2. Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{n}, \mathbb{P}\right)$ be a completef filtered probability space, where $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ is a filtration, i.e. an increasing sequence of sub σ-algebras of \mathcal{F}.
(a) [5 marks]
(i) What does it mean that $X=\left(X_{n}\right)_{n \geqslant 0}$ is a martingale? What does it mean that $X=\left(X_{n}\right)_{n \geqslant 0}$ is a sub-martingale?
(ii) State Doob's martingale convergence theorem.
(iii) If $X=\left(X_{n}\right)_{n \geqslant 0}$ is a martingale, show that $X^{+}=\left(X_{n}^{+}\right)_{n \geqslant 1}$ is a sub-martingale, where $X_{n}^{+}=\max \left\{X_{n}, 0\right\}$ for every $n \geqslant 0$.
(b) [15 marks] Let $X=\left(X_{n}\right)_{n \geqslant 0}$ be a martingale with $X_{0}=0$. Define $\xi_{n}=X_{n}-X_{n-1}$ (for $n=1,2, \cdots)$, and

$$
A=\left\{\sup _{n} X_{n}<\infty \text { and } \inf _{n} X_{n}>-\infty\right\} .
$$

Suppose that there is a positive constant L such that $\left|\xi_{n}\right| \leqslant L$ for every $n \geqslant 1$.
(i) For a positive number a, let $T_{a}=\inf \left\{n \geqslant 0: X_{n}>a\right\}$. Show that T_{a} is a stopping time, and show that the stopped random sequence $\left(X_{T_{a} \wedge n}\right)_{n \geqslant 0}$ is a martingale, and $\mathbb{E}\left[X_{T_{a} \wedge n}\right]=0$ for all $n \geqslant 0$. Deduce that

$$
\mathbb{E}\left[\left|X_{T_{a} \wedge n}\right|\right]=2 \mathbb{E}\left[X_{T_{a} \wedge n}^{+}\right]
$$

for every $a>0$ and every $n \geqslant 0$. Here, for a stopping time T and a real random sequence $\left(Y_{n}\right)_{n \geqslant 0}$ you might find it useful to recall that

$$
Y_{T \wedge n}^{+}=\sum_{k=0}^{n} Y_{k}^{+} 1_{\{T=k\}}+Y_{n}^{+} 1_{\{T>n\}}
$$

for every $n \geqslant 0$. Here, we recall that $Y_{T \wedge n}=Y_{T}$ on $T \leqslant n$ and $Y_{T \wedge n}=Y_{n}$ on $T>n$ by definition, and similar notation applies to Y^{+}.
(ii) Show that

$$
X_{T_{a} \wedge n}^{+} \leqslant X_{T_{a} \wedge(n-1)}^{+}+\xi_{T_{a} \wedge n}^{+}
$$

for every $n \geqslant 1$. Hence, or otherwise show that

$$
X_{T_{a} \wedge n}^{+} \leqslant a+L
$$

for every $a>0$ and for every $n \geqslant 1$.
(iii) Show that, for every $a>0,\left(X_{T_{a} \wedge n}^{+}\right)_{n \geqslant 0}$ converges almost everywhere. Hence or otherwise, show that $\left(X_{n}^{+}\right)_{n \geqslant 0}$ converges almost everywhere on $\left\{\sup _{n} X_{n} \leqslant a\right\}$ for every $a>0$. Deduce that $\left(X_{n}^{+}\right)_{n \geqslant 0}$ converges almost everywhere on $\left\{\sup _{n} X_{n}<\infty\right\}$, and hence show that $\left(X_{n}\right)_{n \geqslant 0}$ converges almost everywhere on A.
(c) [5 marks] Let $\left(Z_{n}\right)_{n \geqslant 1}$ be an adapted random sequence, i.e. Z_{n} is \mathcal{F}_{n}-measurable for every $n \geqslant 1$. Suppose $0 \leqslant Z_{n} \leqslant 1$ for every $n \geqslant 1$. Define $Y_{0}=0$ and

$$
Y_{n}=Y_{n-1}+Z_{n}-\mathbb{E}\left[Z_{n} \mid \mathcal{F}_{n-1}\right]
$$

for $n \geqslant 1$. Show that $\left(Y_{n}\right)_{n \geqslant 0}$ is a martingale with $\mathbb{E}\left[Y_{n}\right]=0$, and show that Y_{n} converges almost everywhere on

$$
\left\{\sup _{n} Y_{n}<\infty \text { and } \inf _{n} Y_{n}>-\infty\right\}
$$

2. Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{n}, \mathbb{P}\right)$ be a filtered probability space.
(a) [5 marks] Let \mathcal{G} be a sub σ-algebra of \mathcal{F}, and X be integrable. What does it mean to say that $\mathbb{E}[X \mid \mathcal{G}]$ is the conditional expectation of X given \mathcal{G} ? Show that the conditional expectation of X given \mathcal{G} is unique up to almost surely. Give a definition of $\mathbb{E}[X \mid Z]$ where Z is also a random variable.
(b) [4 marks] Suppose X and Y are two independent, square integrable random variables with the same distribution.
What are $\mathbb{E}[X \mid X+Y]$ and $\mathbb{E}\left[X^{2}+X Y \mid X+Y\right]$?
(c) [6 marks] What does it mean that a random sequence $\left(H_{n}\right)_{n \geqslant 0}$ is predictable? Give a definition of a stopping time.
Suppose now $M=\left(M_{n}\right)_{n \geqslant 0}$ is a martingale and $H=\left(H_{n}\right)_{n \geqslant 0}$ is predictable and bounded. Define $H . M$ to be the sequence given inductively by the equations that $(H . M)_{0}=0$ and

$$
(H . M)_{n}=(H . M)_{n-1}+H_{n}\left(M_{n}-M_{n-1}\right)
$$

for $n \geqslant 1$. Show that H.M is a martingale.
Let T be a stopping time, and $H_{n}=1_{\{T \geqslant n\}}$ for $n=0,1,2, \cdots$. Show that $\left(H_{n}\right)_{n \geqslant 0}$ is predictable and $(H . M)_{n}=M_{T \wedge n}-M_{0}$ for every n. Hence, or otherwise, show that $\left(M_{T \wedge n}\right)_{n \geqslant 0}$ is a martingale.
(d) [3 marks] Suppose that $\left(M_{n}\right)_{n \geqslant 0}$ is a non-negative martingale, and T is a finite stopping time. Show that $\mathbb{E}\left[M_{T}\right] \leqslant \mathbb{E}\left[M_{0}\right]$. Give a sufficient condition on T, such that $\mathbb{E}\left[M_{T}\right]=$ $\mathbb{E}\left[M_{0}\right]$.
(e) [7 marks] State Boob's martingale convergence theorem.

Let $\left(\xi_{n}\right)_{n \geqslant 1}$ be a sequence of independent identically distributed random variables with

$$
\mathbb{P}\left[\xi_{1}=\frac{1}{2}\right]=\mathbb{P}\left[\xi_{1}=\frac{3}{2}\right]=\frac{1}{2} .
$$

Let $X_{n}=\xi_{1} \cdots \xi_{n}$ and $X_{0}=1$. Show that $\left(X_{n}\right)_{n \geqslant 0}$ is a martingale, and X_{n} converges to X_{∞} as $n \rightarrow \infty$ with probability one. By using the Strong Law of Large Numbers for some sequence, or otherwise, further show that $X_{\infty}=0$. Hence conclude that $\mathbb{E}\left(X_{\infty}\right) \neq \mathbb{E}\left(X_{n}\right)$ for every n.

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, so that (Ω, \mathcal{F}) is a measurable space, and \mathbb{P} is a probability measure on \mathcal{F}.
(a) [6 marks] Let $\mathcal{G}_{n} \subseteq \mathcal{F}$ (where n runs through an index set Λ) be a family of sub σ-algebras of \mathcal{F}. What does it mean that $\left\{\mathcal{G}_{n}: n \in \Lambda\right\}$ are independent?
Suppose X is a real random variable on (Ω, \mathcal{F}). Define the σ-algebra $\sigma\{X\}$ generated by X.
Suppose $\left\{X_{n}: n \in \Lambda\right\}$ is a family of real random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. What does it mean that $\left\{X_{n}: n \in \Lambda\right\}$ are independent?
(b) [3 marks] What does it mean that a collection \mathcal{C} of some subsets of Ω is a π-system?

State the uniqueness lemma for two finite measures on (Ω, \mathcal{F}).
(c) [8 marks] Suppose X, Y and Z are three independent real random variables. Prove that $\sin (X+Y)$ and Z are independent.
[Hint: You may first prove that $\sigma\{X, Y\}$ and $\sigma\{Z\}$ are independent, using the uniqueness lemma for finite measures or otherwise.]
(d) [8 marks] (i) Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ-algebra, and X be an integrable random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. What does it mean that $\mathbb{E}[X \mid \mathcal{G}]$ is the conditional expectation of X given \mathcal{G} ? If X and Y are two integrable random variables, what is the definition of $\mathbb{E}[X \mid Y]$ the conditional expectation of X given Y ?
(ii) Suppose X and Y are independent, and

$$
\mathbb{P}[X=0]=\frac{1}{3} \text { and } \mathbb{P}\left[X=\frac{\pi}{2}\right]=\frac{2}{3}
$$

