
B8.5 Graph Theory Problem Sheet 0 22/10/2019

SOLUTIONS FOR STUDENTS

Suggested use: having tried the questions, read a solution or two and compare
with yours. If there are major differences (in level of detail), try to modify your
solutions to the next questions before looking at mine, to see if you can end up
with a close match by the end of the sheet. The solutions are one to a page for
this reason!

(Of course, for some questions there are a number of different approaches pos-
sible; this is more about the level of rigour.)

As always, if you find an error please check the website, and if it has not already
been corrected, e-mail riordan@maths.ox.ac.uk



Q1.
The definition of an x–y path is exactly that it’s an x–y walk v0v1 · · · vt in which

v0, . . . , vt are distinct, so any x–y path is an x–y walk. Thus one direction is trivial.
For the converse, suppose that G contains an x–y walk W = v0 · · · vt. If W is a

path then we are done. Otherwise, by definition, there are 0 6 i < j 6 t such that
vi = vj. (There may be several such pairs.) Let W ′ = v0 · · · vivj+1 · · · vt.

1 This is
an x–y walk: the first vertex is x, the last is y, and each is joined to the next since
W is a walk and (if j < t) vivj+1 = vjvj+1 ∈ E(G). Also W ′ is strictly shorter than
W : it has length t− (j − i) < t. If W ′ is a path, we are done. Otherwise repeat -
this cannot continue indefinitely, so there exists an x–y path.

[This is the argument as one might first think of it; the slick proof is to start
by saying that among all x–y walks there is (at least) one with minimum length,
and start from that. Be careful that a walk may intersect itself in many ways; if
you try to remove all the ‘loops’ in one go things may well go wrong.]

1As usual in maths, if j = t then we interpret vj+1 · · · vt as being an empty list, so in this case
W ′ = v0 · · · vi



Q2.
The relation is reflexive since for any vertex x, v0 = x is an x–x path/walk of

length 0.
If x = v0v1 · · · vt = y is an x–y path/walk of length t > 0, then vtvt−1 · · · v0 is a

y–x path/walk, so the relation is symmetric.
For transitivity, suppose x ∼ y and y ∼ z. Then there exist paths/walks

x = v0 · · · vt = y and y = w0 · · ·ws = z. Then v0 · · · vtw1 · · ·ws is an x–z walk : the
first vertex is x, the last is z, and each is adjacent to the next, from the walks we
started with plus the fact that vtw1 = w0w1. (To be really complete, s = 0 needs a
trivial special case. Or it’s ok to write v0 · · · vt = w0 · · ·ws; the middle entry only
appears once.)

[For the first two parts you can work with paths or walks; it makes no difference.
For the last, walks are better – even if we start with paths, the combined walk may
not be a path. But this is fine; we know that an x–z walk guarantees the existence
of an x–z path by Q1.]



Q3.
Let G = (V,E). Define the relation ∼ as in Q2; this is an equivalence relation

on the set V , so it partitions V into equivalence classes V1, . . . , Vk. These will be
the vertex sets of the components: let Gi = G[Vi], the graph with vertex set Vi

containing all edges of G with both ends in Vi. Then we expect that the Gi are the
components.

Firstly, lets check that G is the disjoint union of G1, . . . , Gk. They are (vertex)2

disjoint since equivalence classes are disjoint. Also, V (G1∪· · ·∪Gk) = V1∪· · ·∪Vk =
V . Certainly E(G1 ∪ · · · ∪ Gk) ⊆ E(G), so we just need to check that every edge
of G is an edge of some Gi. But if xy ∈ E(G) then there is an x–y path (xy) of
length 1, so x ∼ y and x, y are in the same equivalence class Vi. Then xy ∈ E(Gi).

Secondly, we need to show that the Gi are the components (maximal connected
subgraphs) of G.

(i) each Gi is connected: if x, y ∈ V (Gi), then x, y ∈ Vi, so x ∼ y. Hence there
is an x–y path P = v0v1 · · · vt in G. For each vertex vs on the path there is an x–vs
path, namely v0v1 · · · vs; so x ∼ vs and also vs ∈ Vi.

3 It follows that P is a path
in Gi (all the vertices are in Gi and, from the way we defined Gi, so are all the
edges). Since x and y were any two vertices of Gi, then Gi is connected.

(ii) we need to show maximality. So suppose Gi is a strict subgraph of H, itself
a connected subgraph of G. We cannot have V (H) = V (Gi) = Vi since Gi already
contains all edges of G within the set Vi. So H contains a vertex x /∈ Vi. Let y ∈ Vi.
Then y is a vertex of Gi and so of H. Since H is connected, there is an x–y path
in H, and hence in G. Thus x ∼ y. But this contradicts y ∈ Vi, x /∈ Vi.

2Vertex disjointness is the strongest notion of disjointness for graphs; if two graphs have no
common vertices, they can’t have any common edges. So we often just say ‘disjoint’ to mean
vertex disjoint. If we want to allow common vertices but not common edges, we say ‘edge disjoint’.

