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0 Introduction

These notes may be updated and revised as term progresses. They are based on notes by Alison
Etheridge and Oliver Riordan.

Comments and corrections are welcome, to martin@stats.ox.ac.uk.

0.1 Background

In the last fifty years probability theory has emerged both as a core mathematical discipline, sitting
alongside geometry, algebra and analysis, and as a fundamental way of thinking about the world. It
provides the rigorous mathematical framework necessary for modelling and understanding the inherent
randomness in the world around us. It has become an indispensable tool in many disciplines – from
physics to neuroscience, from genetics to communication networks, and, of course, in mathematical
finance. Equally, probabilistic approaches have gained importance in mathematics itself, from number
theory to partial differential equations.

Our aim in this course is to introduce some of the key tools that allow us to unlock this mathematical
framework. We build on the measure theory that we learned in Part A Integration and develop the
mathematical foundations essential for more advanced courses in analysis and probability. We’ll then
introduce the powerful concept of martingales and explore just a few of their remarkable properties.
The nearest thing to a course text is

• David Williams, Probability with Martingales, CUP.

Also highly recommended are:

• S.R.S. Varadhan, Probability Theory, Courant Lecture Notes Vol. 7.

• R. Durrett, Probability: theory and examples, 4th Edition, CUP 2010.

• A. Gut, Probability: a graduate course, Springer 2005.

Comment on notation: for probability and expectation, the type of brackets used has no significance
– some people use one, some the other, and some whichever is clearest in a given case. So E[X], E(X)
and EX all mean the same thing.

What is here called a σ-algebra is sometimes called a σ-field. Our default notation (Ω,F , µ) for a
measure space differs from that of Williams, who writes (S,Σ, µ).
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0.2 Course Synopsis

Review of σ-algebras, measure spaces. Uniqueness of extension of π-systems and Carathéodory’s
Extension Theorem, monotone-convergence properties of measures, limsup and liminf of a sequence
of events, Fatou’s Lemma, reverse Fatou Lemma, first Borel-Cantelli Lemma.

Random variables and their distribution functions, σ-algebras generated by a collection of random
variables. Product spaces. Independence of events, random variables and σ-algebras, π-systems
criterion for independence, second Borel-Cantelli Lemma. The tail σ-algebra, Kolomogorov’s 0-1 Law.
Convergence in measure and convergence almost everywhere.

Integration and expectation, review of elementary properties of the integral and Lp spaces [from Part
A Integration for the Lebesgue measure on R]. Scheffé’s Lemma, Jensen’s inequality. The Radon-
Nikodym Theorem [without proof]. Existence and uniqueness of conditional expectation, elementary
properties. Relationship to orthogonal projection in L2.

Filtrations, martingales, stopping times, discrete stochastic integrals, Doob’s Optional-Stopping Theorem,
Doob’s Upcrossing Lemma and “Forward” Convergence Theorem, martingales bounded in L2, Doob
decomposition, Doob’s submartingale inequalities.

Uniform integrability and L1 convergence, backwards martingales and Kolmogorov’s Strong Law of
Large Numbers.

Examples and applications.
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0.3 The Galton–Watson branching process

We begin with an example that illustrates some of the concepts that lie ahead.
In spite of earlier work by Bienaymé, the Galton–Watson branching process is attributed to the

great polymath Sir Francis Galton and the Revd Henry Watson. Like many Victorians, Galton was
worried about the demise of English family names. He posed a question in the Educational Times of
1873. He wrote

The decay of the families of men who have occupied conspicuous positions in past times
has been a subject of frequent remark, and has given rise to various conjectures. The
instances are very numerous in which surnames that were once common have become scarce
or wholly disappeared. The tendency is universal, and, in explanation of it, the conclusion
has hastily been drawn that a rise in physical comfort and intellectual capacity is necessarily
accompanied by a diminution in ‘fertility’. . .

He went on to ask “What is the probability that a name dies out by the ‘ordinary law of chances’?”
Watson sent a solution which they published jointly the following year. The first step was to distill

the problem into a workable mathematical model; that model, formulated by Watson, is what we now
call the Galton–Watson branching process. Let’s state it formally:

Definition 0.1 (Galton–Watson branching process). Let (Xn,r)n,r>1 be an infinite array of independent
identically distributed random variables, each with the same distribution as X, where

P[X = k] = pk, k = 0, 1, 2, . . .

The sequence (Zn)n>0 of random variables defined by

1. Z0 = 1,

2. Zn = Xn,1 + · · ·+Xn,Zn−1 for n > 1

is the Galton–Watson branching process (started from a single ancestor) with offspring distribution X.

In the original setting, the random variable Zn models the number of male descendants of a single
male ancestor after n generations.

In analyzing this process, key roles are played by the expectation µ = E[X] =
∑∞

k=0 kpk, which
we shall assume to be finite, and by the probability generating function f = fX of X, defined by
f(θ) = E[θX ] =

∑∞
k=0 pkθ

k.

Claim 0.2. Let fn(θ) = E[θZn ]. Then fn is the n-fold composition of f with itself (where by convention
a 0-fold composition is the identity).

‘Proof’
We proceed by induction. First note that f0(θ) = θ, so f0 is the identity. Assume that n > 1 and

fn−1 = f ◦ · · · ◦ f is the (n− 1)-fold composition of f with itself. To compute fn, first note that

E
[
θZn
∣∣Zn−1 = k

]
= E

[
θXn,1+···+Xn,k

]
= E

[
θXn,1

]
· · ·E

[
θXn,k

]
(independence)

= f(θ)k,

(since each Xn,i has the same distribution as X). Hence

E
[
θZn
∣∣Zn−1

]
= f(θ)Zn−1 . (1)
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This is our first example of a conditional expectation. Notice that the right hand side of (1) is a random
variable. Now

fn(θ) = E
[
θZn
]

= E
[
E
[
θZn
∣∣Zn−1

]]
(2)

= E
[
f(θ)Zn−1

]
= fn−1 (f(θ)) ,

and the claim follows by induction. 2

In (2) we have used what is called the tower property of conditional expectations. In this example
you can make all this work with the Partition Theorem of Prelims (because the events {Zn = k} form
a countable partition of the sample space). In the general theory that follows, we’ll see how to replace
the Partition Theorem when the sample space is more complicated, for example when considering
continuous random variables.

Watson wanted to establish the extinction probability of the branching process, i.e., the probability
that Zn = 0 for some n.

Claim 0.3. Let q = P[Zn = 0 for some n]. Then q is the smallest root in [0, 1] of the equation θ = f(θ).
In particular, assuming p1 = P[X = 1] < 1,

• if µ = E[X] 6 1, then q = 1,

• if µ = E[X] > 1, then q < 1.

‘Proof’
Let qn = P[Zn = 0] = fn(0). Since {Zn = 0} ⊆ {Zn+1 = 0} we see that qn is an increasing function

of n and, intuitively,
q = lim

n→∞
qn = lim

n→∞
fn(0). (3)

Since fn+1(0) = f(fn(0)) and f is continuous, (3) implies that q satisfies q = f(q).
Now observe that f is convex (i.e., f ′′ > 0) and f(1) = 1, so only two things can happen, depending

upon the value of µ = f ′(1):

1

f(θ)

θ00
µ 6 1

1
θ θ

1
µ > 1

0
0

1

0

f(θ)

In the case µ > 1, to see that q must be the smaller root θ0, note that f is increasing, and 0 = q0 6 θ0.
It follows by induction that qn 6 θ0 for all n, so q 6 θ0. 2

It’s not hard to guess the result above for µ > 1 and µ < 1, but the case µ = 1 is far from obvious.
The extinction probability is only one statistic that we might care about. For example, we might

ask whether we can say anything about the way in which the population grows or declines. Consider

E [Zn+1 | Zn = k] = E [Xn+1,1 + · · ·+Xn+1,k] = kµ (linearity of expectation). (4)
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In other words E[Zn+1 | Zn] = µZn (another conditional expectation). Now write

Mn =
Zn
µn
.

Then
E [Mn+1 |Mn] = Mn.

In fact, more is true:
E [Mn+1 |M0,M1, . . . ,Mn] = Mn.

