- 1. Prove a version of the max-flow min-cut theorem for a network with multiple sources s_1, \ldots, s_k and sinks t_1, \ldots, t_ℓ . (One was outlined in lectures.)
- 2. Deduce Menger's Theorem from the Max-Flow-Min-Cut Theorem. [Hint: use the vertex form. Show that an acyclic flow of value k with $f(xy) \in \{0, 1\}$ for all edges corresponds to k independent paths.]
- 3. (a) Is there a network (\vec{G}, s, t, c) containing edges xy and yx such that there are maximum value flows f_i with $f_1(xy) > 0$ and $f_2(yx) > 0$?
 - (b) Formulate and answer a better version of Q3(a). [Hint overleaf.]
 - (c) (Harder.) Formulate and answer an even better version of Q3(a).
- 4. Show that if G is an r-regular bipartite graph with 2n vertices, where $r \ge 1$, then G contains a matching of size n (i.e., a matching with n edges). Deduce that $\chi'(G) = r$.
- 5. Let G be a bipartite graph with bipartition (V_1, V_2) .

(a) For $0 \leq d \leq |V_1|$, show that G contains a matching of size $|V_1| - d$ if and only if $|\Gamma(S)| \geq |S| - d$ for every $S \subseteq V_1$.

(b) Show that G contains a 1-to-r matching (i.e., a 'pairing' of each $v \in V_1$ with a set $A_v \subseteq \Gamma(v)$ such that $|A_v| = r$ for all $v \in V_1$ and the sets A_v are disjoint) if and only if $|\Gamma(S)| \ge r|S|$ for every $S \subseteq V_1$.

- 6. Show that if e is an edge of a graph G then $\kappa(G) 1 \leq \kappa(G e) \leq \kappa(G)$.
- 7. Let U be a set of k vertices in a k-connected graph G, and x a vertex not in U. Show that G contains k paths from x to vertices in U meeting only at the vertex x (a 'fan' from x to U).
- 8. Prove that if G is k-connected, where $k \ge 2$, then every set of k vertices of G lies on a cycle. Is the converse true?
- 9. Determine $ex(n, K_{1,3})$ for every *n*. Describe the extremal graphs.
- 10. Determine $ex(n, 2K_2)$ for every *n*. What are the extremal graphs? (Here $2K_2$ means a pair of vertex-disjoint edges.)
- 11. Suppose that G is a graph with n > r + 1 vertices and $t_r(n) + 1$ edges.

(a) Prove that for every p with r + 1 there is a subgraph <math>H of G with |H| = p and $e(H) \geq t_r(p) + 1$. [Hint: Try to copy the proof of Turán's Theorem. You may wish to write n = qr + x where $0 \leq x < r$, and consider the cases x = 0, x = 1 and $x \geq 2$.]

(b) Prove that G contains two copies of K_{r+1} with exactly r common vertices.

Optional bonus questions. These may not be covered in classes; MFoCS students should attempt them!

- 12. Let *H* be a graph, and define $c_n(H) := \exp(n, H) / \binom{n}{2}$. Prove that $c_n(H) \leq c_{n-1}(H)$, and show that $\lim_{n\to\infty} c_n(H)$ exists.
- 13. Let $k \ge 2$ and let G be a graph with $|G| = n \ge 2k 1$. Prove that if $e(G) \ge (2k-3)(n-k+1) + 1$ then G contains a subgraph H such that H is k-connected.
- 14. For those who did not do Part A Graph Theory: We say that an n-by-n matrix is doubly stochastic if all its entries are nonnegative and every row and every column sums to 1. A matrix is a *permutation matrix* if it is doubly stochastic and all entries are 0 or 1 (i.e., every row and column contains a single 1, and all other entries are 0).

Prove that every doubly stochastic matrix is a convex combination of permutation matrices.

Small hint for Q3(b): The answer to Q3(a) is 'yes' but for a very silly, simple reason. Rule this out to get a better question.

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk