1. For a r.v. X with state space $\mathcal{X}=\left\{x_{1}, \ldots, x_{7}\right\}$ and distribution $p_{i}=\mathbb{P}\left(X=x_{i}\right)$ given by

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}
0.49	0.26	0.12	0.04	0.04	0.03	0.02

(a) Find a binary Huffman code for X and its expected length.
(b) Find a ternary Huffman code for X and its expected length.
2. Prove that
(a) the Shannon code is a prefix code and calculate bounds on its expected length. Give an example to demonstrate that it is not an optimal code.
(b) the Elias code is a prefix code and calculate bounds on its expected length. Is it an optimal code?
3. Prove a weaker version of the Kraft-McMillan theorem (called Kraft's theorem) using rooted trees:
(a) Let $c: \mathcal{X} \rightarrow\{0, \ldots, d-1\}^{\star}$ be a prefix code. Consider its code-tree and argue that $\sum d^{-|c(x)|} \leq 1$. [Note that the assumption prefix code is crucial here or the code-tree cannot be defined to begin with. In the Kraft-McMillan theorem from the lecture we only require c to be uniquely decodable].
(b) Assume $\sum_{x \in X} d^{-\ell_{x}} \leq 1$ with $\ell_{x} \in \mathbb{N}$. Show there exists a prefix code with codeword lengths $\left(\ell_{x}\right)_{\in \mathcal{X}}$ by constructing a rooted tree.
4. Give yet another proof for $\sum_{x} d^{-|c(x)|} \leq 1$ if c is a prefix code by using the "probabilistic method": randomly generate elements of $\{0, \ldots, d-1\}^{\star}$ by sampling i.i.d. from $\{0, \ldots, d-1\}$ and consider the probability of writing a codeword of c.
5. Let X be uniformly distributed over a finite set $\mathcal{X},|X|=2^{n}$ for some $n \in \mathbb{N}$. Given a sequence A_{1}, A_{2}, \ldots of subsets of \mathcal{X} we ask a sequence of questions of the form $X \in A_{1}, X \in A_{2}$, etc.
(a) We can choose the sequence of subsets. How many such questions do we need to determine the value of X ? What is the most efficient way to do so?
(b) We now randomly (i.i.d. and uniform) draw a sequence of sets A_{1}, A_{2}, \ldots from the set of all subset of \mathcal{X}. Fix $x, y \in \mathcal{X}$. Conditional on $\{X=x\}$:
i. What is the probablity that x and y are indistinguishable after the first k random questions?
ii. What is the expected number of elements in $\mathcal{X} \backslash\{x\}$ that are indistinguishable from x after the first k questions?
6. Let $|X|=100$ and p the uniform distribution on \mathcal{X}. How many codewords are there of length $l=1,2, \ldots$ in an optimal binary code? here are 28 codewords of length 6 and 72 of length 7 . To see it, you can do the Huffman procedure by hand, or notice the following: since the distribution is uniform, the leaves of the Huffman tree can only occupy at most 2 levels. Since $2^{6}=64<100<128=2^{7}$, these two levels must be 6 and 7 . Call x the number of leaves at the level 6 , then the other level 6 nodes (of which there are $64-x$) have two branches and so the total number of leaves is $100=x+2(64-x$), giving $x=28$.
7. * (Optional) Let X be a Bernoulli r.v. with $\mathbb{P}(X=0)=0.995, \mathbb{P}(X=1)=0.005$ and consider a sequence X_{1}, \ldots, X_{100} consisting of i.i.d. copies of X. We study a block code of the form $c:\{0,1\}^{100} \rightarrow\{0,1\}^{m}$ for a fixed $m \in \mathbb{N}$.
(a) What is the minimal m such that there exists c such that its restriction to sequences $\{0,1\}^{100}$ that contain three or fewer 1's is injective?
(b) What is the probablity of observing a sequence that contains four or more 1's? Compare the bound given by the Chebyshev inequality with the actual probabilty of this event.
8. *(Optional) Let X be a $X=\{1,2,3,4\}$-valued r.v. with pmf $p(1)=0.5, p(2)=0.25, p(3)=0.125$, $p(4)=0.125$ and a code $c(1)=0, c(2)=10, c(3)=110, c(4)=111$. For $n \in \mathbb{N}$, we generate a sequence in \mathcal{X}^{n} by sampling i.i.d. from p. We then pick one bit uniformly at random from the binary encoded sequence. What is the asymptotic (as $n \rightarrow \infty$) probability that this bit equals 1 ?