A process (Mn)n>0 with this property is called a martingale.
It is natural to ask whether Mn has a limit as n → ∞ and, if so, can we say anything about that

limit? We’re going to develop the tools to answer these questions, but for now, notice that for µ 6 1
we have ‘proved’ that M∞ = limn→∞Mn = 0 with probability one, so

0 = E[M∞] 6= lim
n→∞

E[Mn] = 1. (5)

We’re going to have to be careful in passing to limits, just as we discovered in Part A Integration.
Indeed (5) may remind you of Fatou’s Lemma from Part A.

One of the main aims of this course is to provide the tools needed to make arguments such as that
presented above precise. Other key aims are to make sense of, and study, martingales in more general
contexts. This involves defining conditional expectation when conditioning on a continuous random
variable.

1 Measure spaces

We begin by recalling some definitions that you encountered in Part A Integration (and, although they
were not emphasized there, in Prelims Probability). The idea is that we want to be able to assign a
‘mass’ or ‘size’ to subsets of a space in a consistent way. In particular, for us these subsets will be
‘events’ or ‘collections of outcomes’ (subsets of a probability sample space Ω) and the ‘mass’ will be a
probability (a measure of how likely that event is to occur).

Recall that P(Ω) denotes the power set of Ω, i.e., the set of all subsets of Ω.

Definition 1.1 (Algebras and σ-algebras). Let Ω be a set and let A ⊆ P(Ω) be a collection of subsets
of Ω.

1. We say that A is an algebra (on Ω) if ∅ ∈ A and for all A,B ∈ A, Ac = Ω\A ∈ A and A∪B ∈ A.

2. We say that A is a σ-algebra (on Ω) if ∅ ∈ A, A ∈ A implies Ac ∈ A, and for all sequences
(An)n>1 of elements of A,

⋃∞
n=1An ∈ A.

Since intersections can be built up from complements and unions, an algebra is closed under finite
set operations; a σ-algebra is closed under countable set operations. Often we don’t bother saying ‘on
Ω’, but note that Ac makes sense only if we know which set Ω we are talking about. We tend to write
F for a σ-algebra (also called a σ-field by some people).

Definition 1.2 (Set functions). Let A be any set of subsets of Ω containing the empty set ∅. A set
function on A is a function µ : A → [0,∞] with µ(∅) = 0. We say that µ is

1. increasing if for all A,B ∈ A with A ⊆ B,

µ(A) 6 µ(B),
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2. additive if for all disjoint A,B ∈ A with A ∪B ∈ A (note that we must specify this in general)

µ(A ∪B) = µ(A) + µ(B),

3. countably additive, or σ-additive, if for all sequences (An) of disjoint sets in A with
⋃∞
n=1An ∈ A

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Definition 1.3 (Measure space). A measurable space is a pair (Ω,F) where F is a σ-algebra on Ω.
A measure space is a triple (Ω,F , µ) where Ω is a set, F is a σ-algebra on Ω and µ : F → [0,∞] is a
countably additive set function. Then µ is a measure on (Ω,F).

In short, a measure space is a set Ω equipped with a σ-algebra F and a countably additive set
function µ on F . Note that any measure µ is also additive and increasing.

Definition 1.4 (Types of measure space). Let (Ω,F , µ) be a measure space.

1. We say that µ is finite if µ(Ω) <∞.

2. If there is a sequence (En)n>1 of sets from F with µ(En) <∞ for all n and
⋃∞
n=1En = Ω, then

µ is said to be σ-finite.

3. In the special case when µ(Ω) = 1, we say that µ is a probability measure and (Ω,F , µ) is a
probability space; we often use the notation (Ω,F ,P) to emphasize this.

Recall from Part A Integration that measures also respect monotone limits.

Notation: For a sequence (Fn)n>1 of sets, Fn ↑ F means Fn ⊆ Fn+1 for all n and
⋃∞
n=1 Fn = F .

Similarly, Gn ↓ G means Gn ⊇ Gn+1 for all n and
⋂∞
n=1Gn = G.

Lemma 1.5 (Monotone convergence properties). Let (Ω,F , µ) be a measure space.

