B8.4 Information Theory MT19

- 1. We are given a fair coin and want to generate independent samples from a Bernoulli random variable *X* with mean p > 0, i.e. $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$. Find an algorithm that does this, such that the expected number of needed coin flips to generate one sample of *X* is less or equal than 2.
- 2. Let $q \in [0,1]$, $n \in \mathbb{N}$ such that nq is an integer in the range [0,n]. Show that

$$\frac{2^{nH(q)}}{n+1} \le \binom{n}{nq} \le 2^{nH(q)}$$

where $H(q) := -q \log q - (1-q) \log (1-q)$ is the entropy of a Bernoulli random variable with mean q.

3. Let X_1 be a random variable taking values in $X_1 = \{1, ..., m\}$ and X_2 be a random variable taking values in $X_2 = \{m + 1, ..., n\}$, for integers n > m. Furthermore, assume X_1 and X_2 to be independent. Define a random variable X as

$$X = X_{\theta}$$

where θ is a random variable independent of X_1 and independent of X_2 satisfying $\mathbb{P}(\theta = 1) = \alpha$ and $\mathbb{P}(\theta = 2) = 1 - \alpha$ for some $\alpha \in [0, 1]$.

- (a) Express H(X) as a function of $H(X_1)$, $H(X_2)$, $H(\theta)$ and α .
- (b) Show that $2^{H(X)} \le 2^{H(X_1)} + 2^{H(X_2)}$. Are there any values for α for which equality may hold?
- 4. The *differential entropy* of a \mathbb{R}^n -valued random variable X with density f is defined as

$$h(X) := -\int f(\mathbf{x})\log f(\mathbf{x})\,d\mathbf{x}$$

(with the integration over the support of f). Calculate h(X) when

- (a) X is uniformly distributed on [0,1],
- (b) X is standard normal distributed,
- (c) *X* is exponential distributed with parameter λ .
- 5. Let *X* be a \mathbb{R}^n -valued random variable with density *f*, zero mean and covariance matrix *K*. Show that

$$h(X) \le n \log \sqrt{2\pi e} + \log \sqrt{|K|}$$

with equality iff *X* is multivariate normal.

[Hint: you may use without proof that the information inequality is also valid for densities of continuous multivariate random variables.]

6. (Strong AEP, replaces Proposition 2.10 of the lecture) Let X be a finite set and consider iid copies $X = (X_1, ..., X_n)$ of a X-valued rv X with pmf p. We fix an order the elements of X so that the sequence of $(p(x))_{x \in X}$ is non-decreasing and define the subset $S_n^{\varepsilon} \subset X$ greedily by including the elements one-by-one in the given order until we have $\mathbb{P}(X \in S_n^{\varepsilon}) \ge 1 - \varepsilon$. Show that for any $\varepsilon > 0$ we have

$$(1-2\varepsilon)2^{-n(H(X)+\varepsilon)} \le \left|S_n^{\varepsilon}\right| \le 2^{-n(H(X)+\varepsilon)},$$

for sufficiently large *n*.

[Hint: show that $\mathbb{P}(\mathbf{X} \in A \cap B) > 1 - \varepsilon_1 - \varepsilon_2$ for any sets with $\mathbb{P}(\mathbf{X} \in A) > 1 - \varepsilon_1$, $\mathbb{P}(\mathbf{X} \in B) > 1 - \varepsilon_2$ and use this to estimate $\mathbb{P}(\mathbf{X} \in S_n^{\varepsilon} \cap \mathcal{T}_n^{\varepsilon})$.]

7. * (**Optional, revision/outlook on Markov chains**) A Markov chain is a sequence of discrete random variables $(X_n)_{n>1}$ such that for all $x_1, \ldots, x_{n+1} \in X$

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, \dots, X_1 = x) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n).$$

The chain is called homogenous if $p_n(x,y) := \mathbb{P}(X_{n+1} = y | X_n = x)$ does not dependend on *n* (for every $x, y \in X$). In this case we call $(p(x,y))_{x,y \in X}$ the transition matrix of (X_n) . A fair die is rolled repeatedly. Which of the following are Markov chains? For those that are, give the transition matrix.

- (a) X_n is the largest roll up to the *n*th roll,
- (b) X_n is the number of sixes in *n* rolls,
- (c) X_n is the number of rolls since the most recent six,
- (d) X_n is the time until the next six.
- 8. * (**Optional, revision/outlook on Markov chains**) Let (X_n) be a Markov chain. Which of the following are Markov chains?
 - (a) $(X_{m+n})_{n\geq 1}$ for a fixed $m\geq 0$,
 - (b) $(X_{2n})_{n>1}$,
 - (c) $(Y_n)_{n>1}$ with $Y_n := (X_n, X_{n+1})$.
- 9. * (Optional, relation to non-linear programming) Recall Lagrange multipliers: given $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and $g_1, \ldots, g_k: U \to \mathbb{R}$ we wish to minimize f(x) subject to constraints $g_i(x) = 0$ for $i = 1, \ldots, k$. Assuming sufficient smoothness of f, g_1, \ldots, g_k one can introduce the Lagrangian $\mathcal{L}(x, \lambda_1, \ldots, \lambda_k) := f(x) \sum_{i=1}^k \lambda_i g_i(x)$ and find a minimizer $x \in U$ by solving $\frac{\partial \mathcal{L}}{\partial \lambda_i} = 0, i = 1, \ldots, k$.
 - (a) Give an informal argument why this works. One way to think about this (wlog k = 1) is to consider $g^{-1}(0)$, $f^{-1}(v)$ for $v \in \mathbb{R}$ as surfaces. Start with v being much bigger than the minimum constrained by g(x) = 0 and visualize what happens to the surfaces as v decreases and approaches a constrained minimum. What does this tell us about the relation of the gradient ∇f to ∇g ?
 - (b) Pick up your favourite analysis textbook and look up the formal proof and the assumptions on f,g_1,\ldots,g_k .
 - (c) Let X_1, \ldots, X_n be independent, real valued variables with $\mathbb{E}[X_i] = \mu$, $Var(X_i) = \sigma_i^2$. Find c_1, \ldots, c_n that minimize $Var(\sum_{i=1}^n c_i X_i)$ subject to $\mathbb{E}\left[\sum_{i=1}^n c_i X_i\right] = \mu$ for given $\mu \in \mathbb{R}$.