 6= yj, since tj is missing at yj. If y 6∈ {y2, . . . , yj−1} then y is a ‘new’ vertex, so let
yj+1 = y – we now have a fan of size j + 1.

The process must terminate (consider a fan of maximal size), and if we are not
done then we have distinct neighbours y1, . . . , yj of x and colours t1, . . . , tj such that
(a) ti is missing at yi for each i = 1, . . . , j, (b) xy1 is uncoloured and xyi has colour
ti−1 for each i = 2, . . . , j, and (c) the colour t := tj appears on xyi for some 2 6 i < j
(and so t = ti−1).

Let s be a colour missing at x. Note for later that t = ti−1 and ti, . . . , tj−1 appear
on distinct edges incident with x, and s is missing at x, so

the colours s, t, ti, . . . , tj−1 are distinct. (5)

For k = 1, . . . , i − 1 we recolour xyk with tk, and we remove the colour from xyi
(so now t is missing at yi). We now have:

• t is missing at yj and also at yi (since previously xyi had colour t),

• xyi is the only uncoloured edge,

• for k = i+ 1, . . . , j the edge xyk has colour tk−1,

• for k = i, . . . , j − 1 colour tk is missing at yk, and

• colour s is missing at x.

We can of course swap the colours s and t everywhere in the colouring, without
causing any conflicts. But this doesn’t gain anything. Let H be the spanning sub-
graph of G consisting of all edges coloured s or t. Then we can swap s and t within
any component of H without causing conflicts. Since ∆(H) 6 2, H consists of paths
(perhaps including some with length 0) and cycles. At each of x, yi and yj, at least
one of s and t is missing, so each of these vertices has degree 6 1 in H. Hence the
components of H containing x, yi and yj are paths, with each of x, yi and yj being
an end of one of these paths. Since a path has at most two ends, it cannot be that x,
yi and yj are all in the same component of H, so one or both of the following cases
holds.

Case 1 : x and yi are in different components of H. Swap s and t in the component
containing x. Now t is missing at x, and is still missing at yi, so we can colour xyi
with t.

Case 2 : x and yj are in different components of H. Swap s and t in the component
containing x. Now t is missing at x, and is still missing at yj. We can colour xyk with
tk for each k = i, i+ 1, . . . , j − 1 (since, recalling (5), swapping s and t did not affect
which edges have colours tk, i 6 k < j, or which vertices these colours are missing
at) and colour xyj with t, and we are done!

18

[There are other ways to finish; for example, swapping s and t in the component
containing yi or yj.]

Proper edge colourings of any graph G correspond exactly to proper vertex colour-
ings of the line graph L(G). This is (as it must be for the previous sentence to be
true) the graph with a vertex for each edge of G in which two vertices are adjacent
if and only if the corresponding edges of G meet. So in a sense, edge colouring is a
special case of vertex colouring, though this viewpoint is not likely to be helpful in
proving results such as Vizing’s Theorem.

19

6 Planar Graphs

K4 may be drawn in the plane with no edges crossing. What about K3,3 (Dudeney’s
problem), or K5 ?

A simple curve in the plane is the image of a continuous injection φ : [0, 1] → R2.
Its endpoints are φ(0) and φ(1). A simple closed curve is the image of a continuous
map φ : [0, 1] → R2 that is injective except that φ(0) = φ(1). A curve is polygonal if
it is formed from a finite number of straight-line segments, i.e., φ is piecewise linear.

A drawing of a graph G = (V,E) in the plane is a representation consisting of
distinct points xv for the vertices v ∈ V , and simple polygonal curves cuv for the edges
uv ∈ E, such that cuv has xu and xv as its endpoints, and the interiors of the curves
(i.e., the curves without their endpoints) are disjoint from each other and from the
xv. In other words, the points and curves meet only ‘as they should’ according to the
incidence relation of the graph.

In fact, the usual definition allows the edges to be drawn as simple curves that
need not be polygonal; it is an exercise in analysis (that we will not do) to show that
the two definitions coincide: a general drawing can be ‘converted’ into a polygonal
drawing.

A graph together with a drawing in the plane is often called a plane graph. We
tend to use the notation G for a plane graph without explicitly indicating the drawing.
A graph is planar if it has a drawing in the plane.

Given a plane graph, if we omit from the plane the points corresponding to the
vertices and edges, what remains falls into open connected components, the faces,
exactly one of which is unbounded. To study plane (and planar) graphs we need
surprisingly little topology. The next lemma may seem obvious, but not all drawings
of planar graphs are as simple as one might hope. [E.g., we may have one face inside
another, meeting at a cutvertex.]

Lemma 6.1. Let e be an edge of a plane graph G. Then e is in the boundary of two
distinct faces if and only if e is in a cycle in G. Moreover, if G is not a forest, then
the boundary of every face contains a cycle.

Proof. Suppose e is in a cycle C. Then the drawing of C is a closed (polygonal)
curve in the plane, which separates the plane into its inside and outside. [This is the
easy part of the Jordan curve theorem.] The face on one side of e is inside, the other
outside.

In the other direction, let F and F ′ be the faces with e in the boundary. Let H be
the spanning subgraph of G consisting of all edges h such that h is in the boundary
of F and some other face, i.e., h separates F from non-F . Going around a small
circle centred at a vertex v, so that we cross each of the d(v) edges incident with v
exactly once and do not cross any other edges, we enter and leave F the same number

20

of times. Thus dH(v) is even. It is easy to check (exercise) that in a graph with all
degrees even, every edge is in a cycle. So e is in a cycle in H, and hence in G.

For the last part, if G is not a forest, then it contains a cycle and so has more than
one face. For any face F define H as above; then H contains a cycle which consists
of edges in the boundary of F .

Recall that a bridge in a graph G is an edge whose deletion would disconnect the
component of G that it lies in, and that e is a bridge if and only if e is not in any
cycle. The result above shows that that in a plane graph, e has the same face on
both sides if and only if it is a bridge. Note that being a bridge is an abstract graph
property, that does not depend on the drawing in the plane.

Theorem 6.2 (Euler’s Formula). Let G be a connected plane graph with n vertices,
m edges and f faces. Then

n−m+ f = 2.

Proof. By induction on f . If f = 1 then G does not contain a cycle, so it is a tree,
and m = n− 1.