1. If (Fn)n>1 is a sequence of sets from F with Fn ↑ F , then µ(Fn) ↑ µ(F ) as n→∞,

2. If (Gn)n>1 is a sequence of sets from F with Gn ↓ G, and µ(Gk) < ∞ for some k ∈ N, then
µ(Gn) ↓ µ(G) as n→∞.

Proof. See Part A Integration (or Exercise).

Note that µ(Gk) <∞ is essential in (ii): for example take Gn = (n,∞) ⊆ R and Lebesgue measure.
The following partial converse is sometimes useful.

Lemma 1.6. Let µ : A → [0,∞) be an additive set function on an algebra A taking only finite values.
Then µ is countably additive iff for every sequence (An) of sets in A with An ↓ ∅ we have µ(An)→ 0.

Proof. One implication follows (essentially) from Lemma 1.5; the other is an exercise.

There are lots of measure spaces out there, several of which you are already familiar with.

Example 1.7 (Discrete measure theory). Let Ω be a countable set. A mass function on Ω is any
function µ̄ : Ω → [0,∞]. Given such a µ̄ we can define a measure on (Ω,P(Ω)) by setting µ(A) =∑

x∈A µ̄(x).
Equally, given a measure µ on (Ω,P(Ω)) we can define a corresponding mass function by µ̄(x) =

µ({x}). For countable Ω there is a one-to-one correspondence between measures on (Ω,P(Ω)) and
mass functions.
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These discrete measure spaces provide a ‘toy’ version of the general theory, but in general they are not
enough. Discrete measure theory is essentially the only context in which one can define the measure
explicitly. This is because σ-algebras are not in general amenable to an explicit presentation, and it
is not in general the case that for an arbitrary set Ω all subsets of Ω can be assigned a measure –
recall from Part A Integration the construction of a non-Lebesgue measurable subset of R. Instead
one shows the existence of a measure defined on a ‘large enough’ collection of sets, with the properties
we want. To do this, we follow a variant of the approach you saw in Part A; the idea is to specify
the values to be taken by the measure on a smaller class of subsets of Ω that ‘generate’ the σ-algebra
(as the singletons did in Example 1.7). This leads to two problems. First we need to know that it is
possible to extend the measure that we specify to the whole σ-algebra. This construction problem is
often handled with Carathéodory’s Extension Theorem (Theorem 1.13 below). The second problem is
to know that there is only one measure on the σ-algebra that is consistent with our specification. This
uniqueness problem can often be resolved through a corollary of Dynkin’s π-system Lemma that we
state below. First we need some more definitions.

Definition 1.8 (Generated σ-algebras). Let A be a collection of subsets of Ω. Define

σ(A) = {A ⊆ Ω : A ∈ F for all σ-algebras F on Ω containing A} .

Then σ(A) is a σ-algebra (exercise) which is called the σ-algebra generated by A. It is the smallest
σ-algebra containing A: if F ⊇ A is a σ-algebra then F ⊇ σ(A).

Definition 1.9 (Borel σ-algebra, Borel measure). Let Ω be a topological space with topology (i.e., set
of open sets) T . Then the Borel σ-algebra on Ω is the σ-algebra generated by the open sets:

B(Ω) = σ(T ).

A measure µ on (Ω,B(Ω)) is called a Borel measure on Ω.

Note that B(Ω) depends not just on the set Ω, but also on the topology on Ω. Usually, this is
understood: in particular, when Ω = R, we mean the usual Euclidean topology on R.

Definition 1.10 (π-system). Let I be a collection of subsets of Ω. We say that I is a π-system if
A,B ∈ I implies A ∩B ∈ I.

Notice that an algebra is automatically a π-system.

Example 1.11. The collection
π(R) = {(−∞, x] : x ∈ R}

forms a π-system and σ(π(R)), the σ-algebra generated by π(R), is B(R), the σ-algebra consisting of
all Borel subsets of R (exercise).

Here’s why we care about π-systems.

Theorem 1.12 (Uniqueness of extension). Let µ1 and µ2 be measures on the same measurable space
(Ω,F), and let I ⊆ F be a π-system. If µ1(Ω) = µ2(Ω) <∞ and µ1 = µ2 on I, then µ1 = µ2 on σ(I).

We will often apply the theorem to a π-system I with σ(I) = F , so the conclusion is that µ1 and
µ2 agree. A very important special case is that if two probability measures on Ω agree on a π-system,
then they agree on the σ-algebra generated by that π-system.