Find $\mathbb{E}[\sin (X Y) \mid Y]$ and justify your answer.
2. (a) [13 marks] Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{n}, \mathbb{P}\right)$ be a filtered probability space.
(i) Let $M=\left(M_{n}\right)_{n \geqslant 0}$ be a sequence of random variables. What does it mean that $\left(M_{n}\right)$ is a super-martingale?
(ii) Suppose $\left(X_{n}\right)$ and (Y_{n}) are two super-martingales. Prove that $\left(X_{n} \wedge Y_{n}\right)$ is a supermartingale, where $x \wedge y=\min \{x, y\}$.
(iii) What does it mean that T is an $\left(\mathcal{F}_{n}\right)$-stopping time? What does it mean that a sequence of random variables $H=\left(H_{n}\right)$ is predictable with respect to $\left(\mathcal{F}_{n}\right)$?
(iv) Suppose $\left(M_{n}\right)$ is a sub-martingale and $\left(H_{n}\right)$ is predictable, such that H_{n} is nonnegative, and $H_{n} M_{n}$ and $H_{n} M_{n-1}$ are integrable for $n=1,2, \ldots$ Define $X_{0}=0$ and

$$
X_{n}=\sum_{k=1}^{n} H_{k}\left(M_{k}-M_{k-1}\right)
$$

for $n=1,2, \ldots$. Show that $\left(X_{n}\right)$ is also a sub-martingale.
(b) [12 marks] Let $\left\{\eta_{n}: n=1,2, \ldots\right\}$ be a sequence of independent random variables on probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with distributions given by

$$
\mathbb{P}\left[\eta_{n}=1\right]=\mathbb{P}\left[\eta_{n}=-1\right]=\frac{1}{(n+1)^{p}}, \text { and } \mathbb{P}\left[\eta_{n}=0\right]=1-\frac{2}{(n+1)^{p}},
$$

where $p>1$ is a constant. Let $S_{0}=0$ and $S_{n}=\sum_{k=1}^{n} \eta_{k}$ for $n \geqslant 1$.
(i) Give a definition of the tail σ-algebra \mathcal{G}_{∞} for $\left\{\eta_{n}: n=1,2, \ldots\right\}$, and state Kolmogorov's 0-1 law. Show that

$$
\mathbb{P}\left[\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n}}>1\right]=0 \text { or } 1 .
$$

(ii) State the Borel-Cantelli lemma for a sequence of independent events. Let $A_{n}=$ $\left\{\left|\eta_{n}\right|>0\right\}$ for $n=1,2, \ldots$. Show that $\mathbb{P}\left[A_{n}\right.$ i. o. $]=0$, and hence or otherwise prove that $\eta_{n} \rightarrow 0$ with probability one, where $\left\{A_{n}\right.$ i. o. $\}$ denotes the event that infinitely many A_{n} occur.

2016

2. (a) [15 marks] Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of independent real random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
(i) Define the tail σ-algebra \mathcal{G}_{∞} with respect to $\left(X_{n}\right)_{n \geqslant 1}$, and state Kolmogorov's zeroone law for the events in \mathcal{G}_{∞}.
(ii) Show that both $\lim \sup _{n \rightarrow \infty} X_{n}$ and $\liminf _{n \rightarrow \infty} X_{n}$ are \mathcal{G}_{∞}-measurable, and deduce that $\left\{\omega \in \Omega: \lim \sup _{n \rightarrow \infty} X_{n}(\omega) \in G\right\}$ is \mathcal{G}_{∞}-measurable for every Bore measurable subset $G \subseteq \mathbb{R}$. Hence show that $\lim \sup _{n \rightarrow \infty} X_{n}$ equals a constant almost surely.
(iii) Show that $\mathbb{P}\left[\lim _{n \rightarrow \infty} X_{n}=0\right]=1$ if and only if

$$
\sum_{n=1}^{\infty} \mathbb{P}\left[\left|X_{n}\right|>\varepsilon\right]<\infty
$$

for every $\varepsilon>0$.
[The Borel-Cantelli Lemma may be used as long as you state it clearly.]
(b) [10 marks] Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ-algebra, and let X be an integrable variable on $(\Omega, \mathcal{F}, \mathbb{P})$.
(i) What does it mean that $\mathbb{E}[X \mid \mathcal{G}]$ is the conditional expectation of X given \mathcal{G} ?
(ii) If Z is another random variable, what does it mean that $\mathbb{E}[X \mid Z]$ is the conditional expectation of X given Z ? Suppose X, Y and Z are three independent, integrable random variables with the same distribution. What is $\mathbb{E}[X \mid X+Y+Z]$?
(iii) Suppose X and Y are square integrable random variables, such that $\mathbb{E}[X \mid Y]=Y$ and $\mathbb{E}[Y \mid X]=X$. Show that $X=Y$ almost surely.