Suppose now that f > 2 and the result holds for smaller values of f . Pick an edge
e in the boundary of two faces. By Lemma 6.1, there is a cycle C in G containing
e. Thus G − e is connected. When we delete e from the drawing, two faces join
up to form a new face, while all other faces remain unchanged. So by induction
n− (m− 1) + (f − 1) = 2 and hence n−m+ f = 2 as required.

Corollary 6.3. Let G be a planar graph with n > 3 vertices. Then e(G) 6 3n− 6.

Proof. We may assume G is connected (otherwise consider its components) and not
a tree. Let m = e(G). Consider a drawing of G in the plane, with f faces F1, . . . , Ff .
Let e(Fi) be the number of edges in the boundary of Fi counting any bridges twice.
Since each non-bridge is in the boundary of two faces and each bridge of only one, we
have

∑

i e(Fi) = 2m. By the last part of Lemma 6.1, e(Fi) > 3 for every face Fi, so
2m > 3f , i.e., f 6 2m/3. Hence 2 = n−m+ f 6 n−m/3 and the result follows.

We now see that K5 is not planar, since e(K5) = 10 > 9 = 3(5 − 2). It is an
exercise to show that any triangle-free planar graph with n > 3 vertices has at most
2n− 4 edges; this shows that K3,3 is not planar.

Dual graphs

Slightly informally, a multigraph consists of a set V of vertices and a set E of
edges, where each e ∈ E either joins some vertex v to itself (such an edge is called a
loop) or joins some (unordered) pair {u, v} of vertices. There may be several edges
joining the same pair of vertices, and there may be several loops at a given vertex v.
[Formally, we may define a multigraph as a triple (V,E, φ), where V and E are finite
sets, and φ : E → V (2) ∪ V (1) encodes the ends (or end for a loop) of an edge e ∈ E.]

21

It is clear how to extend the definition of a drawing in the plane to multigraphs; for
example, a loop at v is drawn as a (polygonal) simple closed curve from xv to itself
meeting the other edges only at xv.

If G is a plane (multi-)graph then G has a dual G∗ obtained as follows: take one
vertex F ∗ for each face F of G, and one edge e∗ for each edge e of G, joining the
vertices F ∗

1 and F ∗
2 corresponding to the faces F1 and F2 of G on the two sides of e.

(For a bridge e, F1 = F2, so e∗ is a loop.) We may draw G∗ so that each vertex F ∗ is
a point in the corresponding face F of G, and each edge e∗ crosses the corresponding
edge e of G at one point, and is otherwise disjoint from G. If G is connected, then it
is easy to check that G∗ has one face for every vertex of G, and indeed that (G∗)∗ is
isomorphic to G. Note that the dual of a connected simple graph (i.e., a graph – no
loops or multiple edges) may be a multigraph.

A map is a connected bridgeless plane (multi-)graph. One of the most famous
problems in graph theory, posed in 1852, is: can the faces of every map be coloured
with 4 colours so that faces sharing an edge get different colours? Taking duals, it
is not hard to check that this is equivalent to asking whether every planar (simple)
graph G has χ(G) 6 4. The answer is yes; the result is known as the ‘Four Colour
Theorem’.

If G is planar and has n > 3 vertices, then e(G) 6 3n− 6, so
∑

v d(v) = 2e(G) <
6n, and G must have δ(G) 6 5. It follows easily by induction on |G| that every planar
graph G has χ(G) 6 6. With not too much work, we can improve this by one, to
obtain the ‘Five Colour Theorem’.

Theorem 6.4 (Heawood, 1890). If G is planar then χ(G) 6 5.

Proof. We argue by induction on n = |G|. If n 6 5 then the result is trivial, so
suppose G is planar and has n > 6 vertices, and every planar graph with fewer
vertices is 5-colourable.

As shown above, G has some vertex v with d(v) 6 5. Draw G in the plane, and
let c be a 5-colouring of the plane graph G − v. If any of the 5 colours does not
appear on a neighbour of v we can extend the colouring to G, and we are done. So
we may assume that d(v) = 5 and that the colours of the neighbours of v are distinct.
Let the neighbours of v be v1, v2, . . . , v5 in cyclic order, and without loss of generality
suppose that c(vi) = i.

Let H be the subgraph of G − v induced by the vertices with colour 1 or 3. If
v1 and v3 are in different components of H then, swapping colours 1 and 3 in the
component of H containing v3, say, we find a new 5-colouring c′ of G − v in which
c′(v1) = c′(v3) = 1; this colouring extends to all of G and we are done. Thus we may
assume there exists a path P1 in G − v joining v1 to v3 in which all vertices have
colour (in c) 1 or 3. Similarly, there exists a path P2 in G−v joining v2 to v4 in which
all vertices have colour (in c) 2 or 4. The paths P1 and P2 are vertex disjoint, so in

22

the drawing they do not cross. Since the cycle vP1 separates the plane and P2 starts
and ends on different sides of this cycle this gives a contradiction.

The paths described above are often called ‘Kempe chains’. Kempe thought he
had proved the four colour theorem in 1879. The theorem was first proved by Appel
and Haken in 1977 making extensive use of computers. A simpler, but still computer-
based, proof was given by Robertson, Sanders, Seymour and Thomas in 1997. As of
today there is no simple proof known.

23

7 Flows, connectivity and matchings

Imagine a road network in which each road has a certain ‘capacity’, or maximum
flow in cars/hour. How can we work out the maximum traffic flow from one or more
‘sources’ to one or more ‘sinks’ or target destinations? Since the capacity of a road
may not be the same in the two directions (for example if it is one-way) it makes
sense to consider this question in the context of directed graphs.

Formally, a directed graph
−→
G = (V,

−→
E) consists of a set V , the set of vertices, and

a set
−→
E of ordered pairs of distinct elements of V , the (directed) edges. We write

−→
E

to remind ourselves the graph is directed; often the edge-set is just denoted E. We

think of (x, y) ∈ −→
E as an edge from x to y, and write −→xy or simply xy. Note that a

directed graph cannot contain more than one edge from x to y, but can contain edges
xy and yx. We write

Γ+(x) = {y ∈ V : xy ∈ −→
E }

for the out-neighbourhood of x ∈ V , and

Γ−(x) = {y ∈ V : yx ∈ −→
E }

for its in-neighbourhood.