3Or, say that vs−1vs ∈ E(G) for each s, so vs−1 ∼ vs, so (formally by induction on s) all the
vs are in the same equivalence class.



Q4.
Let T = (V,E) be a tree. Then T is connected by definition. If T − e were

connected for some edge e = xy of T then there would exist an x–y path in T − e,
say x = v0v1 · · · vt = y. Now t > 2, since xy = e is not an edge in T − e. Thus
v0, v1, . . . , vt are > 3 distinct vertices of T . We have v0v1, . . . , vt−1vt ∈ E(T − e) ⊂
E(T ) (from the path) and vtv0 = xy ∈ E(T ). Thus v0 · · · vt defines a cycle in T ,
contradicting T being a tree. Thus (i) implies (ii).4

Conversely, suppose that T is a minimal connected graph. If T contains a cycle
v1v2 · · · vk, then removing the edge e = v1vk from T leaves T − e connected: for
any two vertices u and v, there is a path from u to v in T , and if that path uses
e, we can replace e by with v1v2 · · · vk or vk · · · v2v1 to obtain a walk (there may be
some repeated vertices) from u to v in T − e. Thus T − e would be connected, a
contradiction. Hence T is acyclic and hence a tree.

The equivalence of (i) and (iii) is similar; I’ll leave this one to you!

4Actually, to be really complete we should consider deleting more than one edge too: if
T ′ = (V,E′) with E′ ( E, then pick any e ∈ E \ E′. Then T − e is not connected and T ′ is
a spanning subgraph of T − e. It follows that T ′ is not connected (any path in T ′ is a path in
T − e).



Q5.
Let T be a tree with at least two vertices. We already showed in lectures that

if any vertex v has degree 0 then T is not connected, a contradiction. So d(v) > 1
for every v. If at least two vertices have degree 1 we are done. Otherwise, there is
at most 1 vertex with degree 1, and all others have degree at least 2.5 In particular
there is a vertex v0 (with degree > 1) such that every other vertex has degree at
least 2. We now obtain a contradiction by (carefully!) building a cycle.

Let v1 be a neighbour of v0 (which exists as d(v0) > 1). Having chosen vi, if
vi = v0 then we stop; otherwise d(vi) > 2 so vi has a neighbour vi+1 other than
vi−1. This way we construct a finite or infinite sequence v0, v1, . . . such that (as
in lectures) any three consecutive vertices are distinct. There must exist i < j
such that vi = vj (either because we stop with vi = v0, or because the sequence is
infinite). The rest of the argument is exactly as in lectures: j − i > 3 since any
three consecutive vertices are distinct, and then vi · · · vj−1 forms a cycle.

[An incorrect proof would be as follows: start at v0, which has d(v0) > 1 so we
can choose a neighbour vi. For i > 1, vi has degree > 2, so we can find a neighbour
vi+1 of vi other than vi−1, continue as in lectures. The problem is that we don’t
know that vi 6= v0 in general. We fix this by stopping if we repeat - in this case
we’ve already built a cycle.]

5Or say if all > 2 then done in lectures, so we can assume exactly one has degree 1, the rest
> 2.



Q6.
Let P = v0v1 · · · vt be a longest path in T . It’s crucial (and trivial!) to note

that t > 1: T certainly has at last one edge (a graph with > 2 vertices and no
edges is not connected), so there is at least one path in G of length at least 1. So
the two ends of P are distinct.

Also, v0 has one neighbour v1 (using t > 1). Suppose for a contradiction that
it has another neighbour w. Then either w is not on the path; but then wv0 · · · vt
is a longer path in T , a contradiction. Or w is on the path, so w = vi for some
2 6 i 6 t. But then v0v1 · · · vi defines a cycle in T , a contradiction. So v0 has
exactly one neighbour in T and is a leaf. Similarly for vt.



Q7.
By definition (connectedness) any two vertices of a tree T are joined by at least

one path, so we have to rule out two vertices joined by two or more paths. I’ll give
two proofs: a pedestrian one, and a ‘slick’ one.

Pedestrian: (You really need to draw a picture as you read this!)
Let v and w be vertices of T , and suppose for a contradiction that there are at

least two v–w paths in T . Let P1 = x0x1 · · · xr and P2 = y0y1 · · · ys be two different
v–w paths, with x0 = y0 = v and xr = ys = w.

Since P1 6= P2 there is some i 6 min{r, s} such that xi 6= yi. (Otherwise, one of
the paths would have to extend the other. If, wlog, P2 were longer, we would have
yr = xr = w and ys = w, contradicting y0, y1, . . . , ys being distinct.) Pick the least
such i, so xk = yk for 0 6 k 6 i− 1.