1. (a) [7 marks] Define the terms σ-algebra, π-system, measure and probability space. What is the σ-algebra generated by a collection \mathcal{A} of subsets of a given set Ω ?
State Carathéodory's Extension Theorem giving conditions under which a set function μ_{0} on $\mathcal{A} \subseteq \mathcal{F}$ extends to a measure on (Ω, \mathcal{F}), and a corresponding result giving conditions under which such an extension is necessarily unique.
(b) [6 marks] Let $\left(\Omega_{i}, \mathcal{F}_{i}, \mathbb{P}_{i}\right), i=1,2$, be two probability spaces. Define the product σ-algebra $\mathcal{F}_{1} \times \mathcal{F}_{2}$. Let $\mathcal{R}=\left\{A_{1} \times A_{2}: A_{i} \in \mathcal{F}_{i}\right\}$ and let \mathcal{A} be the set of finite disjoint unions of elements of \mathcal{R}, which you may assume is an algebra. Define a set function μ on \mathcal{A} by $\mu\left(A_{1} \times A_{2}\right)=\mathbb{P}_{1}\left[A_{1}\right] \mathbb{P}_{2}\left[A_{2}\right]$ for $A_{i} \in \mathcal{F}_{i}$ and $\mu\left(R_{1} \cup \cdots \cup R_{n}\right)=\sum_{i=1}^{n} \mu\left(R_{i}\right)$ for disjoint $R_{1}, \ldots, R_{n} \in \mathcal{R}$.
Show that μ (which you may assume is well defined) is countably additive on \mathcal{A}, and deduce that there is a unique probability measure \mathbb{P} on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}\right)$ such that $\mathbb{P}\left[A_{1} \times A_{2}\right]=\mathbb{P}_{1}\left[A_{1}\right] \mathbb{P}_{2}\left[A_{2}\right]$ for all $A_{1} \in \mathcal{F}_{1}$ and $A_{2} \in \mathcal{F}_{2}$.
(c) [12 marks] Define the Borel σ-algebra \mathcal{B} on $[0,1$), and show that it is generated by $\mathcal{A}=$ $\{[0, a): 0 \leqslant a \leqslant 1\}$.
[You may assume that if $U \subseteq[0,1)$ is open as a subset of $[0,1)$, then for each $x \in U$ there is a rational q and an $\epsilon>0$ such that $x \in B_{\epsilon}(q) \subseteq U$, where $B_{\epsilon}(q)=\{y \in[0,1):|y-q|<\epsilon\}$.] For the rest of the question, you may assume that there is a probability measure μ on $([0,1), \mathcal{B})$ such that $\mu([0, a))=a$ for each $0 \leqslant a \leqslant 1$.
Given $A \subseteq[0,1)$ and $0<t<1$, let $t A=\{t x: x \in A\}$. Show that for a fixed t, $\mathcal{C}=\{A \subseteq[0,1): t A \in \mathcal{B}\}$ is a σ-algebra. Deduce that if $A \in \mathcal{B}$ then $t A \in \mathcal{B}$, and show that $\mu(t A)=t \mu(A)$.
Let $A \in \mathcal{B}$. Define the cone C by $C=\left\{(x, y) \in[0,1)^{2}: x \in y A\right\}$. Show that $C \in \mathcal{B} \times \mathcal{B}$ and that $(\mu \times \mu)(C)=\mu(A) / 2$.
[Throughout this question standard properties of measure and integration may be assumed if stated correctly. In part (c) you may assume Fubini's Theorem.]
2. (a) [7 marks] Define the terms filtration, martingale and stopping time. Show carefully that if (M_{n}) is a martingale with respect to $\left(\mathcal{F}_{n}\right)$ and τ is a stopping time, then $\left(M_{n \wedge \tau}\right)$ is also a martingale.
(b) [13 marks] Let $\left(X_{1}, X_{2}, \ldots\right)$ be i.i.d. with $\mathbb{P}\left[X_{n}=0\right]=\mathbb{P}\left[X_{n}=1\right]=1 / 2$. Let a be the sequence $(1,0,0,1)$ and let $\mathbf{b}=(0,1,0,1)$. Let $\tau_{a}=\inf \left\{n:\left(X_{n-3}, \ldots, X_{n}\right)=\mathbf{a}\right\}$, $\tau_{b}=\inf \left\{n:\left(X_{n-3}, \ldots, X_{n}\right)=\mathbf{b}\right\}$, and $\tau=\tau_{a} \wedge \tau_{b}$. Show carefully that τ_{a}, τ_{b} and τ are stopping times.
By showing that $\mathbb{P}[\tau>4 n] \leqslant(15 / 16)^{n}$ or otherwise, show that $\mathbb{E}[\tau]<\infty$.
Let A be the event $\left\{\tau=\tau_{a}\right\}$. By considering suitable martingales, find two linear relationships between $\mathbb{E}[\tau]$ and $\mathbb{P}[A]$, and hence find $\mathbb{E}[\tau]$ and $\mathbb{P}[A]$.
[Descriptive definitions of the martingales will receive only partial credit; to obtain full marks, they must be defined precisely in terms of the variables X_{n} rather than in words. You may use any standard form of the Optional Stopping Theorem provided you state it correctly.]
(c) [5 marks] Can the method of part (b) be applied with a and b replaced by any two distinct sequences of the same length r ? For $r=4$, what is the maximum possible value of $\mathbb{P}[A]$? Justify your answers briefly.
3. (a) [12 marks] Carefully define what it means for $\left(M_{-n}\right)_{n \geqslant 1}$ to be a backwards martingale with respect to a sequence $\left(\mathcal{F}_{-n}\right)_{n \geqslant 1}$ of σ-algebras, including the relevant condition on $\left(\mathcal{F}_{-n}\right)$.
What does it mean to say that a sequence $\left(X_{n}\right)_{n \geqslant 1}$ of random variables is uniformly integrable?
Is a backwards martingale necessarily uniformly integrable? What about a martingale? In each case give a proof or a counterexample.
[You may assume that if X is integrable, then for any $\epsilon>0$ there exists $\delta>0$ such that $\mathbb{P}[A]<\delta$ implies $\mathbb{E}\left[|X| \mathbf{1}_{A}\right]<\epsilon$. $]$
(b) [3 marks] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ-algebra generated by a π-system \mathcal{I} with $\Omega \in \mathcal{I}$. Show that if X and Y are integrable random variables such that $\int_{A} X \mathrm{dP}=\int_{A} Y \mathrm{~d} \mathbb{P}$ for all $A \in \mathcal{I}$ and Y is \mathcal{G}-measurable, then $\mathbb{E}[X \mid \mathcal{G}]=Y$ a.s.
[Standard properties of conditional expectation, and uniqueness results for measures, may be used without proof.]
(c) [10 marks] Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of $\{0,1\}$-valued random variables with the following property: given $r \geqslant 0$ and $s \geqslant 0$, for distinct $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}$ the probability that $X_{i_{1}}=$ $\cdots=X_{i_{r}}=1$ and $X_{j_{1}}=\cdots=X_{j_{s}}=0$ is independent of the choice of $i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}$, and depends only on r and s.
Let $S_{n}=X_{1}+\cdots+X_{n}$. Show, carefully justifying any symmetry argument, that $M_{-n}=$ S_{n} / n defines a backwards martingale with respect to $\mathcal{F}_{-n}=\sigma\left(S_{n}, X_{n+1}, X_{n+2}, \ldots\right)$.
[With n fixed, it may help to consider the family \mathcal{I} of all events of the form $\left\{S_{n}=\right.$ $\left.k, X_{n+1}=v_{1}, \ldots, X_{n+i}=v_{i}\right\}$, where $i \geqslant 0,0 \leqslant k \leqslant n$, and each $v_{j} \in\{0,1\}$.]
Stating, without proof, any standard results concerning backwards martingales, deduce that S_{n} / n converges almost surely to a (random) limit P. What is $\mathbb{E}\left[X_{1} \mid \sigma(P)\right]$? Justify your answer briefly.
4. (a) [12 marks] Define the terms π-system and σ-algebra.

Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define the σ-algebra generated by $\left(X_{n}\right)$. What does it mean to say that the random variables X_{1}, X_{2}, \ldots are independent?
State and prove Kolmogorov's 0/1-law.
[You may assume that if two π-systems are independent, then so are the σ-algebras that they generate.]
(b) [13 marks] Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of independent random variables, and let $S_{n}=$ $X_{1}+X_{2}+\cdots+X_{n}$. State, with full justification, which of the following are tail events or tail random variables in terms of the sequence $\left(X_{n}\right)$:
(i) $\lim \sup _{n \rightarrow \infty} S_{n} / n$,
(ii) $\limsup \operatorname{sum}_{n \rightarrow \infty} S_{n}$,
(iii) $\left\{\omega \in \Omega: \sum_{n=1}^{\infty} X_{n}(\omega)<\infty\right\}$.

Let X_{1}, X_{2}, \ldots be independent, non-negative random variables, and let $\mu_{n}=\mathbb{E}\left[X_{n}\right]$. Show that if $\sum_{n=1}^{\infty} \mu_{n}<\infty$, then $\sum_{n=1}^{\infty} X_{n}$ converges almost surely to an almost surely finite random variable Y, and find $\mathbb{E}[Y]$. Now suppose that $\sum_{n=1}^{\infty} \mu_{n}=\infty$, and let E be the event $\left\{\sum_{n=1}^{\infty} X_{n}=\infty\right\}$. Give an example in which $\mathbb{P}[E]=0$, and one in which $\mathbb{P}[E]=1$.
[In part (b) you may assume standard results from measure theory and integration theory without proof, provided they are correctly stated.]
2. (a) [15 marks] Define the terms measurable space and finite measure.

Let \mathbb{P} and \mathbb{Q} be finite measures on the measurable space (Ω, \mathcal{F}). What does it mean to say that \mathbb{Q} is absolutely continuous with respect to \mathbb{P} ?
Let X be an integrable random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subseteq \mathcal{F}$ be a σ-algebra. What does it mean to say that Z is (a version of) the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$?
Show that the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ exists, and is unique up to equality almost surely.
[You may assume the Radon-Nikodym Theorem without proof, provided it is correctly stated.]
Show that if X is \mathcal{G}-measurable, then $\mathbb{E}[X \mid \mathcal{G}]=X$ ass. Show that if $X_{n} \geq 0$ are antegrable random variables with $X=\sum_{n=1}^{\infty} X_{n}$ integrable, then $\mathbb{E}[X \mid \mathcal{G}]=\sum_{n=1}^{\infty} \mathbb{E}\left[X_{n} \mid\right.$ $\mathcal{G}]$ ass.
(b) [10 marks $]$ Consider the probability space $([0,1), \mathcal{B}, \mathbb{P})$ where \mathcal{B} is the Bore σ-algebra on $[0,1)$ and \mathbb{P} is Lebesgue measure, and let X be the random variable defined by $X(\omega)=\omega$. For $n \geq 1$, let A_{n} be the event