A flow in G with source s and sink t is a function f :
−→
E → [0,∞) such that for

every x ∈ V \ {s, t} we have
∑

y∈Γ+(x)

f(xy) =
∑

y∈Γ−(x)

f(yx),

i.e., the flow out of x is equal to the flow into x. Here s and t are distinct vertices.

Given any function f :
−→
E → R, for x ∈ V let

If (x) =
∑

y∈Γ+(x)

f(xy)−
∑

y∈Γ−(x)

f(yx).

We may think of If (x) as the amount of flow that must be injected into the graph at
x to maintain balance; in a flow, If (x) = 0 for x ∈ V \ {s, t}.

For any flow (or, indeed, any function on
−→
E),

∑

x∈V

If (x) =
∑

x∈V





∑

y∈Γ+(x)

f(xy)−
∑

y∈Γ−(x)

f(yx)



 = 0,

since for every uv ∈ −→
E , f(uv) appears exactly twice, once with x = u and once with

x = v. For a flow, the terms with x 6= s, t are zero, so If (s) = −If (t), i.e.,
∑

y∈Γ+(s)

f(sy)−
∑

y∈Γ−(s)

f(ys) =
∑

y∈Γ−(t)

f(yt)−
∑

y∈Γ+(t)

f(ty).

24

In other words, the net flow leaving s equals the net flow arriving at t. This common
value is called the value of f , and written v(f). (Usually, v(f) is positive – otherwise
we would regard the flow as having t as source and s as sink.) We can think of flow
as being ‘conserved’ at every vertex, but with flow v injected into the graph at s and
flow v extracted at t.

A capacity function on a directed graph G = (V,
−→
E) is just a function c :

−→
E →

[0,∞) (or [0,∞]). A flow f is feasible (w.r.t. c) if f(xy) 6 c(xy) for every xy ∈ −→
E .

The key question in the theory of flows is: what is the maximum value of a feasible
flow in a given graph with given source s, sink t and capacity function c? To avoid
repeating the definitions, we shall call a directed graph with a given sink, source
and capacity function a network. (Of course, the word ‘network’ has many different
meanings, depending on the context.) When we say f is a flow in a given network, it
is always understood that f is feasible.

Given sets S and T of vertices of a directed graph (V,
−→
E), let

−→
E (S, T) = {xy ∈−→

E : x ∈ S, y ∈ T} be the set of edges from S to T .

A cut in a network is a partition of the vertex set into disjoint sets S and T with

s ∈ S and t ∈ T . (Alternatively, we may say that a corresponding set
−→
E (S, T) of

edges is a cut.) The capacity of a cut (S, T) is

c(S, T) =
∑

xy∈
−→
E (S,T)

c(xy),

i.e., the maximum conceivable flow from S to T (ignoring what happens within S and
T). Clearly, in any feasible flow f , v(f) 6 c(S, T). Indeed,

v(f) = If (s) =
∑

x∈S

If (x) =
∑

x∈S





∑

y∈Γ+(x)

f(xy)−
∑

y∈Γ−(x)

f(yx)





=
∑

xy∈
−→
E (S,T)

f(xy)−
∑

yx∈
−→
E (T,S)

f(yx) 6 c(S, T). (6)

Thus the maximum value of a feasible flow is at most the minimum capacity of a cut.
The remarkable ‘max-flow min-cut’ theorem tells us that we have equality.

Theorem 7.1. In any network (
−→
G, s, t, c) we have

sup{ v(f) : f is a feasible flow } = min{ c(S, T) : (S, T) is a cut }.

Moreover, the supremum is attained.

The key ingredient of the proof is the notion of an augmenting path, or ‘slack
path’. Let f be a flow in a network. We say that an ordered pair (x, y) is ε-slack if

25

either xy ∈ −→
E and f(xy) 6 c(xy) − ε or yx ∈ −→

E and f(yx) > ε (or both). A path

x0x1 · · · xr in the undirected graph associated to
−→
G is ε-slack if xi−1xi is ε-slack for

1 6 i 6 r, and slack (or augmenting) if it is slack for some ε > 0.

Lemma 7.2. Let f be a flow in a network. If x0x1 · · · xr is an ε-slack path with
x0 = s and xr = t then v(f) is not maximal; in particular, there is a flow f ′ with
v(f ′) = v(f) + ε.

Proof. For each i we can either increase the flow along xi−1xi by ε, or decrease the
flow along xixi−1 by ε. Doing either increases If (xi−1) by ε and decreases If (xi) by
the same amount. Making such a change for each i = 1, 2, . . . , r, we see that If (x)
is unchanged for every x 6= s, t (so we still have a flow), and that If (s) = −If (t) is
increased by ε.

Proof of Theorem 7.1. First, we show that the supremum is attained. As noted ear-
lier, for any flow f and cut (S, T) we have v(f) 6 c(S, T). In particular, v(f) 6
∑

y∈Γ+(s) c(sy) < ∞ so the set {v(f) : f a flow} is bounded. So there are flows fi

with v(fi) → M < ∞, where M is the supremum. Let xy ∈ −→
E . Then, passing to

a subsequence, we may assume that fi(xy) converges. Repeating this for each edge,
we find a (sub)sequence of flows with v(fi) → M such that fi(xy) converges for each

xy ∈ −→
E . But then f(xy) = limi→∞ fi(xy) defines a flow with value limi→∞ v(fi) = M .

Let f be a flow attaining the supremum. It suffices to find a cut with capacity
v(f). Let

S = {x ∈ V : there is a slack path from s to x},
and let T = V \ S. Clearly s ∈ S (consider a path of length 0). By Lemma 7.2,
t /∈ S. Thus (S, T) is a cut. Suppose x ∈ S and y ∈ T with (x, y) slack. Then taking
a slack path s = x0 · · · xr = x and appending xr+1 = y gives a slack path ending

at y, contradicting y /∈ T . Hence, for every xy ∈ −→
E (S, T) we have f(xy) = c(xy),

and for every yx ∈ −→
E (T, S) we have f(yx) = 0. I.e., equality holds in (6), so

c(S, T) = v(f).

A maximal flow is one with maximum value. A function (here f or c) is integral
if all its values are integers.

