- 2019 2. Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ be a complete filtered probability space, where $(\mathcal{F}_n)_{n \ge 0}$ is a filtration, i.e. an increasing sequence of sub σ -algebras of \mathcal{F} .
 - (a) [5 marks]
 - (i) What does it mean that $X = (X_n)_{n \ge 0}$ is a martingale? What does it mean that $X = (X_n)_{n \ge 0}$ is a sub-martingale?
 - (ii) State Doob's martingale convergence theorem.
 - (iii) If $X = (X_n)_{n \ge 0}$ is a martingale, show that $X^+ = (X_n^+)_{n \ge 1}$ is a sub-martingale, where $X_n^+ = \max \{X_n, 0\}$ for every $n \ge 0$.
 - (b) [15 marks] Let $X = (X_n)_{n \ge 0}$ be a martingale with $X_0 = 0$. Define $\xi_n = X_n X_{n-1}$ (for $n = 1, 2, \cdots$), and

$$A = \left\{ \sup_{n} X_n < \infty \text{ and } \inf_{n} X_n > -\infty \right\}.$$

Suppose that there is a positive constant L such that $|\xi_n| \leq L$ for every $n \geq 1$.

(i) For a positive number a, let $T_a = \inf \{n \ge 0 : X_n > a\}$. Show that T_a is a stopping time, and show that the stopped random sequence $(X_{T_a \land n})_{n \ge 0}$ is a martingale, and $\mathbb{E}[X_{T_a \land n}] = 0$ for all $n \ge 0$. Deduce that

$$\mathbb{E}\left[|X_{T_a \wedge n}|\right] = 2\mathbb{E}\left[X_{T_a \wedge n}^+\right]$$

for every a > 0 and every $n \ge 0$. Here, for a stopping time T and a real random sequence $(Y_n)_{n\ge 0}$ you might find it useful to recall that

$$Y_{T \wedge n}^{+} = \sum_{k=0}^{n} Y_{k}^{+} \mathbb{1}_{\{T=k\}} + Y_{n}^{+} \mathbb{1}_{\{T>n\}}$$

for every $n \ge 0$. Here, we recall that $Y_{T \wedge n} = Y_T$ on $T \le n$ and $Y_{T \wedge n} = Y_n$ on T > n by definition, and similar notation applies to Y^+ .

(ii) Show that

$$X_{T_a \wedge n}^+ \leqslant X_{T_a \wedge (n-1)}^+ + \xi_{T_a \wedge n}^+$$

for every $n \ge 1$. Hence, or otherwise show that

$$X^+_{T_a \wedge n} \leqslant a + L$$

for every a > 0 and for every $n \ge 1$.

- (iii) Show that, for every a > 0, $(X_{T_a \wedge n}^+)_{n \ge 0}$ converges almost everywhere. Hence or otherwise, show that $(X_n^+)_{n \ge 0}$ converges almost everywhere on $\{\sup_n X_n \le a\}$ for every a > 0. Deduce that $(X_n^+)_{n \ge 0}$ converges almost everywhere on $\{\sup_n X_n < \infty\}$, and hence show that $(X_n)_{n \ge 0}$ converges almost everywhere on A.
- (c) [5 marks] Let $(Z_n)_{n \ge 1}$ be an adapted random sequence, i.e. Z_n is \mathcal{F}_n -measurable for every $n \ge 1$. Suppose $0 \le Z_n \le 1$ for every $n \ge 1$. Define $Y_0 = 0$ and

$$Y_n = Y_{n-1} + Z_n - \mathbb{E}\left[Z_n | \mathcal{F}_{n-1}\right]$$

for $n \ge 1$. Show that $(Y_n)_{n\ge 0}$ is a martingale with $\mathbb{E}[Y_n] = 0$, and show that Y_n converges almost everywhere on

$$\left\{\sup_{n} Y_n < \infty \text{ and } \inf_{n} Y_n > -\infty\right\}.$$

- 2018 2. Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ be a filtered probability space.
 - (a) [5 marks] Let \mathcal{G} be a sub σ -algebra of \mathcal{F} , and X be integrable. What does it mean to say that $\mathbb{E}[X|\mathcal{G}]$ is the conditional expectation of X given \mathcal{G} ? Show that the conditional expectation of X given \mathcal{G} is unique up to almost surely. Give a definition of $\mathbb{E}[X|Z]$ where Z is also a random variable.
 - (b) [4 marks] Suppose X and Y are two independent, square integrable random variables with the same distribution.
 What are F[Y] + V] and F[Y2 + VV|Y + V]?