$$
\bigcup_{j=0}^{2^{n-1}-1}\left[\frac{j}{2^{n-1}}+\frac{1}{2^{n}}, \frac{j+1}{2^{n-1}}\right)
$$

that the nth digit in the binary expansion of $\omega \in \Omega$ is 1 , and let $\mathcal{F}_{n}=\sigma\left(\left\{A_{n}\right\}\right)=$ $\left\{\emptyset, A_{n}, A_{n}^{\mathrm{c}}, \Omega\right\}$.
Show that A_{n} is independent of \mathcal{F}_{m} for $m \neq n$. Find $\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]$ and $\mathbb{E}[X \mid \mathcal{F}]$, where $\mathcal{F}=\sigma\left(\left\{A_{1}, A_{3}, A_{5}, A_{7}, \ldots\right\}\right)$.
[In part (b), standard properties of conditional expectation may be assumed without proof, provided they are stated correctly.]
3. (a) [8 marks] What does it mean to say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex?

Prove Jensen's inequality in the following form: if $f: \mathbb{R} \rightarrow[0, \infty)$ is convex and X is an integrable random variable, then $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$.
(b) [17 marks] Prove the following variant of Doob's Maximal Inequality: if $\left(M_{n}\right)$ is a martingale and $\theta>0$ then, for any (constant) $N \in \mathbb{N}$ and $\lambda>0$,

$$
\mathbb{P}\left[\max _{0 \leq n \leq N} M_{n} \geq \lambda\right] \leq \mathbb{E}\left[e^{\theta M_{N}}\right] e^{-\theta \lambda}
$$

[The conditional form of Jensen's inequality and standard results about discrete stochastic integrals may be assumed without proof, if stated correctly.]
Let X_{1}, X_{2}, \ldots be independent random variables with $\mathbb{P}\left[X_{n}=1\right]=\mathbb{P}\left[X_{n}=-1\right]=1 / 2$ for all n, and set $S_{n}=X_{1}+\ldots+X_{n}$. Show that for any $N \in \mathbb{N}$ and $t \geq 0$ we have

$$
\mathbb{P}\left[\max _{0 \leq n \leq N}\left|S_{n}\right| \geq t\right] \leq 2 e^{-t^{2} /(2 N)}
$$

[Hint: use series expansions to show that, for any $\theta \in \mathbb{R},\left(e^{\theta}+e^{-\theta}\right) / 2 \leq e^{\theta^{2} / 2}$. Standard results from measure theory may be assumed without proof.]

1. (a) Define the terms σ-algebra, measure, probability space and (real-valued) random variable.
(b) Let Ω be a set. What is a π-system on Ω ? For $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ a collection of subsets of Ω, define the σ-algebra generated by $\mathcal{A}, \sigma(\mathcal{A})$.
(c) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. What does it mean to say that σ-algebras $\mathcal{G}_{n} \subseteq \mathcal{F}$, $n=1,2, \ldots$, are independent? What does it mean to say that random variables X_{n}, $n=1,2, \ldots$, are independent?
Let $\mathcal{I}_{1}, \mathcal{I}_{2}$ and \mathcal{I}_{3} be π-systems on Ω with $\Omega \in \mathcal{I}_{i} \subseteq \mathcal{F}$ for each i, and let $\mathcal{G}_{i}=\sigma\left(\mathcal{I}_{i}\right)$. Show that \mathcal{G}_{1} and \mathcal{G}_{2} are independent if and only if

$$
\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]
$$

for all $A \in \mathcal{I}_{1}$ and $B \in \mathcal{I}_{2}$.
Give, with proof, a corresponding condition for $\mathcal{G}_{1}, \mathcal{G}_{2}$ and \mathcal{G}_{3} to be independent, and deduce that random variables X, Y and Z on $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if and only if

$$
\mathbb{P}[X<x, Y<y \text { and } Z<z]=\mathbb{P}[X<x] \mathbb{P}[Y<y] \mathbb{P}[Z<z]
$$

for all $x, y, z \in \mathbb{R}$.
[You may assume that, if \mathcal{I} is a π-system on Ω and μ_{1}, μ_{2} are measures such that $\mu_{1}(\Omega)=\mu_{2}(\Omega)<\infty$ and μ_{1} and μ_{2} agree on \mathcal{I}, then μ_{1} and μ_{2} agree on $\sigma(\mathcal{I})$. You may also assume that the Borel σ-algebra is generated by $\{(-\infty, x): x \in \mathbb{R}\}$.]
(d) Let X, Y and Z be real-valued random variables. Show that if X, Y and Z are independent, then $X+Y$ and Z are independent.
2. (a) Let X and Y be integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ-algebra.
What does it mean to say that Y is a version of the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$? Show that if Y and Z are both versions of $\mathbb{E}[X \mid \mathcal{G}]$ then $Y=Z$ almost surely.
(b) Define the terms filtration, martingale and stopping time.