Theorem 7.3. Let (
−→
G, s, t, c) be a network in which the capacity function c is integral.

Then there is a maximal flow f which is integral.

Proof. We have essentially described an algorithm to find such an f ; the key point is
that if the capacity function c and flow f are integral, then any slack path is 1-slack.
Start with the flow with f(xy) = 0 for all edges, and repeat the following: if there
is a slack (and hence 1-slack) path from s to t augment the flow along this path by
1 as above, obtaining a new integral flow with larger value; repeat. Otherwise, by

26

the last part of the proof above, there is a cut (S, T) with v(f) = c(S, T), so f is
maximal.

The algorithm defined above is in fact reasonably efficient: it is easy to check for
the existence of slack paths by (for example) breadth-first search.

A directed path in a directed graph
−→
G = (V,

−→
E) is a sequence x0x1 · · · xr of distinct

vertices such that x0x1, . . . , xr−1xr ∈
−→
E . A set

−→
X ⊆ −→

E of edges separates s from t if−→
G −−→

X contains no directed path (or, equivalently, no directed walk) from s to t. If

(S, T) is a cut, then
−→
E (S, T) separates s from t. Conversely, if

−→
X separates s from

t then it contains
−→
E (S, T) for some cut (S, T) – for example, take S to be the set of

vertices x such that
−→
G −−→

X contains a directed s–x path. Let c(
−→
X) =

∑

xy∈
−→
X
c(xy).

Then we see that

min{c(S, T) : (S, T) is a cut} = min{c(−→X) :
−→
X separates s from t}. (7)

This gives an alternative formulation of the max-flow min-cut theorem. Note, how-
ever, that cuts arise in the proof in an essential way, and it is necessary to consider
reducing flow along backwards edges as well as increasing it along forwards ones.

The max-flow min-cut theorem has many variants, some of which we leave as
exercises. For example, we may consider several sources s1, . . . , sk and several sinks
t1, . . . , tℓ. In this context, a cut (S, T) is a partition of the vertices with all sources
in S and all sinks in T . A flow must satisfy If (x) = 0 for every vertex that is neither

a source nor a sink, and its value is
∑k

i=1 If (si). Theorems 7.1 and 7.3 apply mutatis
mutandis to this setting.

Another important variation allows some edges to have infinite capacity, meaning
that the flow along xy can take any finite value. The results hold in this setting too,
with the proviso that if there is no cut with finite capacity, then {v(f)} is unbounded,
so of course there is no flow with maximum value.

One more substantial variant is to impose capacity restrictions on the vertices

rather than edges. Let
−→
G be a directed graph with source s and sink t, and let c be

a (vertex) capacity function assigning every vertex x 6= s, t a capacity c(x) ∈ [0,∞).

A flow in
−→
G is feasible if for each vertex x 6= s, t we have

∑

y∈Γ−(x)

f(yx) =
∑

y∈Γ+(x)

f(xy) 6 c(x),

i.e., the flow through x is at most c(x). (The equality is the definition of a flow;
feasibility is the inequality.)

A vertex-cut is a set S ⊆ V \ {s, t} of vertices such that in
−→
G − S there is no

directed path from s to t. The capacity of S is
∑

x∈S c(x).

27

Theorem 7.4. Let
−→
G be a directed graph with source s, sink t and vertex capacity

function c. Then the maximum value of a feasible flow from s to t is the minimum
capacity of any vertex-cut. Furthermore, if c is integral, then there is a flow with
maximum value that is integral.

Proof. Rather than modify the proof of Theorem 7.1, we modify the network so that
we can apply that result.

Form a directed graph
−→
H with source s and sink t by replacing each vertex x 6= s, t

by two vertices x− and x+ joined by an edge x−x+ with capacity c(x). For each edge

of
−→
G there is an edge of

−→
H with infinite (or very large) capacity; edges that start/end

at s/t in
−→
G do so in

−→
H ; every edge of

−→
G ending at x 6= s, t now ends at x−, and

every edge starting at x now starts at x+. It is easy to check that feasible flows in−→
G are in 1-to-1 correspondence with feasible flows in

−→
H . In

−→
H , a set

−→
X of edges

with c(
−→
X) finite must be of the form

−→
X S = {x−x+ : x ∈ S} for some S ⊆ V \ {s, t}.

Moreover,
−→
X S is separating if and only if S is a vertex-cut. The result thus follows

from Theorem 7.1 and (7) and, for integrality, Theorem 7.3.

Connectivity and Menger’s Theorem

Let G be an (undirected) graph and S ⊆ V (G). We say that S separates G if
G − S is disconnected. For vertices x, y of G, S separates x and y if they are in
different components of G− S.

For a non-negative integer k, a graph G is k-connected if |G| > k + 1 and no
set of (at most) k − 1 vertices separates G. (Every graph is 0-connected. A graph
G is 1-connected iff it is connected and |G| > 2. The only k-connected graph with
|G| = k + 1 is Kk+1.)

The (vertex) connectivity of a graph G is defined as

κ(G) = max{k : G is k-connected}.

Equivalently, κ(G) is the minimum number of vertices that must be deleted to either
disconnect G, or reduce it to a single vertex. It follows easily from the definition that
κ(G− x) > κ(G)− 1, and that if H is a spanning subgraph of G then κ(G) > κ(H).
It is an exercise to check that if e is an edge of G then κ(G− e) > κ(G)− 1.

We now define a ‘local’ version of connectivity. For distinct non-adjacent vertices
x and y of G we write

κ(x, y) = κG(x, y) = min{|S| : S separates x and y}.

Note that adjacent vertices can never be separated by deleting other vertices. Also,
it is easy to check that for any non-complete graph G,

κ(G) = min
xy∈E(G)

κG(x, y).

28

Two distinct x–y paths are independent (or internally vertex-disjoint) if the only
vertices they share are x and y. A set of x–y paths is independent if the paths are
pairwise independent.

Theorem 7.5 (Menger’s Theorem). Let x and y be distinct non-adjacent vertices of
G. Then the maximum size of an independent set of x–y paths is κG(x, y).

Proof. If there are k independent x–y paths then κG(x, y) > k, so we must show that
there are κG(x, y) independent paths.