For a proof of Theorem 1.12 see (e.g.) Williams, Appendix A.1.
That deals with uniqueness, but what about existence?
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Theorem 1.13 (Carathéodory Extension Theorem). Let Ω be a set and A an algebra on Ω, and let
F = σ(A). Let µ0 : A → [0,∞] be a countably additive set function. Then there exists a measure µ on
(Ω,F) such that µ = µ0 on A.

Remark. If µ0(Ω) < ∞, then Theorem 1.12 tells us that µ is unique, since an algebra is certainly a
π-system.

The Carathéodory Extension Theorem doesn’t quite solve the problem of constructing measures
on σ-algebras – it reduces it to constructing countably additive set functions on algebras; we shall see
several examples.

The proof of the Carathéodory Extension Theorem is not examinable. Here are some of the ideas;
this is much the same as the proof of the existence of Lebesgue measure in Part A Integration (which
was also non-examinable). First one defines the outer measure µ∗(B) of any B ⊆ Ω by

µ∗(B) = inf
{ ∞∑
j=1

µ0(Aj) : Aj ∈ A,
∞⋃
j=1

Aj ⊇ B
}
.

Then define a set B to be measurable if for all sets E,

µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc).

[Alternatively, if µ0(Ω) is finite, then one can define B to be measurable if µ∗(B) + µ∗(Bc) = µ0(Ω);
this more intuitive definition expresses that it is possible to cover B and Bc ‘efficiently’ with sets from
A.] One must check that µ∗ defines a countably additive set function on the collection of measurable
sets extending µ0, and that the measurable sets form a σ-algebra that contains A. For details see
Appendix A.1 of Williams, or Varadhan and the references therein.

Corollary 1.14. There exists a unique Borel measure µ on R such that for all a, b ∈ R with a < b,
µ ((a, b]) = b− a. The measure µ is the Lebesgue measure on B(R).

The proof of Corollary 1.14 is an exercise. (The hard part is checking countable additivity on a suitable
algebra; we will do a related example in a moment. Note that an extra step is required for uniqueness
since µ(Ω) =∞.)

Remark. In Part A Integration, the Lebesgue measure was defined on a σ-algebraMLeb that contains,
but is strictly larger than, B(R). It turns out (exercise) thatMLeb consists of all sets that differ from a
Borel set on a null set. In this course we shall work with B(R) rather than MLeb: the Borel σ-algebra
will be ‘large enough’ for us. (This changes later when studying continuous-time martingales.) An
advantage B(R) is that it has a simple definition independent of the measure; recall that which sets
are null depends on which measure is being considered.

Recall that in our ‘toy example’ of discrete measure theory there was a one-to-one correspondence
between measures and mass functions. Can we say anything similar for Borel measures on R? (I.e.,
measures on (R,B(R))?)

Definition 1.15. Let µ be a Borel probability measure on R. The distribution function of µ is the
function F : R→ R defined by F (x) = µ((−∞, x]).

Any distribution function F has the following properties:

1. F is (weakly) increasing, i.e., x < y implies F (x) 6 F (y),
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2. F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→∞, and

3. F is right continuous: y ↓ x implies F (y)→ F (x).

To see the last, suppose that yn ↓ x and let An = (−∞, yn]. Then An ↓ A = (−∞, x]. Thus, by
Lemma 1.5, F (yn) = µ(An) ↓ µ(A) = F (x). We often write F (−∞) = 0 and F (∞) = 1 as shorthand
for the second property.

Using the Carathéodory Extension Theorem, we can construct all Borel probability measures
on R (i.e., probability measures on (R,B(R))): there is one for each distribution function. Since
finite measures can all be obtained from probability measures (by multiplying by a constant), this
characterizes all finite measures on B(R).

Theorem 1.16 (Lebesgue). Let F : R→ R be an increasing, right continuous function with F (−∞) =
0 and F (∞) = 1. Then there is a unique Borel probability measure µ = µF on R such that µ((−∞, x]) =
F (x) for every x. Every Borel probability measure µ on R arises in this way.