What are $\mathbb{E}[X|X+Y]$ and $\mathbb{E}[X^2 + XY|X+Y]$?

(c) [6 marks] What does it mean that a random sequence $(H_n)_{n\geq 0}$ is predictable? Give a definition of a stopping time.

Suppose now $M = (M_n)_{n \ge 0}$ is a martingale and $H = (H_n)_{n \ge 0}$ is predictable and bounded. Define H.M to be the sequence given inductively by the equations that $(H.M)_0 = 0$ and

$$(H.M)_n = (H.M)_{n-1} + H_n (M_n - M_{n-1})$$

for $n \ge 1$. Show that H.M is a martingale.

Let T be a stopping time, and $H_n = 1_{\{T \ge n\}}$ for $n = 0, 1, 2, \cdots$. Show that $(H_n)_{n \ge 0}$ is predictable and $(H.M)_n = M_{T \land n} - M_0$ for every n. Hence, or otherwise, show that $(M_{T \land n})_{n \ge 0}$ is a martingale.

- (d) [3 marks] Suppose that $(M_n)_{n \ge 0}$ is a non-negative martingale, and T is a finite stopping time. Show that $\mathbb{E}[M_T] \le \mathbb{E}[M_0]$. Give a sufficient condition on T, such that $\mathbb{E}[M_T] = \mathbb{E}[M_0]$.
- (e) [7 marks] State Doob's martingale convergence theorem. Let $(\xi_n)_{n \ge 1}$ be a sequence of independent identically distributed random variables with

$$\mathbb{P}\left[\xi_1 = \frac{1}{2}\right] = \mathbb{P}\left[\xi_1 = \frac{3}{2}\right] = \frac{1}{2}.$$

Let $X_n = \xi_1 \cdots \xi_n$ and $X_0 = 1$. Show that $(X_n)_{n \ge 0}$ is a martingale, and X_n converges to X_∞ as $n \to \infty$ with probability one. By using the Strong Law of Large Numbers for some sequence, or otherwise, further show that $X_\infty = 0$. Hence conclude that $\mathbb{E}(X_\infty) \neq \mathbb{E}(X_n)$ for every n.

- 20(7 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, so that (Ω, \mathcal{F}) is a measurable space, and \mathbb{P} is a probability measure on \mathcal{F} .
 - (a) [6 marks] Let G_n ⊆ F (where n runs through an index set Λ) be a family of sub σ-algebras of F. What does it mean that {G_n : n ∈ Λ} are *independent*? Suppose X is a real random variable on (Ω, F). Define the σ-algebra σ {X} generated by X. Suppose {X_n : n ∈ Λ} is a family of real random variables on (Ω, F, P). What does it mean that {X_n : n ∈ Λ} are *independent*?
 - (b) [3 marks] What does it mean that a collection C of some subsets of Ω is a π -system? State the uniqueness lemma for two finite measures on (Ω, \mathcal{F}) .
 - (c) [8 marks] Suppose X, Y and Z are three independent real random variables. Prove that sin (X + Y) and Z are independent.
 [Hint: You may first prove that σ {X, Y} and σ {Z} are independent, using the uniqueness lemma for finite measures or otherwise.]
 - (d) [8 marks] (i) Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -algebra, and X be an integrable random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. What does it mean that $\mathbb{E}[X|\mathcal{G}]$ is the *conditional expectation* of X given \mathcal{G} ? If X and Y are two integrable random variables, what is the definition of $\mathbb{E}[X|Y]$ the *conditional expectation* of X given Y?
 - (ii) Suppose X and Y are independent, and

$$\mathbb{P}\left[X=0\right] = \frac{1}{3} \text{ and } \mathbb{P}\left[X=\frac{\pi}{2}\right] = \frac{2}{3}.$$

Find $\mathbb{E}[\sin(XY)|Y]$ and justify your answer.

- 2017 2. (a) [13 marks] Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ be a filtered probability space.
 - (i) Let $M = (M_n)_{n \ge 0}$ be a sequence of random variables. What does it mean that (M_n) is a super-martingale?
 - (ii) Suppose (X_n) and (Y_n) are two super-martingales. Prove that $(X_n \wedge Y_n)$ is a supermartingale, where $x \wedge y = \min \{x, y\}$.
 - (iii) What does it mean that T is an (\mathcal{F}_n) -stopping time? What does it mean that a sequence of random variables $H = (H_n)$ is predictable with respect to (\mathcal{F}_n) ?
 - (iv) Suppose (M_n) is a sub-martingale and (H_n) is predictable, such that H_n is non-negative, and H_nM_n and H_nM_{n-1} are integrable for $n = 1, 2, \ldots$. Define $X_0 = 0$ and

$$X_{n} = \sum_{k=1}^{n} H_{k} \left(M_{k} - M_{k-1} \right)$$

for n = 1, 2, ... Show that (X_n) is also a sub-martingale.

(b) [12 marks] Let $\{\eta_n : n = 1, 2, ...\}$ be a sequence of independent random variables on probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with distributions given by

$$\mathbb{P}[\eta_n = 1] = \mathbb{P}[\eta_n = -1] = \frac{1}{(n+1)^p}$$
, and $\mathbb{P}[\eta_n = 0] = 1 - \frac{2}{(n+1)^p}$,

where p > 1 is a constant. Let $S_0 = 0$ and $S_n = \sum_{k=1}^n \eta_k$ for $n \ge 1$.

(i) Give a definition of the *tail* σ -algebra \mathcal{G}_{∞} for $\{\eta_n : n = 1, 2, ...\}$, and state Kolmogorov's 0-1 law. Show that

$$\mathbb{P}\left[\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} > 1\right] = 0 \text{ or } 1.$$

(ii) State the Borel-Cantelli lemma for a sequence of independent events. Let $A_n = \{|\eta_n| > 0\}$ for n = 1, 2, ... Show that $\mathbb{P}[A_n \text{ i. o. }] = 0$, and hence or otherwise prove that $\eta_n \to 0$ with probability one, where $\{A_n \text{ i. o. }\}$ denotes the event that infinitely many A_n occur.

2016

- 2. (a) [15 marks] Let $(X_n)_{n \ge 1}$ be a sequence of independent real random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (i) Define the tail σ -algebra \mathcal{G}_{∞} with respect to $(X_n)_{n \ge 1}$, and state Kolmogorov's zeroone law for the events in \mathcal{G}_{∞} .
 - (ii) Show that both $\limsup_{n\to\infty} X_n$ and $\liminf_{n\to\infty} X_n$ are \mathcal{G}_{∞} -measurable, and deduce that $\{\omega \in \Omega : \limsup_{n\to\infty} X_n(\omega) \in G\}$ is \mathcal{G}_{∞} -measurable for every Borel measurable subset $G \subseteq \mathbb{R}$. Hence show that $\limsup_{n\to\infty} X_n$ equals a constant almost surely.
 - (iii) Show that $\mathbb{P}[\lim_{n\to\infty} X_n = 0] = 1$ if and only if

$$\sum_{n=1}^{\infty} \mathbb{P}\left[|X_n| > \varepsilon\right] < \infty$$

for every $\varepsilon > 0$. [The Borel-Cantelli Lemma may be used as long as you state it clearly.]

- (b) [10 marks] Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub σ -algebra, and let X be an integrable variable on $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (i) What does it mean that $\mathbb{E}[X|\mathcal{G}]$ is the conditional expectation of X given \mathcal{G} ?
 - (ii) If Z is another random variable, what does it mean that $\mathbb{E}[X|Z]$ is the *conditional* expectation of X given Z? Suppose X, Y and Z are three independent, integrable random variables with the same distribution. What is $\mathbb{E}[X|X + Y + Z]$?
 - (iii) Suppose X and Y are square integrable random variables, such that $\mathbb{E}[X|Y] = Y$ and $\mathbb{E}[Y|X] = X$. Show that X = Y almost surely.

- 2015 1. (a) [7 marks] Define the terms σ -algebra, π -system, measure and probability space. What is the σ -algebra generated by a collection \mathcal{A} of subsets of a given set Ω ? State Carathéodory's Extension Theorem giving conditions under which a set function μ_0 on $\mathcal{A} \subseteq \mathcal{F}$ extends to a measure on (Ω, \mathcal{F}) , and a corresponding result giving conditions under which such an extension is necessarily unique.
 - (b) [6 marks] Let $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$, i = 1, 2, be two probability spaces. Define the product σ -algebra $\mathcal{F}_1 \times \mathcal{F}_2$. Let $\mathcal{R} = \{A_1 \times A_2 : A_i \in \mathcal{F}_i\}$ and let \mathcal{A} be the set of finite disjoint unions of elements of \mathcal{R} , which you may assume is an algebra. Define a set function μ on \mathcal{A} by $\mu(A_1 \times A_2) = \mathbb{P}_1[A_1]\mathbb{P}_2[A_2]$ for $A_i \in \mathcal{F}_i$ and $\mu(R_1 \cup \cdots \cup R_n) = \sum_{i=1}^n \mu(R_i)$ for disjoint $R_1, \ldots, R_n \in \mathcal{R}$.

Show that μ (which you may assume is well defined) is countably additive on \mathcal{A} , and deduce that there is a unique probability measure \mathbb{P} on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ such that $\mathbb{P}[A_1 \times A_2] = \mathbb{P}_1[A_1]\mathbb{P}_2[A_2]$ for all $A_1 \in \mathcal{F}_1$ and $A_2 \in \mathcal{F}_2$.

(c) [12 marks] Define the Borel σ -algebra \mathcal{B} on [0,1), and show that it is generated by $\mathcal{A} = \{[0,a) : 0 \leq a \leq 1\}.$

[You may assume that if $U \subseteq [0, 1)$ is open as a subset of [0, 1), then for each $x \in U$ there is a rational q and an $\epsilon > 0$ such that $x \in B_{\epsilon}(q) \subseteq U$, where $B_{\epsilon}(q) = \{y \in [0, 1) : |y-q| < \epsilon\}$.] For the rest of the question, you may assume that there is a probability measure μ on $([0, 1), \mathcal{B})$ such that $\mu([0, a)) = a$ for each $0 \leq a \leq 1$.

Given $A \subseteq [0,1)$ and 0 < t < 1, let $tA = \{tx : x \in A\}$. Show that for a fixed t, $\mathcal{C} = \{A \subseteq [0,1) : tA \in \mathcal{B}\}$ is a σ -algebra. Deduce that if $A \in \mathcal{B}$ then $tA \in \mathcal{B}$, and show that $\mu(tA) = t\mu(A)$.

Let $A \in \mathcal{B}$. Define the cone C by $C = \{(x, y) \in [0, 1)^2 : x \in yA\}$. Show that $C \in \mathcal{B} \times \mathcal{B}$ and that $(\mu \times \mu)(C) = \mu(A)/2$.

[Throughout this question standard properties of measure and integration may be assumed if stated correctly. In part (c) you may assume Fubini's Theorem.]

- 2. (a) [7 marks] Define the terms *filtration*, *martingale* and *stopping time*. Show carefully that if (M_n) is a martingale with respect to (\mathcal{F}_n) and τ is a stopping time, then $(M_{n \wedge \tau})$ is also a martingale.
 - (b) [13 marks] Let (X_1, X_2, \ldots) be i.i.d. with $\mathbb{P}[X_n = 0] = \mathbb{P}[X_n = 1] = 1/2$. Let **a** be the sequence (1, 0, 0, 1) and let **b** = (0, 1, 0, 1). Let $\tau_a = \inf\{n : (X_{n-3}, \ldots, X_n) = \mathbf{a}\}, \tau_b = \inf\{n : (X_{n-3}, \ldots, X_n) = \mathbf{b}\}$, and $\tau = \tau_a \wedge \tau_b$. Show carefully that τ_a, τ_b and τ are stopping times.

By showing that $\mathbb{P}[\tau > 4n] \leq (15/16)^n$ or otherwise, show that $\mathbb{E}[\tau] < \infty$.

Let A be the event $\{\tau = \tau_a\}$. By considering suitable martingales, find two linear relationships between $\mathbb{E}[\tau]$ and $\mathbb{P}[A]$, and hence find $\mathbb{E}[\tau]$ and $\mathbb{P}[A]$.

[Descriptive definitions of the martingales will receive only partial credit; to obtain full marks, they must be defined precisely in terms of the variables X_n rather than in words. You may use any standard form of the Optional Stopping Theorem provided you state it correctly.]

(c) [5 marks] Can the method of part (b) be applied with **a** and **b** replaced by any two distinct sequences of the same length r? For r = 4, what is the maximum possible value of $\mathbb{P}[A]$? Justify your answers briefly.

3. (a) [12 marks] Carefully define what it means for $(M_{-n})_{n\geq 1}$ to be a backwards martingale 2015 with respect to a sequence $(\mathcal{F}_{-n})_{n\geq 1}$ of σ -algebras, including the relevant condition on $(\mathcal{F}_{-n}).$

> What does it mean to say that a sequence $(X_n)_{n\geq 1}$ of random variables is uniformly integrable?

> Is a backwards martingale necessarily uniformly integrable? What about a martingale? In each case give a proof or a counterexample.

> You may assume that if X is integrable, then for any $\epsilon > 0$ there exists $\delta > 0$ such that $\mathbb{P}[A] < \delta \text{ implies } \mathbb{E}[|X|\mathbf{1}_A] < \epsilon.]$

- (b) [3 marks] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra generated by a π -system \mathcal{I} with $\Omega \in \mathcal{I}$. Show that if X and Y are integrable random variables such that $\int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$ for all $A \in \mathcal{I}$ and Y is \mathcal{G} -measurable, then $\mathbb{E}[X \mid \mathcal{G}] = Y$ a.s. Standard properties of conditional expectation, and uniqueness results for measures, may be used without proof.]
- (c) [10 marks] Let $(X_n)_{n \ge 1}$ be a sequence of $\{0, 1\}$ -valued random variables with the following property: given $r \ge 0$ and $s \ge 0$, for distinct $i_1, \ldots, i_r, j_1, \ldots, j_s$ the probability that $X_{i_1} =$ $\cdots = X_{i_r} = 1$ and $X_{j_1} = \cdots = X_{j_s} = 0$ is independent of the choice of $i_1, \ldots, i_r, j_1, \ldots, j_s$, and depends only on r and s.

Let $S_n = X_1 + \cdots + X_n$. Show, carefully justifying any symmetry argument, that $M_{-n} =$ S_n/n defines a backwards martingale with respect to $\mathcal{F}_{-n} = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$.

[With n fixed, it may help to consider the family \mathcal{I} of all events of the form $\{S_n =$ $k, X_{n+1} = v_1, \ldots, X_{n+i} = v_i$, where $i \ge 0, \ 0 \le k \le n$, and each $v_j \in \{0, 1\}$.

Stating, without proof, any standard results concerning backwards martingales, deduce that S_n/n converges almost surely to a (random) limit P. What is $\mathbb{E}[X_1 \mid \sigma(P)]$? Justify your answer briefly.

2014 1. (a) [12 marks] Define the terms π -system and σ -algebra.

Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define the σ -algebra generated by (X_n) . What does it mean to say that the random variables X_1, X_2, \ldots are independent?

State and prove Kolmogorov's 0/1-law.

[You may assume that if two π -systems are independent, then so are the σ -algebras that they generate.]

- (b) [13 marks] Let $(X_n)_{n=1}^{\infty}$ be a sequence of independent random variables, and let $S_n = X_1 + X_2 + \cdots + X_n$. State, with full justification, which of the following are tail events or tail random variables in terms of the sequence (X_n) :
 - (i) $\limsup_{n \to \infty} S_n/n$,
 - (ii) $\limsup_{n\to\infty} S_n$,
 - (iii) $\{\omega \in \Omega : \sum_{n=1}^{\infty} X_n(\omega) < \infty\}.$

Let X_1, X_2, \ldots be independent, non-negative random variables, and let $\mu_n = \mathbb{E}[X_n]$. Show that if $\sum_{n=1}^{\infty} \mu_n < \infty$, then $\sum_{n=1}^{\infty} X_n$ converges almost surely to an almost surely finite random variable Y, and find $\mathbb{E}[Y]$. Now suppose that $\sum_{n=1}^{\infty} \mu_n = \infty$, and let E be the event $\{\sum_{n=1}^{\infty} X_n = \infty\}$. Give an example in which $\mathbb{P}[E] = 0$, and one in which $\mathbb{P}[E] = 1$.

[In part (b) you may assume standard results from measure theory and integration theory without proof, provided they are correctly stated.]

2014 2. (a) [15 marks] Define the terms measurable space and finite measure.

Let \mathbb{P} and \mathbb{Q} be finite measures on the measurable space (Ω, \mathcal{F}) . What does it mean to say that \mathbb{Q} is *absolutely continuous* with respect to \mathbb{P} ?

Let X be an integrable random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra. What does it mean to say that Z is (a version of) the *conditional* expectation $\mathbb{E}[X \mid \mathcal{G}]$?

Show that the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ exists, and is unique up to equality almost surely.

[You may assume the Radon-Nikodym Theorem without proof, provided it is correctly stated.]

Show that if X is \mathcal{G} -measurable, then $\mathbb{E}[X \mid \mathcal{G}] = X$ a.s. Show that if $X_n \ge 0$ are integrable random variables with $X = \sum_{n=1}^{\infty} X_n$ integrable, then $\mathbb{E}[X \mid \mathcal{G}] = \sum_{n=1}^{\infty} \mathbb{E}[X_n \mid \mathcal{G}]$ a.s.