Turn G into a network with source x and sink y by replacing each edge uv by two
directed edges −→uv and −→vu, and assigning each vertex other than x and y capacity 1.
Then a vertex-cut S is simply a set of vertices separating x and y, and its capacity
is just |S|. Hence, by Theorem 7.4, there is an integral flow f from x to y with
value κG(x, y). Given the vertex capacities, f can only take values 0 and 1, so f
corresponds to a set of edges consisting of independent x–y paths and perhaps some
directed cycles. The value of f is the number of paths, so there are κG(x, y) paths as
required.

Corollary 7.6. A graph G is k-connected iff |G| > k + 1 and every pair of non-
adjacent vertices is joined by k independent paths.

We can also define edge connectivity, and prove a form of Menger’s Theorem for
edge-disjoint paths.

Hall’s Theorem

A matching M in a graph G is a set of pairwise disjoint edges of G; its size |M |
is the number of edges. Let G be a bipartite graph with vertex classes V1 and V2. A
complete matching from V1 to V2 is a matching such that every vertex in V1 is incident
with some edge in the matching, i.e., a matching of size |V1|.

Given a set S of vertices in a graph G, we write Γ(S) for the set of vertices not
in S with at least one neighbour in S. Sometimes the same notation is used for the
set of all vertices with at least one neighbour in S, i.e.,

⋃

v∈S Γ(v). In the present
context, where G is bipartite and S ⊆ V1, it makes no difference: Γ(S) is the set of
v ∈ V2 with at least one neighbour in S.

Theorem 7.7 (Hall’s Marriage Theorem). Let G be a bipartite graph with bipartition
(V1, V2). Then G contains a complete matching from V1 to V2 iff |Γ(S)| > |S| for each
S ⊆ V1.

The condition that |Γ(S)| > |S| for each S ⊆ V1 is called Hall’s condition. It is
trivially necessary. We give two proofs of sufficiency.

Proof. We can deduce the result from Menger’s Theorem (see last year’s notes). In-
stead, here is an outline of a proof directly from Theorem 7.3.

29

Form a directed graph by orienting every edge from V1 to V2, and adding a new
vertex s with an edge sx for every x ∈ V1 and a new vertex t with edges xt, x ∈ V2.
Assign all the new edges capacity 1, and the edges from V1 to V2 some very large (or
infinite) capacity; |V1| + 1 is large enough. Let (S, T) be a cut, and let Si = S ∩ Vi.

Either (i)
−→
E (S, T) contains some edge from V1 to V2. Then c(S, T) > |V1|. Or (ii)

not, i.e., Γ(S1) ⊆ S2. Then

c(S, T) = |V1 \ S1|+ |S2| = |V1| − |S1|+ |S2| > |V1| − |S1|+ |Γ(S1)| > |V1|,

by Hall’s condition. Hence the capacity of any cut is at least |V1|, so by Theorem 7.3
there is an integral flow f with value |V1|. But it is easy to check that f can only
take the values 0 and 1, and that the edges e from V1 to V2 with f(e) = 1 correspond
to a complete matching in G.

Here is a direct proof.

Proof. We argue by induction on n = |V1|. If n = 1, the result is trivial. For the
induction step, let n > 2 and suppose that the result holds for all graphs with |V1| < n.
Consider a graph G with |V1| = n and assume that Hall’s condition holds. There are
two cases.

(a) Suppose first that |Γ(S)| > |S| for each ∅ 6= S (V1. Let xy be any edge of G
with x ∈ V1 and y ∈ V2. Form G′ by deleting the vertices x and y from G. Then G′

satisfies Hall’s condition (since if ∅ 6= S ⊆ V1 \ {x} then |Γ′(S)| > |Γ(S)| − 1 > |S|),
and so by induction G′ has a complete matching from V1 \ {x} to V2 \ {y}. Now
adding the edge xy gives the required matching.

(b) If case (a) does not hold then |Γ(S)| = |S| for some ∅ 6= S (V1. The bipartite
subgraph induced by S ∪ Γ(S) still satisfies Hall’s condition, so by induction there is
a complete matching M1 from S to Γ(S).

Now consider T = V1 \ S and U = V2 \ Γ(S). We shall see that the bipartite
subgraph H induced by T ∪U also satisfies Hall’s condition. For each A ⊆ T we have

|ΓH(A)| = |Γ(A) ∩ U | = |Γ(A ∪ S) \ Γ(S)|
= |Γ(A ∪ S)| − |Γ(S)|
> |A ∪ S| − |S| = |A|,

since |Γ(A ∪ S)| > |A ∪ S| and |Γ(S)| = |S|. So Hall’s condition holds in H, and
by induction there is a complete matching M2 from T to U . Then M1 ∪ M2 is the
required matching from V1 to V2.

Tutte’s 1-factor Theorem

Although especially natural in bipartite graphs, it makes perfect sense to con-
sider matchings in general graphs. A k-factor in a graph G is a spanning k-regular
subgraph. Thus a 1-factor is exactly the same as a matching covering all vertices.

30

We call a component of a graph G odd if it has an odd number of vertices, and
even otherwise. Let q(G) denote the number of odd components of G, and note that
q(G) ≡ |G| modulo 2.

Theorem 7.8 (Tutte’s 1-factor theorem). A graph G has a 1-factor if and only if,
for every S ⊆ V (G), we have

q(G− S) 6 |S|. (8)

Proof. In any 1-factor (complete matching) M , every odd component C of G − S
contains at least one vertex paired with some vertex outside C. Since the only edges
leaving C in G go to S, a vertex of C must be paired with a vertex of S, and so
|S| > q(G− S). This shows that (8) is necessary. We prove sufficiency by induction
on |G|. The case |G| = 1 (or |G| = 2) is trivial.

Suppose then that G satisfies (8), and that the result holds for all smaller graphs.
Taking S = ∅ in (8) we see that q(G) = 0, and in particular |G| is even. Also, for any
vertex v of G, q(G− v) is odd (since |G − v| is). Hence q(G− v) > 1 and (since we
are assuming (8)), for S = {v} we have q(G− S) = |S|.

Let S be a subset of V (G) for which q(G−S) = |S| with m = |S| maximal. From
the above, m > 1, so S is not empty. Let O1, . . . , Om be the odd components of G−S
and E1, . . . , Ek, k > 0, the even components (if there are any). We shall prove the
following three statements.