In other words, there is a 1-1 correspondence between distribution functions and Borel probability
measures on R.

Proof. Suppose for the moment that the existence statement holds. Since π(R) = {(−∞, x] : x ∈ R} is
a π-system which generates the σ-algebra B(R), uniqueness follows by Theorem 1.12. Also, to see the
final part, let µ be any Borel probability measure on R, and let F be its distribution function. Then
F has the properties required for the first part of the theorem, and we obtain a measure µF which by
uniqueness is the measure µ we started with.

For existence we shall apply Theorem 1.13, so first we need a suitable algebra. For −∞ 6 a 6 b <
∞, let Ia,b = (a, b], and set Ia,∞ = (a,∞). So Ia,b = {x ∈ R : a < x 6 b}. Let I = {Ia,b : −∞ 6 a 6
b 6 ∞} be the collection of intervals that are open on the left and closed on the right. Let A be the
set of finite disjoint unions of elements of I; then A is an algebra, and σ(A) = σ(I) = B(R).

We can define a set function µ0 on A by setting

µ0(Ia,b) = F (b)− F (a)

for intervals and then extending it to A by defining it as the sum for disjoint unions from I. It is an
easy exercise to show that µ0 is well defined and finitely additive. Carathéodory’s Extension Theorem
tells us that µ0 extends to a probability measure on B(R) provided that µ0 is countably additive on A.
Proving this is slightly tricky. Note that we will have to use right continuity at some point.

First note that by Lemma 1.6, since µ0 is finite and additive on A, it is countably additive if and
only if, for any sequence (An) of sets from A with An ↓ ∅, µ0(An) ↓ 0.

Suppose that F has the stated properties but, for a contradiction, that there exist A1, A2, . . . ∈ A
with An ↓ ∅ but µ0(An) 6→ 0. Since µ0(An) is a decreasing sequence, there is some δ > 0 (namely,
limµ0(An)) such that µ0(An) > δ for all n. We look for a descending sequence of compact sets; since
if all the sets in such a sequence are non-empty, so is their intersection.

Step 1: Replace An by Bn = An ∩ (−l, l]. Since

µ0(An \Bn) 6 µ0

(
(−∞, l] ∪ (l,∞)

)
= F (−l) + 1− F (l),

if we take l large enough then we have µ0(Bn) > δ/2 for all n.
Step 2: Suppose that Bn =

⋃kn
i=1 Ian,i,bn,i . Let Cn =

⋃kn
i=1 Iãn,i,bn,i where an,i < ãn,i < bn,i and we

use right continuity of F to do this in such a way that

µ0(Bn\Cn) <
δ

2n+2
for each n.
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Let Cn be the closure of Cn (obtained by adding the points ãn,i to Cn).
Step 3: The sequence (Cn) need not be decreasing, so set Dn =

⋂n
i=1Ci, and En =

⋂n
i=1Ci. Since

µ0(Dn) > µ0(Bn)−
n∑
i=1

µ0(Bi\Ci) >
δ

2
−

n∑
i=1

δ

2i+2
>
δ

4
,

Dn is non-empty. Thus En ⊇ Dn is non-empty.
Each En is closed and bounded, and so compact. Also, each En is non-empty, and En ⊆ En+1.

Hence, by a basic result from topology, there is some x such that x ∈ En for all n. Since En ⊆ Cn ⊆
Bn ⊆ An, we have x ∈ An for all n, contradicting An ↓ ∅.

The function F (x) is the distribution function corresponding to the probability measure µ. In the
case when F is continuously differentiable, say, it is precisely the cumulative distribution function of
a continuous random variable with probability density function f(x) = F ′(x) that we encountered in
Prelims.

More generally, if f(x) > 0 is measurable and (Lebesgue) integrable with
∫∞
−∞ f(x)dx = 1, then we

can use f as a density function to construct a measure µ on (R,B(R)) by setting

µ(A) =

∫
A
f(x)dx.

This measure has distribution function F (x) =
∫ x
−∞ f(y)dy. (It is not necessarily true that F ′(x) =

f(x) for all x, but this will hold for almost all x.) For example, taking f(x) = 1 on (0, 1), or on [0, 1],
and f(x) = 0 otherwise, we obtain the distribution function F with F (x) = 0, x < 0, F (x) = x,
0 6 x 6 1 and F (x) = 1 for x > 1, corresponding to the uniform distribution on [0, 1].