(b) [10 marks] Consider the probability space ([0, 1), \mathcal{B} , \mathbb{P}) where \mathcal{B} is the Borel σ -algebra on [0, 1) and \mathbb{P} is Lebesgue measure, and let X be the random variable defined by $X(\omega) = \omega$. For $n \ge 1$, let A_n be the event

$$\bigcup_{j=0}^{2^{n-1}-1} \left[\frac{j}{2^{n-1}} + \frac{1}{2^n}, \frac{j+1}{2^{n-1}} \right)$$

that the *n*th digit in the binary expansion of $\omega \in \Omega$ is 1, and let $\mathcal{F}_n = \sigma(\{A_n\}) = \{\emptyset, A_n, A_n^c, \Omega\}.$

Show that A_n is independent of \mathcal{F}_m for $m \neq n$. Find $\mathbb{E}[X \mid \mathcal{F}_n]$ and $\mathbb{E}[X \mid \mathcal{F}]$, where $\mathcal{F} = \sigma(\{A_1, A_3, A_5, A_7, \ldots\}).$

[In part (b), standard properties of conditional expectation may be assumed without proof, provided they are stated correctly.]

- (a) [8 marks] What does it mean to say that a function f : R → R is convex?
 Prove Jensen's inequality in the following form: if f : R → [0,∞) is convex and X is an integrable random variable, then E[f(X)] ≥ f(E[X]).
 - (b) [17 marks] Prove the following variant of Doob's Maximal Inequality: if (M_n) is a martingale and $\theta > 0$ then, for any (constant) $N \in \mathbb{N}$ and $\lambda > 0$,

$$\mathbb{P}\Big[\max_{0\leq n\leq N} M_n \geq \lambda\Big] \leq \mathbb{E}[e^{\theta M_N}]e^{-\theta\lambda}.$$

[The conditional form of Jensen's inequality and standard results about discrete stochastic integrals may be assumed without proof, if stated correctly.] Let X_1, X_2, \ldots be independent random variables with $\mathbb{P}[X_n = 1] = \mathbb{P}[X_n = -1] = 1/2$

for all n, and set $S_n = X_1 + \ldots + X_n$. Show that for any $N \in \mathbb{N}$ and $t \ge 0$ we have

$$\mathbb{P}\Big[\max_{0 \le n \le N} |S_n| \ge t\Big] \le 2e^{-t^2/(2N)}.$$

[Hint: use series expansions to show that, for any $\theta \in \mathbb{R}$, $(e^{\theta} + e^{-\theta})/2 \leq e^{\theta^2/2}$. Standard results from measure theory may be assumed without proof.]

2014

- 1. (a) Define the terms σ -algebra, measure, probability space and (real-valued) random variable.
 - (b) Let Ω be a set. What is a π -system on Ω ? For $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ a collection of subsets of Ω , define the σ -algebra generated by \mathcal{A} , $\sigma(\mathcal{A})$.
 - (c) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. What does it mean to say that σ -algebras $\mathcal{G}_n \subseteq \mathcal{F}$, $n = 1, 2, \ldots$, are *independent*? What does it mean to say that random variables X_n , $n = 1, 2, \ldots$, are *independent*?

Let $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3 be π -systems on Ω with $\Omega \in \mathcal{I}_i \subseteq \mathcal{F}$ for each *i*, and let $\mathcal{G}_i = \sigma(\mathcal{I}_i)$. Show that \mathcal{G}_1 and \mathcal{G}_2 are independent if and only if

$$\mathbb{P}[A \cap B] = \mathbb{P}[A] \,\mathbb{P}[B]$$

for all $A \in \mathcal{I}_1$ and $B \in \mathcal{I}_2$.

Give, with proof, a corresponding condition for \mathcal{G}_1 , \mathcal{G}_2 and \mathcal{G}_3 to be independent, and deduce that random variables X, Y and Z on $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if and only if

$$\mathbb{P}[X < x, Y < y \text{ and } Z < z] = \mathbb{P}[X < x] \mathbb{P}[Y < y] \mathbb{P}[Z < z]$$

for all $x, y, z \in \mathbb{R}$.

[You may assume that, if \mathcal{I} is a π -system on Ω and μ_1 , μ_2 are measures such that $\mu_1(\Omega) = \mu_2(\Omega) < \infty$ and μ_1 and μ_2 agree on \mathcal{I} , then μ_1 and μ_2 agree on $\sigma(\mathcal{I})$. You may also assume that the Borel σ -algebra is generated by $\{(-\infty, x) : x \in \mathbb{R}\}$.]