(i) each Ei has a 1-factor,

(ii) if v is any vertex of any Oi, then Oi − v has a 1-factor, and

(iii) there is a matching s1v1, . . . , smvm in G such that {s1, . . . , sm} = S and
vi ∈ Oi for 1 6 i 6 m.

Clearly, if (i)–(iii) hold then G has a 1-factor: apply (iii) first, then (ii) and (i). It
remains to prove (i)–(iii).

To see (i), let A ⊆ V (Ei). The components of G− (A∪ S) are O1, . . . , Om, all Ej

other than Ei, and the components of Ei−A, so q(G− (A∪S)) = m+ q(Ei−A) and

q(Ei − A) = q(G− (A ∪ S))−m 6 |A ∪ S| −m = |A|+m−m = |A|.

Hence Ei satisfies (8) and by induction Ei has a 1-factor.

For (ii), let v be a vertex of Oi. Let A ⊆ V (Oi − v). Then the components of
G−(A∪{v}∪S) are the Ej, all Oj other than Oi, and the components of (Oi−v)−A.
Hence

q((Oi − v)−A) = q(G− (A∪ {v} ∪ S))− (m− 1) < |A∪ {v} ∪ S| −m+1 = |A|+2,

where the inequality is from (8) and the maximality of |S|. Modulo 2,

q((Oi − v)− A) ≡ |(Oi − v)− A| = |Oi| − 1− |A| ≡ |A|,

31

since Oi is odd. Since x < y + 2 and x ≡ y modulo 2 imply x 6 y, it follows that
q((Oi − v)− A) 6 |A|, so Oi − v satisfies (8), and (ii) follows by induction.

Finally, for (iii) let H be the bipartite graph with V1 = S and V2 = {o1, . . . , om},
with an edge xoi whenever x ∈ S and there is at least one edge in G from x to
Oi. It suffices to find a complete matching in H, so we check Hall’s condition. Let
A ⊆ V1 = S. If oi ∈ V2 \ ΓH(A) then in G there are no edges from A to Oi, so Oi is
a component of G− (S \ A). Hence, q(G− (S \ A)) > |V2 \ ΓH(A)| = m− |ΓH(A)|.
Thus, by (8),

m− |ΓH(A)| 6 q(G− (S \ A)) 6 |S \ A| = m− |A|.

Subtracting from m we obtain |ΓH(A)| > |A|, so Hall’s condition holds in H, and by
Hall’s Theorem H has the required complete matching.

32

8 Extremal Problems

If G has a subgraph isomorphic to H we say ‘G contains (a copy of) H’ for short,
and sometimes write G ⊇ H.6 For a graph H with e(H) > 0 and n > 1 an integer,
define

ex(n,H) = max{e(G) : |G| = n, G contains no copy of H}
and

EX(n,H) = {G : |G| = n, e(G) = ex(n,H), G contains no copy of H}.

The graphs in EX(n,H) are called the extremal graphs ; we often describe EX(n,H)
by listing one graph from each isomorphism class. ex(n,H) is the extremal number
for H (a function of n, of course).

For example, if G contains no copy of P2 then all edges must be disjoint. Thus
ex(n, P2) = ⌊n

2
⌋, and EX(n, P2) is {n

2
K2} if n is even and {n−1

2
K2 ∪K1} if n is odd,

where mK denotes the disjoint union of m copies of K.

What is ex(n,K3)? Good candidate extremal graphs are the complete bipartite
graphs Kk,n−k; to maximize the number k(n− k) of edges we take k = ⌊n/2⌋. More
generally, what is ex(n,Kr+1)?

A graph G is r-partite if V (G) is the disjoint union of r sets V1, . . . , Vr (the vertex
classes) with e(G[Vi]) = 0 for each i, i.e., no edges within each Vi. In other words,
all edges go between parts. This is exactly the same as saying that G is r-colourable.
A graph G is complete r-partite if in addition every possible edge between parts is
present.

Note that empty parts are allowed: the key point is that inside any part with at
least two vertices, edges are forbidden. Clearly, any r-partite graph does not contain
Kr+1.

Before continuing we make a trivial observation: if a1, . . . , ar are integers with
average ā = 1

r

∑

ai then all ai are within 1 of each other (i.e., max ai 6 min ai + 1)
if and only if every ai is equal to ⌊ā⌋ or ⌈ā⌉. (There are two cases: all ai = m = ā
for some integer m, or some ai = m, some ai = m + 1; then m < ā < m + 1.)
Moreover, given r and

∑

ai, there is only one way (up to reordering) to choose the
ai so that these conditions hold. I.e., there is only one way to divide a given number
of (indivisible) objects among r people ‘as fairly as possible’.

For n, r > 1, the Turán graph Tr(n) is the complete r-partite graph on n vertices
with the vertex class sizes as equal as possible, i.e., each is ⌊n

r
⌋ or ⌈n

r
⌉. The Turán

number tr(n) is e(Tr(n)). Note that if n 6 r then Tr(n) = Kn.

6Perhaps we should not write this, since in other contexts it means that H itself is a subgraph
of G, i.e., that the particular vertices and edges of H are present in G. But usually it is clear from
context whether or not we are considering isomorphic copies.

33

For example, T2(n) is K⌊n
2
⌋,⌈n

2
⌉. Thus t2(n) is

n2

4
if n is even, and n2−1

4
if n is odd:

t2(n) = ⌊n2

4
⌋.

T3(10) has class sizes 3, 3 and 4, and 9 + 12 + 12 = 33 edges, so t3(10) = 33.
(T1(n) has no edges.)

Facts about Turán graphs

1. Among all r-partite graphs with n vertices, Tr(n) is the unique (up to isomor-
phism) one with the most edges. Indeed, only complete r-partite graphs are
candidates, and if two classes differ in size by 2 or more, moving a vertex from
the larger to the smaller gains at least one edge.

2. Since each vertex class has size ⌊n
r
⌋ or ⌈n

r
⌉, δ(Tr(n)) = n−⌈n

r
⌉ and ∆(Tr(n)) =

n−⌊n
r
⌋, so ∆−δ 6 1. Hence δ(Tr(n)) = ⌊d̄(Tr(n))⌋ and ∆(Tr(n)) = ⌈d̄(Tr(n))⌉,

where d̄(G) = 2e(G)/|G| is the average degree of a graph G.