Prove the Optional Stopping Theorem in the following form: if $\left(M_{n}\right)_{n \geqslant 0}$ is a martingale with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ such that, for some real number L, for every $n \geqslant 1$ it is the case that $\left|M_{n}-M_{n-1}\right| \leqslant L$ almost surely, and τ is a stopping time with respect to $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ with $\mathbb{E}[\tau]<\infty$, then $\mathbb{E}\left[M_{\tau}\right]=\mathbb{E}\left[M_{0}\right]$.
[You may assume without proof that $\left(M_{n \wedge \tau}\right)_{n \geqslant 0}$ is a martingale.]
Briefly describe, without proof, an example showing that the condition $\mathbb{E}[\tau]<\infty$ cannot be omitted, even if $\mathbb{P}[\tau<\infty]=1$.
(c) Let k be a positive integer. Let $\left(X_{n}\right)_{n \geqslant 1}$ be independent with

$$
\mathbb{P}\left[X_{n}=1\right]=\mathbb{P}\left[X_{n}=-1\right]=1 / 2 \quad \text { for every } n
$$

let $S_{n}=\sum_{1 \leqslant i \leqslant n} X_{i}$, and let $\tau=\inf \left\{n:\left|S_{n}\right|=k\right\}$. By considering $M_{n}=S_{n}^{2}-n$, or otherwise, show that $\mathbb{E}[\tau]=k^{2}$.
[You may assume that $\mathbb{E}[\tau]<\infty$.]
[Throughout this question, standard properties of integration and of conditional expectation may be assumed if stated correctly.]
3. (a) Let $p \geqslant 1$, let $\left(X_{n}\right)_{n \geqslant 0}$ be a sequence of random variables, and let Y be a random variable. What does it mean to say (i) that $\left(X_{n}\right)_{n \geqslant 0}$ is bounded in L^{p} and (ii) that X_{n} converges to Y in L^{p} ?
Show that if $1 \leqslant r<p$ and $\left(X_{n}\right)_{n \geqslant 0}$ is bounded in L^{p}, then it is bounded in L^{r}, and prove a similar statement relating convergence in L^{p} and in L^{r}.
[You may assume Jensen's inequality without proof.]
(b) Prove the Pythagoras formula that if $\left(M_{n}\right)_{n \geqslant 0}$ is a martingale in which $\mathbb{E}\left[M_{n}^{2}\right]<\infty$ for each n then for $-1 \leqslant i<j$

$$
\mathbb{E}\left[\left(M_{j}-M_{i}\right)^{2}\right]=\sum_{k=i+1}^{j} \mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2}\right]
$$

where M_{-1} is defined to be 0 .
Deduce carefully that a martingale $\left(M_{n}\right)_{n \geqslant 0}$ is bounded in L^{2} if and only if $\mathbb{E}\left[M_{0}^{2}\right]<\infty$ and $\sum_{k \geqslant 1} \mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2}\right]<\infty$.
[Standard properties of conditional expectation and of L^{2} spaces may be assumed if stated correctly.]
(c) Assuming without proof Doob's Forward Convergence Theorem in the form that a martingale bounded in L^{1} converges almost surely to an ass. finite limit Y, show that a martingale $\left(M_{n}\right)_{n \geqslant 0}$ bounded in L^{2} converges both almost surely and in L^{2} to some random variable Y.
(d) Let $\left(X_{n}\right)_{n \geqslant 1}$ be independent with $\mathbb{P}\left[X_{n}=1\right]=\mathbb{P}\left[X_{n}=-1\right]=1 / 2$ for each n. Let $M_{n}=\sum_{k=1}^{n} X_{k} / k$.
(i) Show that $\left(M_{n}\right)_{n \geqslant 0}$ is a martingale with respect to a suitable filtration.
(ii) Show that M_{n} converges almost surely to a random variable Y.
(iii) Find, with proof, $\mathbb{E}[Y]$ and $\mathbb{E}\left[Y^{2}\right]$.
[Throughout this question, standard properties of integration may be assumed without proof. You may assume that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$.]