- (d) Let X, Y and Z be real-valued random variables. Show that if X, Y and Z are independent, then X + Y and Z are independent.
- 2013 2. (a) Let X and Y be integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra.

What does it mean to say that Y is a version of the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$? Show that if Y and Z are both versions of $\mathbb{E}[X \mid \mathcal{G}]$ then Y = Z almost surely.

(b) Define the terms filtration, martingale and stopping time. Prove the Optional Stopping Theorem in the following form: if (M_n)_{n≥0} is a martingale with respect to the filtration (F_n)_{n≥0} such that, for some real number L, for every n≥ 1 it is the case that |M_n − M_{n-1}| ≤ L almost surely, and τ is a stopping time with respect to (F_n)_{n≥0} with E[τ] < ∞, then E[M_τ] = E[M₀].

[You may assume without proof that $(M_{n\wedge\tau})_{n\geq 0}$ is a martingale.]

Briefly describe, without proof, an example showing that the condition $\mathbb{E}[\tau] < \infty$ cannot be omitted, even if $\mathbb{P}[\tau < \infty] = 1$.

(c) Let k be a positive integer. Let $(X_n)_{n \ge 1}$ be independent with

$$\mathbb{P}[X_n = 1] = \mathbb{P}[X_n = -1] = 1/2 \text{ for every } n,$$

let $S_n = \sum_{1 \leq i \leq n} X_i$, and let $\tau = \inf\{n : |S_n| = k\}$. By considering $M_n = S_n^2 - n$, or otherwise, show that $\mathbb{E}[\tau] = k^2$.

[You may assume that $\mathbb{E}[\tau] < \infty$.]

[Throughout this question, standard properties of integration and of conditional expectation may be assumed if stated correctly.]

2A49

2013

3. (a) Let $p \ge 1$, let $(X_n)_{n\ge 0}$ be a sequence of random variables, and let Y be a random variable. What does it mean to say (i) that $(X_n)_{n\ge 0}$ is bounded in L^p and (ii) that X_n converges to Y in L^p ?

Show that if $1 \leq r < p$ and $(X_n)_{n \geq 0}$ is bounded in L^p , then it is bounded in L^r , and prove a similar statement relating convergence in L^p and in L^r .

[You may assume Jensen's inequality without proof.]

(b) Prove the Pythagoras formula that if $(M_n)_{n \ge 0}$ is a martingale in which $\mathbb{E}[M_n^2] < \infty$ for each n then for $-1 \le i < j$

$$\mathbb{E}[(M_j - M_i)^2] = \sum_{k=i+1}^{j} \mathbb{E}[(M_k - M_{k-1})^2],$$

where M_{-1} is defined to be 0.

Deduce carefully that a martingale $(M_n)_{n\geq 0}$ is bounded in L^2 if and only if $\mathbb{E}[M_0^2] < \infty$ and $\sum_{k\geq 1} \mathbb{E}[(M_k - M_{k-1})^2] < \infty$.

[Standard properties of conditional expectation and of L^2 spaces may be assumed if stated correctly.]

- (c) Assuming without proof Doob's Forward Convergence Theorem in the form that a martingale bounded in L^1 converges almost surely to an a.s. finite limit Y, show that a martingale $(M_n)_{n\geq 0}$ bounded in L^2 converges both almost surely and in L^2 to some random variable Y.
- (d) Let $(X_n)_{n \ge 1}$ be independent with $\mathbb{P}[X_n = 1] = \mathbb{P}[X_n = -1] = 1/2$ for each n. Let $M_n = \sum_{k=1}^n X_k/k$.
 - (i) Show that $(M_n)_{n \ge 0}$ is a martingale with respect to a suitable filtration.
 - (ii) Show that M_n converges almost surely to a random variable Y.
 - (iii) Find, with proof, $\mathbb{E}[Y]$ and $\mathbb{E}[Y^2]$.

[Throughout this question, standard properties of integration may be assumed without proof. You may assume that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6.$]

2013

2012 1. (a) (i) Define the terms σ -algebra, probability space, and event.

- (ii) Let $(A_n)_{n \ge 1}$ be a sequence of events in a probability space. What does it mean to say that A_n holds *infinitely often*?
- (iii) State and prove the first and second Borel–Cantelli lemmas.
- (b) Let $(X_n)_{n \ge 1}$ be a sequence of independent random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking non-negative integer values. Suppose that for each n and each $i \ge 1$, $\mathbb{P}(X_n \ge i) = 1/i$.
 - (i) Evaluate

$$\mathbb{P}(X_n \ge n^{\alpha} \text{ infinitely often })$$

for each (constant) real number $\alpha > 0$.