3. To get from Tr(n) to Tr(n− 1) we delete any vertex from a largest vertex class,
i.e., any vertex of minimum degree. So tr(n)− δ(Tr(n)) = tr(n− 1).

Theorem 8.1 (Turán’s Theorem). For all positive integers n and r we have

ex(n,Kr+1) = tr(n) and EX(n,Kr+1) = {Tr(n)}.

Proof. We fix r and use induction on n. If n 6 r then ex(n,Kr+1) =
(

n
2

)

= tr(n), and
EX(n,Kr+1) = {Kn} = {Tr(n)}, as required.

Now let n > r and suppose that the result holds for n− 1. Let G be a graph with
n vertices and tr(n) edges containing no copy of Kr+1. We will show that G ∼= Tr(n),
from which the result follows. (If H had |H| = n, e(H) > tr(n) and contained no
copy of Kr+1, then some spanning subgraph G would have tr(n) edges; so G ∼= Tr(n)
and then H would contain a copy of Kr+1.)

First note that by Fact 2

δ(G) 6 ⌊d̄(G)⌋ = ⌊d̄(Tr(n))⌋ = δ(Tr(n)).

Let v ∈ V (G) have degree d(v) = δ(G). Then for H = G− v we have

e(H) = e(G)− d(v) = tr(n)− δ(G) > tr(n)− δ(Tr(n)) = tr(n− 1),

using Fact 3. But H contains no Kr+1 so by the induction hypothesis, H ∼= Tr(n−1).

Now v cannot have a neighbour in each vertex class of H (or we would get a copy
of Kr+1), so its neighbours must miss some vertex class Vi completely. Adding v to
this class, we see that G is r-partite. Now by Fact 1, G ∼= Tr(n).

34

The density of a graph G is e(G)/
(

|G|
2

)

.

For r fixed and n → ∞, Tr(n) has density 1− 1
r
+o(1). Thus by Turán’s Theorem,

ex(n,Kr+1)/
(

n
2

)

= 1 − 1
r
+ o(1). We say that Kr+1 ‘appears’ at density 1 − 1

r
. Thus

K3 appears at density 1
2
, K4 at density 2

3
, K5 at density 3

4
, and so on.

What about other graphs? If χ(H) > r + 1, then, since H is not r-partite, Tr(n)
contains no copy of H. Thus for any H, letting r = χ(H)− 1 we have

ex(n,H) > tr(n) = (1− 1
r
+ o(1))

(

n
2

)

.

In particular, H cannot appear before the density 1− 1
r
at which Kr+1 appears. Are

there ‘big’ graphs with a given chromatic number that appear significantly later?
Amazingly, the answer turns out to be no.

For s, t > 1 let Ks(t) be the complete s-partite graph with t vertices in each class.
For example, K1(t) is the empty graph Et, K2(t) is the complete bipartite graph Kt,t,
and Ks(1) = Ks. In general Ks(t) = Ts(st).

Theorem 8.2 (Erdős–Stone Theorem). Let r, t > 1 be integers and let ε > 0. There
is a constant n0 = n0(r, t, ε) such that every graph G with n > n0 vertices and

e(G) >
(

1− 1
r
+ ε

) (

n
2

)

contains a copy of Kr+1(t).

We prove this theorem in two steps. We first show that any graph with a given
density contains a subgraph with a relatively large minimum degree.

Lemma 8.3. Let 0 6 α < β 6 1. If G is a graph with |G| = n and e(G) > β
(

n
2

)

then
G has an (induced) subgraph H with

δ(H) > α(|H| − 1)

and |H| > √
εn, where ε = β − α.

Proof. Define a sequence Gn, Gn−1, . . . of graphs with |Gt| = t as follows. Set Gn = G.
If δ(Gt) > α(t−1) then stop. Otherwise, remove a vertex of Gt with minimum degree
to get Gt−1. The construction must stop at some point (G1 at the latest); let Gk be
the final graph, so δ(Gk) > α(|Gk| − 1) by construction. Now

e(Gk) = e(Gn)− δ(Gn)− δ(Gn−1)− · · · − δ(Gk+1)

> β

(

n

2

)

− α ((n− 1) + (n− 2) + · · ·+ k)

= β

(

n

2

)

− α

(

n

2

)

+ α

(

k

2

)

> ε

(

n

2

)

.

Since e(Gk) 6
(

k
2

)

it follows that
(

k
2

)

> ε
(

n
2

)

, which implies k >
√
εn.

35

Lemma 8.4. Let r, t > 1 be integers and let ε > 0. There is a constant n1 = n1(r, t, ε)
such that every graph G with n > n1 vertices and

δ(G) >
(

1− 1
r
+ ε

)

(n− 1)

contains a copy of Kr+1(t).

Note that the theorem will follow easily: apply Lemma 8.3 with β = 1 − 1
r
+ ε

and α = 1− 1
r
+ ε

2
, and then Lemma 8.4 with ε/2 in place of ε.

Proof. We use induction on r, proving the base case and induction step together.
More precisely, for r > 1 let Hr be the statement that for every t > 1 and ε > 0
there is an n1 such that We shall prove Hr assuming, for r > 2, that Hr−1 holds.
Then we will have shown that H1 holds, and that Hr−1 implies Hr for all r > 2, so by
induction Hr holds for all r > 1. A key point is that in proving Hr, r > 2, we must
consider all t and all ε > 0; but for a given t we may use the fact that Hr−1 holds for
some other, perhaps much larger value T of t.

Let r > 1. To prove Hr, let t > 1 and ε > 0 be given, and let G be a graph with
|G| = n and δ(G) > (1− 1

r
+ ε)(n− 1). Set

T = ⌈2t/(εr)⌉.

If r > 2 then since

δ(G) > (1− 1
r
+ ε)(n− 1) > (1− 1

r−1
+ ε)(n− 1),

we know by the induction hypothesis Hr−1 that, if n is large enough (depending on
r, t, ε), G must contain a copy of Kr(T). If r = 1 then Kr(T) = K1(T) is an empty
graph with T vertices, so if n is large enough (i.e., n > T) then G certainly contains
a copy of this graph.

In either case, let H be a subgraph of G isomorphic to Kr(T). Denote its vertex
classes by S1, . . . , Sr and let S = V (H) be their union. Let U be the set of vertices
in V (G) \ S which have at least t neighbours in each class Si; these vertices are the
useful ones.

