
B8.4 Information Theory MT19 Sheet 4

1. Set Y = (X + Z) mod 11, Z is independent of X and has pmf pZ (i) = 3−1 for i ∈ {1,2,3}. Consider
a DMC with X =Y = {0,1, . . .,10} and M = (P (Y = y |X = x))x∈X,y∈Y . Find the capacity of this
channel and the distribution of X that achieves capacity.

2. Consider a DMC |X| = |Y| = 3 with stochastic matrix
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(a) Calculate the capacity of this channel,
(b) Give an intuitive argument why the capacity is achieved with a distribution that places zero

probablity on an input symbol.

3. (Two independent looks at Y) Let X and Y be finite sets, X be any r.v. on X, and Y1 and Y2 be r.v.
on Y which are, conditionally on X , i.i.d.

(a) Show that I(X;Y1,Y2) = 2I(X;Y1)− I(Y1;Y2).

(b) Consider two DMCs of which (X,Y1) and
(
X, (Y1,Y2)

)
are realisations. Prove that the capacity

of the second DMC is at most twice that of the first.

4. (Time varying channel) Let X =Y = {0,1} and for each time i ∈ {1, . . .,n} we can use a DMC

X\Y 0 1
0 1− qi qi
1 qi 1− qi

to transmit a symbol. This is an example of a time-varying discrete memoryless channel. Let
X = (X1, . . .,Xn), Y = (Y1, . . .,Yn) with conditional pmf p (y|x) =

∏n
i=1 pi (yi |xi) where pi is the

conditional distribution of above symmetric binary noisy channel (pi (0|0) = pi (1|1) = 1− qi).
Calculate maxpX I(X;Y) (subject to the usual constraint that Y|X ∼ p (y|x)).

5. (Hamming code) Consider the binary symmetric channel, i.e. X =Y = {0,1} and

X\Y 0 1
0 1− q q
1 q 1− q

Let i ∈ {1, . . .,16} define an encoder c (i) = (s1, s2, s3, s4, p1, p2, p3) ∈ Y
7 by letting s1s2s3s4 be the

binary expansion of i−1 and p1, p2, p3 be parity bits defined by p1 := s1 ⊕ s2 ⊕ s3, p2 := s2 ⊕ s3 ⊕ s4,
p3 := s1 ⊕ s3 ⊕ s4 where ⊕ : {0,1} → {0,1} denotes sum modulo 2. Examples: c (2) = 0001011 since
s1s2s3s3 = 0001, c (5) = 0100110 since s1s2s3s4 = 0100).

(a) Visualize this by drawing three intersecting circles. Put the first four bits into the regions
intersecting at least two of these circles, and the parity bits in the remaining regions. Arrange
the positions such that the sum of the four bits within each circle is even. Use this to find a
good decoder d :Y7→ {1, . . .,16}, which will flip the minimal amount of bits to restore even
parity within each circle.
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(b) Decode the outputs 1100101, 1000001.
(c) Calculate the error probabilities of this channel code.
(d) Calculate the rate of this channel code.

6. (Information theory and gambling) m horses run a race, the ith horse wins with probability pi .
An investment of one pound returns o (i) pounds if horse i wins, otherwise the investment is lost. A
gambler distributes all of his wealth across the horses: b(i) ≥ 0 denotes the fraction of the gambler’s
wealth that he bets on horse i and

∑m
i=1 b(i) = 1. We now consider repeating this game over and over.

If Sn denotes the gambler’s wealth after the nth race, then

Sn =
n∏
i=1

b(Xi)o (Xi)

where Xi is the horse that wins the i-th race and s0 ∈ R is the start capital.

(a) If Xi are iid, show that for given b = (b(1), . . .,b(m)), p = (p1, . . ., pm) the wealth evolves
exponentially, i.e. limn→∞

1
n log Sn

2nW (b,p) = 0 almost surely, where W (b,p) is to be determined.
[Hint: Strong law of large numbers]

(b) Define W? (p) := maxb:
∑
b(i)=1,b(i)≥0 W (b,p) and find b that achieves this maximum. [Hint:

You can find a candidate by using Lagrange multipliers.]
(c) (Informal.) We can regard qi := 1

o(i) as the “probabilities” the bookmaker implicitly assigns to
outcomes. Considering the cases

∑
qi = 1,

∑
qi < 1 and

∑
qi > 1 discuss the fairness of the

game.

7. * (Optional. Information theory and finance) A stock market is represented as X = (X1, . . .,Xm)

where each random variable Xi is non-negative and represents the ratio of prices for stock at i at
the end of the day to the beginning of the day (e.g. {Xi = 1.03} is the event that stock i went up 3
percent). A portfolio b = (b(1), . . .,b(m)) consists of numbers b(i) ≥ 0,

∑m
i=1 b(i) = 1, where b(i)

denotes the fraction the investor’s wealth that is invested in stock i. Hence, using a portfolio b on the
stock market X, leads to a relative wealth change of S = bTX =

∑m
i=1 biXi . The wealth change after

n trading days using the same portfolio b is therefore Sn =
∏n

i=1 bTXi .

(a) If X1, . . .,Xn are iid with cdf F, show that for given b, limn→∞
1
n log Sn

2nW (b,F ) = 0, where
W (b,F) is to be determined.

(b) Show that W (b,F) is concave in b: for t ∈ [0,1] and two portfolios b1 and b2,

W (tb1+ (1− t)b2,F) ≥ tW (b1,F)+ (1− t)W (b2,F) .

Show that it is "linear" in F, in the sense that for t ∈ [0,1] and two cdf F1 and F2,

W (b, tF1+ (1− t)F2) = tW (b,F1)+ (1− t)W (b,F2) .

Finally, show that W? (F) =maxb W (b,F) is convex in F:

W? (tF1+ (1− t)F2) ≤ tW? (F1)+ (1− t)W? (F2) .

(b that achieves this maximum is called a growth optimal portfolio).
(c) Show that the set of growth optimal portfolios (with respect to F) is a convex set.
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8. * (Optional. Hamming code and finite fields) Let F2 = {0,1} and define the usual modulo 2
arithmetic on F2 (0+0 = 1+1 = 0, 0+1 = 1+0 = 1, 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 0). We recall that
this makes (F2,+, ·) into a field, and that Fn2 = {0,1}

n is the canonical n-dimensional vector space
over this field.

(a) A linear code is a channel code with a codebook that is a linear subspace Fn2 . Consider the
Hamming code from Example 5 and the generator matrix

G =

©«

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1

ª®®®®®®®®®¬
.

Use G to show that the Hamming code is a linear code [Hint: multiply with 0000, 0001,
0010,...].

(b) Define P as
(

I4
P

)
:=G and set H = (P, I3) (In is the n×n identity matrix over F2). Show that

all codewords are in the kernel of H (reminder: the kernel is the set of all column vectors x
such that Hx is the zero vector). We call H the parity matrix.
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