2012 1. (a) (i) Define the terms σ-algebra, probability space, and event.
(ii) Let $\left(A_{n}\right)_{n \geqslant 1}$ be a sequence of events in a probability space. What does it mean to say that A_{n} holds infinitely often?
(iii) State and prove the first and second Borel-Cantelli lemmas.
(b) Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of independent random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking non-negative integer values. Suppose that for each n and each $i \geqslant 1$, $\mathbb{P}\left(X_{n} \geqslant i\right)=1 / i$.
(i) Evaluate

$$
\mathbb{P}\left(X_{n} \geqslant n^{\alpha} \text { infinitely often }\right)
$$

for each (constant) real number $\alpha>0$.
(ii) Show that the random variable

$$
\limsup _{n \rightarrow \infty} \frac{\log X_{n}}{\log n}
$$

is almost surely constant, and find its (almost sure) value.
(iii) Let $M_{n}=\max \left\{X_{k}: 1 \leqslant k \leqslant n\right\}$. Show that

$$
\lim _{n \rightarrow \infty} \frac{\log M_{n}}{\log n}=1
$$

almost surely.
[Throughout this question, basic properties of probability measures may be assumed without proof if stated correctly.]
2012 2. (a) Let X, X_{1}, X_{2} and Y be integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ-algebra.
(i) What does it mean to say that Y is \mathcal{G}-measurable? Define the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$, the σ-algebra generated by Y, and the conditional expectation $\mathbb{E}[X \mid Y]$.
(ii) Show that $\mathbb{E}\left[X_{1}+X_{2} \mid \mathcal{G}\right]=\mathbb{E}\left[X_{1} \mid \mathcal{G}\right]+\mathbb{E}\left[X_{2} \mid \mathcal{G}\right]$ almost surely.
(iii) What does it mean to say that X and Y are independent? Show that if X and Y are independent, then $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$ almost surely. [You may assume that if X and Z are independent random variables, then $\mathbb{E}[X Z]=\mathbb{E}[X] \mathbb{E}[Z]$.
(iv) Show that if Y is \mathcal{G}-measurable and $X Y$ is integrable, then $\mathbb{E}[X Y \mid \mathcal{G}]=Y \mathbb{E}[X \mid \mathcal{G}]$. [You may assume that if $Y \geqslant 0$ is a measurable function on Ω, then there is a sequence $\left(Y_{n}\right)$ of simple functions with $Y_{n} \uparrow Y$.]
(b) Let X, Y and Z be independent, with each uniformly distributed on the set $\{1,2, \ldots, 6\}$, so that X, Y and Z represent numbers rolled on three dice. Evaluate
(i) $\mathbb{E}[X+Y Z \mid Y]$,
(ii) $\mathbb{E}[X+Y \mid Y+Z]$, and
(iii) $\mathbb{E}[X Y \mid Y+Z]$.
[Standard properties of integration may be assumed throughout. In part (b), standard properties of conditional expectation may be assumed if stated correctly.]
3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(a) What does it mean to say that
(i) $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ is a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$,
(ii) $\left(X_{n}\right)_{n \geqslant 0}$ is a martingale with respect to $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$?
(b) Doob's Upcrossing Lemma states that if $\mathbf{X}=\left(X_{n}\right)_{n \geqslant 0}$ is a martingale with respect to $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ and $a<b$ are real numbers, then for any $n \geqslant 0$,

$$
\mathbb{E}\left[U_{n}([a, b], \mathbf{X})\right] \leqslant \frac{\mathbb{E}\left[\left(X_{n}-a\right)^{-}\right]}{(b-a)}
$$

(i) Define the number of upcrossings U_{n}.
(ii) Using Doob's Upcrossing Lemma (which you need not prove), deduce Nob's Forward Convergence Theorem in the following form: if $\left(X_{n}\right)_{n \geqslant 0}$ is a martingale with respect to $\left(\mathcal{F}_{n}\right)_{n \geqslant 0}$ with the property that $\sup _{n} \mathbb{E}\left[\left|X_{n}\right|\right]<\infty$, then $\left(X_{n}\right)_{n \geqslant 0}$ converges almost surely to an almost surely finite limit X_{∞}.
(c) Let $\varepsilon_{n}, n \geqslant 1$, and $V_{n}, n \geqslant 0$, be independent random variables, with

$$
\mathbb{P}\left(\varepsilon_{n}=1\right)=\mathbb{P}\left(\varepsilon_{n}=-1\right)=1 / 2, \quad \mathbb{P}\left(V_{n}=1\right)=p_{n}, \quad \mathbb{P}\left(V_{n}=0\right)=1-p_{n},
$$

for all n. Define X_{n} inductively by $X_{0}=1$ and, for $n \geqslant 0$,

$$
X_{n+1}=X_{n}+V_{n} \varepsilon_{n+1} \quad \text { if } \quad X_{n}>0
$$

and

$$
X_{n+1}=0 \quad \text { if } \quad X_{n}=0 .
$$

(i) Show that $\left(X_{n}\right)_{n \geqslant 0}$ is a martingale with respect to a filtration that you should define.
(ii) Suppose that $p_{n}=1$ for all n. Show that $X_{n} \rightarrow 0$ almost surely.
(iii) Now let $p_{n}=1 /(n+1)$ for all n. Does $X_{n} \rightarrow 0$ almost surely? What if $p_{n}=1 /(n+$ $1)^{2}$ for all n ? [You may assume that for real numbers $0<x_{n}<1, \prod_{n=1}^{\infty}\left(1-x_{n}\right)=0$ if and only if $\sum_{n=1}^{\infty} x_{n}=\infty$.]
[Throughout this question, standard properties of integration and of conditional expectation may be used without proof if stated correctly.]