If |U | > (t − 1)
(

T
t

)r
then there are at least t vertices in U that have at least t

common neighbours in each Si, giving a Kr+1(t); to see this let each u ∈ U choose an
r-tuple (A1, . . . , Ar) where Ai ⊆ Si ∩ Γ(u) and |Ai| = t. Then the average number of
times an r-tuple is chosen is > t− 1, and so some r-tuple is chosen > t times, i.e., we
have t vertices all joined to the same copy H ′ ⊂ H of Kr(t).

So we may suppose that |U | 6 (t−1)
(

T
t

)r
. Let B = V (G)\ (S∪U). We count the

number N of edges of G between S and B in two different ways. Firstly, the degree
in G of any vertex v is

n− 1− dG(v) 6 n− 1− δ(G) 6 (n− 1)(1
r
− ε) 6 (1

r
− ε)n,

36

so counting from S we find that

N 6 |S|(1
r
− ε)n = rT (1

r
− ε)n = (T − εrT)n.

On the other hand, for each u ∈ B there is a vertex class Si of H such that in G, the
vertex u has at most t − 1 6 t neighbours in Si. Then, in G, u has at least T − t
neighbours in Si ⊆ S. Hence, counting from B, we see that

N > |B|(T − t).

Since we chose T so that εrT > 2t, it follows that

|B| 6 T − εrT

T − t
n 6

T − 2t

T − t
n = (1− c)n

for some constant c > 0 (depending on r, t, ε). But now in total there are

n = |S|+ |B|+ |U | 6 rT + (1− c)n+ (t− 1)
(

T
t

)r
= (1− c)n+O(1)

vertices, a contradiction if n is large enough.

Corollary 8.5. Let H be any graph with e(H) > 0. Then

ex(n,H) =
(

1− 1
χ(H)−1

+ o(1)
)(

n
2

)

where χ(H) is the chromatic number of H.

Proof. Let r = χ(H)− 1, so H has chromatic number r+1. Since H is not r-partite,
Tr(n) does not contain any copies of H, so

ex(n,H) > tr(n) =
(

1− 1
r
+ o(1)

)(

n
2

)

.

On the other hand, for large enough t (e.g., t = |H|), the graph Kr+1(t) contains a
copy of H. Therefore

ex(n,H) 6 ex(n,Kr+1(t)) 6
(

1− 1
r
+ o(1)

)(

n
2

)

,

where the second inequality is from Theorem 8.2.

Corollary 8.5 answers, at some level, the basic extremal question for any graph H.
However, there is a weak point: while for χ(H) > 3 it tells us asymptotically what
value ex(n,H) has, for χ(H) = 2 it only tells us that ex(n,H) = o(n2), leaving a wide
range of possible functions (e.g., roughly n2/ log n, roughly n, roughly n3/2 etc). Can
we say something more precise in this case?

The Zarankiewicz Problem

Let G be a bipartite graph where the vertex classes have a given size n. How
many edges can G have if it does not contain a copy of some given graph H? This
makes sense only if H is bipartite, and in particular we consider H = Kt,t, i.e., the
bipartite analogue of the Turán problem. Formally, let

z(n, t) = max
{

e(G) : G ⊆ Kn,n and G contains no Kt,t

}

.

37

Theorem 8.6. If n > t > 2 then

z(n, t) 6 (t− 1)1/tn2−1/t + (t− 1)n

In particular, as n → ∞ with t fixed we have z(n, t) = O(n2−1/t).

Proof. Let G be a maximal bipartite graph with vertex classes X and Y such that
|X| = |Y | = n and G contains no Kt,t. Note that by maximality, d(v) > t − 1 for
every vertex v. (Otherwise, add a new edge incident with v. The degree of v would
still be less than t, so the new edge cannot be in a Kt,t.)

We say that a vertex v covers a set S of vertices if S ⊆ Γ(v). A vertex v ∈ X
covers exactly

(

d(v)
t

)

t-element subsets of Y . On the other hand, a t-element subset
of Y is covered by at most t− 1 vertices in X; otherwise we have a Kt,t. Hence,

∑

v∈X

(

d(v)

t

)

6 (t− 1)

(

n

t

)

.

From here it is just calculation. Firstly, the polynomial x(x − 1) · · · (x − t + 1) is
convex on [t− 1,∞), so

(

x
t

)

is convex as a function of x > t− 1. Let d = 1
n

∑

v∈X d(v)
be the average degree in X. Then, by Jensen’s inequality,

(

d

t

)

6
1

n

∑

v∈X

(

d(v)

t

)

6
t− 1

n

(

n

t

)

. (9)

Hence
t− 1

n
>

(

d
t

)

(

n
t

) =
d(d− 1) · · · (d− t+ 1)

n(n− 1) · · · (n− t+ 1)
>

(

d− t+ 1

n

)t

.

Rearranging gives an upper bound on d, and noting that e(G) = dn we get the
result.

Remark. The same method of proof works to show that ex(n,Kt,t) = O(n2−1/t); we
count the number of copies of K1,t in two ways. (As in the proof above, but in the
bipartite case we had the extra restriction that the special vertex of K1,t should be
in X.)

The special case t = 2 is the same but with simpler calculations.

Theorem 8.7. For n > 2 we have

z(n, 2) 6
n

2
(1 +

√
4n− 3) ∼ n3/2

as n → ∞.

Proof. We have (9) as before. With t = 2 this becomes d(d− 1) 6 n− 1, rearranging
and noting as before that e(G) = nd gives the result.

38

The bounds just given are only upper bounds. Are they close to the truth? In
general, this is an open question! The case t = 2 is particularly nice. Here we have
equality if and only if G is regular, any two vertices in Y have exactly one common
neighbour in X, and vice versa. A structure with these properties is called a finite
projective plane: think of the vertices in X as points, those in Y as lines, and edges
of G as representing incidence.

It turns out that, except for some degenerate cases, for equality we must have
n = q2 + q + 1, each point on q + 1 lines and each line having q + 1 points. Is this
possible? For q any prime power the answer is yes: take the projective plane over a
field with q elements. (This is enough to show that in fact z(n, 2) ∼ n3/2). In general,
even this question is open!

39