(ii) Show that the random variable

$$\limsup_{n \to \infty} \frac{\log X_n}{\log n}$$

is almost surely constant, and find its (almost sure) value.

(iii) Let $M_n = \max\{X_k : 1 \leq k \leq n\}$. Show that

$$\lim_{n \to \infty} \frac{\log M_n}{\log n} = 1$$

almost surely.

[Throughout this question, basic properties of probability measures may be assumed without proof if stated correctly.]

- 2012 (a) Let X, X_1, X_2 and Y be integrable random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra.
 - (i) What does it mean to say that Y is \mathcal{G} -measurable? Define the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$, the σ -algebra generated by Y, and the conditional expectation $\mathbb{E}[X \mid Y]$.
 - (ii) Show that $\mathbb{E}[X_1 + X_2 \mid \mathcal{G}] = \mathbb{E}[X_1 \mid \mathcal{G}] + \mathbb{E}[X_2 \mid \mathcal{G}]$ almost surely.
 - (iii) What does it mean to say that X and Y are *independent*? Show that if X and Y are independent, then $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$ almost surely. [You may assume that if X and Z are independent random variables, then $\mathbb{E}[XZ] = \mathbb{E}[X]\mathbb{E}[Z]$.]
 - (iv) Show that if Y is \mathcal{G} -measurable and XY is integrable, then $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$. [You may assume that if $Y \ge 0$ is a measurable function on Ω , then there is a sequence (Y_n) of simple functions with $Y_n \uparrow Y$.]
 - (b) Let X, Y and Z be independent, with each uniformly distributed on the set $\{1, 2, \ldots, 6\}$, so that X, Y and Z represent numbers rolled on three dice. Evaluate
 - (i) $\mathbb{E}[X + YZ \mid Y],$
 - (ii) $\mathbb{E}[X+Y \mid Y+Z]$, and
 - (iii) $\mathbb{E}[XY \mid Y + Z].$

[Standard properties of integration may be assumed throughout. In part (b), standard properties of conditional expectation may be assumed if stated correctly.]

- **2012 3.** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) What does it mean to say that
 - (i) $(\mathcal{F}_n)_{n \ge 0}$ is a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$,
 - (ii) $(X_n)_{n\geq 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 0}$?
 - (b) Doob's Upcrossing Lemma states that if $\mathbf{X} = (X_n)_{n \ge 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n \ge 0}$ and a < b are real numbers, then for any $n \ge 0$,

$$\mathbb{E}[U_n([a,b],\mathbf{X})] \leqslant \frac{\mathbb{E}[(X_n-a)^-]}{(b-a)}.$$

- (i) Define the number of upcrossings U_n .
- (ii) Using Doob's Upcrossing Lemma (which you need not prove), deduce Doob's Forward Convergence Theorem in the following form: if $(X_n)_{n\geq 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 0}$ with the property that $\sup_n \mathbb{E}[|X_n|] < \infty$, then $(X_n)_{n\geq 0}$ converges almost surely to an almost surely finite limit X_{∞} .
- (c) Let ε_n , $n \ge 1$, and V_n , $n \ge 0$, be independent random variables, with

$$\mathbb{P}(\varepsilon_n = 1) = \mathbb{P}(\varepsilon_n = -1) = 1/2, \quad \mathbb{P}(V_n = 1) = p_n, \quad \mathbb{P}(V_n = 0) = 1 - p_n,$$

for all n. Define X_n inductively by $X_0 = 1$ and, for $n \ge 0$,

$$X_{n+1} = X_n + V_n \varepsilon_{n+1} \quad \text{if} \quad X_n > 0$$

and

$$X_{n+1} = 0$$
 if $X_n = 0$.

- (i) Show that $(X_n)_{n\geq 0}$ is a martingale with respect to a filtration that you should define.
- (ii) Suppose that $p_n = 1$ for all n. Show that $X_n \to 0$ almost surely.
- (iii) Now let $p_n = 1/(n+1)$ for all n. Does $X_n \to 0$ almost surely? What if $p_n = 1/(n+1)^2$ for all n? [You may assume that for real numbers $0 < x_n < 1$, $\prod_{n=1}^{\infty} (1-x_n) = 0$ if and only if $\sum_{n=1}^{\infty} x_n = \infty$.]

[Throughout this question, standard properties of integration and of conditional expectation may be used without proof if stated correctly.]