1. We are given a fair coin and want to generate independent samples from a Bernoulli random variable X with mean $p>0$, i.e. $\mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p$. Find an algorithm that does this, such that the expected number of needed coin flips to generate one sample of X is less or equal than 2 .
2. Let $q \in[0,1], n \in \mathbb{N}$ such that $n q$ is an integer in the range $[0, n]$. Show that

$$
\frac{2^{n H(q)}}{n+1} \leq\binom{ n}{n q} \leq 2^{n H(q)}
$$

where $H(q):=-q \log q-(1-q) \log (1-q)$ is the entropy of a Bernoulli random variable with mean q.
3. Let X_{1} be a random variable taking values in $X_{1}=\{1, \ldots, m\}$ and X_{2} be a random variable taking values in $\mathcal{X}_{2}=\{m+1, \ldots, n\}$, for integers $n>m$. Furthermore, assume X_{1} and X_{2} to be independent. Define a random variable X as

$$
X=X_{\theta}
$$

where θ is a random variable independent of X_{1} and independent of X_{2} satisfying $\mathbb{P}(\theta=1)=\alpha$ and $\mathbb{P}(\theta=2)=1-\alpha$ for some $\alpha \in[0,1]$.
(a) Express $H(X)$ as a function of $H\left(X_{1}\right), H\left(X_{2}\right), H(\theta)$ and α.
(b) Show that $2^{H(X)} \leq 2^{H\left(X_{1}\right)}+2^{H\left(X_{2}\right)}$. Are there any values for α for which equality may hold?
4. The differential entropy of a \mathbb{R}^{n}-valued random variable X with density f is defined as

$$
h(X):=-\int f(\mathbf{x}) \log f(\mathbf{x}) d \mathbf{x}
$$

(with the integration over the support of f). Calculate $h(X)$ when
(a) X is uniformly distributed on $[0,1]$,
(b) X is standard normal distributed,
(c) X is exponential distributed with parameter λ.
5. Let X be a \mathbb{R}^{n}-valued random variable with density f, zero mean and covariance matrix K. Show that

$$
h(X) \leq n \log \sqrt{2 \pi e}+\log \sqrt{|K|}
$$

with equality iff X is multivariate normal.
[Hint: you may use without proof that the information inequality is also valid for densities of continuous multivariate random variables.]
6. (Strong AEP, replaces Proposition $\mathbf{2 . 1 0}$ of the lecture) Let \mathcal{X} be a finite set and consider iid copies $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ of a \mathcal{X}-valued rv X with pmf p. We fix an order the elements of \mathcal{X} so that the sequence of $(p(x))_{x \in \mathcal{X}}$ is non-decreasing and define the subset $\mathcal{S}_{n}^{\varepsilon} \subset \mathcal{X}$ greedily by including the elements one-by-one in the given order until we have $\mathbb{P}\left(X \in \mathcal{S}_{n}^{\varepsilon}\right) \geq 1-\varepsilon$. Show that for any $\varepsilon>0$ we have

$$
(1-2 \varepsilon) 2^{-n(H(X)+\varepsilon)} \leq\left|\mathcal{S}_{n}^{\varepsilon}\right| \leq 2^{-n(H(X)+\varepsilon)},
$$

for sufficiently large n.
[Hint: show that $\mathbb{P}(\mathbf{X} \in A \cap B)>1-\varepsilon_{1}-\varepsilon_{2}$ for any sets with $\mathbb{P}(\boldsymbol{X} \in A)>1-\varepsilon_{1}, \mathbb{P}(\boldsymbol{X} \in B)>1-\varepsilon_{2}$ and use this to estimate $\mathbb{P}\left(\mathbf{X} \in \mathcal{S}_{n}^{\varepsilon} \cap \mathcal{T}_{n}^{\varepsilon}\right)$.]
7. * (Optional, revision/outlook on Markov chains) A Markov chain is a sequence of discrete random variables $\left(X_{n}\right)_{n \geq 1}$ such that for all $x_{1}, \ldots, x_{n+1} \in \mathcal{X}$

$$
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{1}=x\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right) .
$$

The chain is called homogenous if $p_{n}(x, y):=\mathbb{P}\left(X_{n+1}=y \mid X_{n}=x\right)$ does not dependend on n (for every $x, y \in \mathcal{X})$. In this case we call $(p(x, y))_{x, y \in \mathcal{X}}$ the transition matrix of $\left(X_{n}\right)$. A fair die is rolled repeatedly. Which of the following are Markov chains? For those that are, give the transition matrix.
(a) X_{n} is the largest roll up to the nth roll,
(b) X_{n} is the number of sixes in n rolls,
(c) X_{n} is the number of rolls since the most recent six,
(d) X_{n} is the time until the next six.
8. * (Optional, revision/outlook on Markov chains) Let $\left(X_{n}\right)$ be a Markov chain. Which of the following are Markov chains?
(a) $\left(X_{m+n}\right)_{n \geq 1}$ for a fixed $m \geq 0$,
(b) $\left(X_{2 n}\right)_{n \geq 1}$,
(c) $\left(Y_{n}\right)_{n \geq 1}$ with $Y_{n}:=\left(X_{n}, X_{n+1}\right)$.
9. * (Optional, relation to non-linear programming) Recall Lagrange multipliers: given $f: U \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{1}, \ldots, g_{k}: U \rightarrow \mathbb{R}$ we wish to minimize $f(x)$ subject to constraints $g_{i}(x)=0$ for $i=1, \ldots, k$. Assuming sufficient smoothness of f, g_{1}, \ldots, g_{k} one can introduce the Lagrangian $\mathcal{L}\left(x, \lambda_{1}, \ldots, \lambda_{k}\right):=f(x)-\sum_{i=1}^{k} \lambda_{i} g_{i}(x)$ and find a minimizer $x \in U$ by solving $\frac{\partial \mathcal{L}}{\partial \lambda_{i}}=0, i=1, \ldots, k$.
(a) Give an informal argument why this works. One way to think about this ($\operatorname{wlog} k=1$) is to consider $g^{-1}(0), f^{-1}(v)$ for $v \in \mathbb{R}$ as surfaces. Start with v being much bigger than the minimum constrained by $g(x)=0$ and visualize what happens to the surfaces as v decreases and approaches a constrained minimum. What does this tell us about the relation of the gradient ∇f to ∇g ?
(b) Pick up your favourite analysis textbook and look up the formal proof and the assumptions on f, g_{1}, \ldots, g_{k}.
(c) Let $X_{1}, \ldots X_{n}$ be independent, real valued variables with $\mathbb{E}\left[X_{i}\right]=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$. Find c_{1}, \ldots, c_{n} that minimize $\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} X_{i}\right)$ subject to $\mathbb{E}\left[\sum_{i=1}^{n} c_{i} X_{i}\right]=\mu$ for given $\mu \in \mathbb{R}$.