There is some j > i such that yj is a vertex of P1; indeed, this holds for j = s
since ys = w = xr. Pick the least j > i with this property. Since yj is on P1 we
have yj = xk for some k. Since yj /∈ {y1, . . . , yi−1} = {x1, . . . , xi−1}, we have k > i.

Since (by definition of j) the vertices yi, yi+1, . . . , yj−1 are not on P1, the vertices
xi−1 = yi−1, yi, yi+1, . . . , yj = xk, xk−1, . . . , xi are distinct. Also, each vertex in this
list is adjacent to the next, and the last to the first. (The relevant edges are all
edges of P1 or of P2.) Finally, there are k − i + 1 + j − i + 1 vertices in this list.
This number is at least 3, since otherwise k = i and j = i, contradicting xk = yj
and xi 6= yi. Hence xi−1 = yi−1, yi, yi+1, . . . , yj = xk, xk−1, . . . , xi is a cycle in T ,
contradicting our assumption that T is a tree.

Slick(ish; you can say it shorter, but with details it’s not that short):
Suppose that, somewhere in T , there exist two distinct paths P1 and P2 with

the same start and endpoints. Pick such a pair with the sum of the lengths of P1

and P2 minimal. Say P1 = x0x1 · · · xr and P2 = y0y1 · · · ys, with x0 = y0 = v and
xr = ys = w, say. We can’t have v = w (the only v–w path has length 0). So
r, s > 0. We can’t have r = s = 1, otherwise the paths are the same. If the paths
share no vertices other than v and w then, since r + s > 3, x0 · · · xr = ysys−1 · · · y1
forms a cycle, a contradiction. So the paths meet in some other vertex u. But
then u = xi = yj for some 0 < i < r and 0 < j < s. Then P ′

1 = x0 · · · xi

and P ′

2 = y0 · · · yj is a pair of (not necessarily distinct) paths with the same start
and end, shorter than the pair we started with. Similarly, P ′′

1 = xi · · · xr and
P ′′

2 = yj · · · ys is a such a pair. By minimality of the original pair we thus have
P ′

1 = P ′

2 and P ′′

1 = P ′′

2 . But then P1 = P2, a contradiction.



Q8.
Suppose first that there is a tree on [n] with d(i) = di for every i. Then (as

in lectures) T is a tree with |T | > 2, so every vertex has degree at least 1, i.e.,
di > 1 for every i. Also,

∑
di =

∑
i∈V (T ) d(i) = 2e(T ) = 2(n− 1) = 2n− 2 by the

handshaking lemma.
For the reverse direction we use induction on n. The case n = 2 is easy. (The

only sequence is (1, 1).)
Suppose that n > 3 and the result holds for n− 1. We prove it for n. Crucially,

this means that we start with a sequence, not a tree.6 More precisely, let (d1, . . . , dn)
be any sequence satisfying the given conditions. We must build a corresponding
n-vertex tree.

[Informally: our plan is to use induction, which allows us to get a tree from a
sequence of length n− 1. So we try to shorten our sequence appropriately, get an
n− 1 vertex tree, and extend that.]

To do this, first note that there is some i (wlog i = n) such that di = 1.
Otherwise di > 2 for every i and so

∑
di > 2n > 2n − 2. Also, there is some j

(wlog j = 1) such that dj > 2: otherwise dj = 1 for all j and
∑

dj = n < 2n− 2.
Consider the sequence (d′1, . . . , d

′

n−1) = (d1 − 1, d2, . . . , dn−1). This has length
n − 1 > 2. Every entry is at least 1 (since d1 > 2). Also, since we decreased d1
and deleted dn = 1, we have

∑
d′k =

∑
dk − 2 = 2n − 4 = 2(n − 1) − 2. Thus

by induction there is a tree T ′ on [n − 1] in which vertex i has degree d′i. Let
T = T ′ + 1n (i.e., add the vertex n and the edge 1n). This is a tree (by Lemma
2.4) and each vertex i has degree di.

6Of course, the way to come up with this proof is to think about deleting a leaf from an
n-vertex tree; but that is not how the logic of the proof works.



Q9.
A pedestrian proof goes by considering what happens when we add an edge to

a graph: if it does not create a cycle, then there was no path between its ends,
so they were in different components, and these two components become united.
So deleting an edge not in a cycle will split one component into two. Use this
repeatedly for the vertex case.

Or: we know that in a tree e(T ) = |T | − 1. So summing over components, in a
forest with k components, e(F ) = |F | − k. If we delete an edge from a tree T we
certainly get a forest; we’ve deleted no vertices and one edge, so e(F ) = |F |−2 and
there must be exactly two components. If we delete a vertex, the resulting forest
has |F | = |T | − 1 and e(F ) = e(T ) − d(v) = |T | − 1 − d(v), so e(F ) = |F | − d(v)
and there are d(v) components.

[Of course, one can also say that every vertex u 6= v was joined to v by a path,
and split according to the last vertex on the path before v. This will (with some
checking) give the d(v) components in a more intuitive way.]