For a very different example, if x1, x2, . . . is a sequence of points (for example the non-negative
integers), and we have probabilities pn > 0 at these points with

∑
n pn = 1, then for the discrete

probability measure

µ(A) =
∑

n :xn∈A
pn,

we have the distribution function
F (x) =

∑
n :xn6x

pn,

which increases by jumps, the jump at xn being of height pn. (The picture can be complicated though,
for example if there is a jump at every rational.)

There are examples of continuous distribution functions F that don’t come from any density f ,
e.g., the Devil’s staircase, corresponding (roughly speaking) to the uniform distribution on the Cantor
set.

The measures µ we have just described are sometimes called Lebesgue–Stieltjes measures. We’ll
return to them a little later.

We now have a very rich class of measures to work with. In Part A Integration, you saw a theory
of integration based on Lebesgue measure. It is natural to ask whether we can develop an analogous
theory for other measures. The answer is ‘yes’, and in fact almost all the work was done in Part A;
the proofs used there carry over to any measure. It is left as a (useful) exercise to check that. Here we
just state the key definitions and results.
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2 Integration

2.1 Measurable functions and the definition of the integral

Definition 2.1 (Measurable function). Let (Ω,F) and (Λ,G) be measurable spaces. A function f :
Ω→ Λ is measurable (with respect to F , G) if

A ∈ G =⇒ f−1(A) ∈ F .

Usually Λ = R or R = [−∞,∞]. In this case we always take G to consist of the Borel sets: G = B(R)
or B(R), and omit it from the notation. This contrasts with mapping from R, where different σ-algebras
are considered in different circumstances (sometimes including MLeb, though not in this course).

Proposition 2.2. A function f : Ω → R or f : Ω → R is measurable with respect to F (and B(R) or
B(R)) if and only if {x : f(x) 6 t} ∈ F for every t ∈ R.

Proof. For f : Ω→ R this was proved in Integration; the key points are that {A ⊆ R : f−1(A) ∈ F} is
a σ-algebra, and that B(R) is generated by {(−∞, t] : t ∈ R}. The proof for f : Ω → R is the same:
B(R) is generated by {[−∞, t] : t ∈ R} ⊂ P(R).

Unless otherwise stated, measurable functions map to R with the Borel σ-algebra. Thus a measurable
function on (Ω,F) means a function Ω→ R that is (F ,B(R))-measurable.

Remark. It is worth bearing in mind that (real-valued) functions on Ω generalise subsets of Ω in a
natural way, with the function 1A corresponding to the subset A. As a sanity check, note that 1A is a
measurable function if and only if A is a measurable set, i.e., A ∈ F .

Recall that
lim sup
n→∞

xn = lim
n→∞

sup
m>n

xm and lim inf
n→∞

xn = lim
n→∞

inf
m>n

xm.

The following result was proved in Part A (in some cases only for functions taking finite values, but
the extension is no problem).

Lemma 2.3. Let (fn) be a sequence of measurable functions on (Ω,F) taking values in R, and let
h : R → R be continuous. Then, whenever they make sense1, the following are also measurable
functions on (Ω,F):

f1 + f2, f1f2, max{f1, f2}, min{f1, f2}, f1/f2, h ◦ f

sup
n
fn, inf

n
fn, lim sup

n→∞
fn, lim inf

n→∞
fn.

Let (Ω,F , µ) be a measure space. Given a measurable function f : Ω → R, we want to define,
where possible, the integral of f with respect to µ. There are many variants of the notation, such as:∫

f dµ =

∫
Ω
f dµ = µ(f) =

∫
x∈Ω

f(x)dµ(x) =

∫
f(x)µ(dx)

and so on. The dummy variable (here x) is sometimes needed when, for example, we have a function
f(x, y) of two variables, and with y fixed are integrating the function f(·, y) given by x 7→ f(x, y).

1For example, ∞−∞ is not defined.
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Definition 2.4. A simple function φ on a measure space (Ω,F , µ) is a function φ : Ω → R that may
be written as a finite sum

φ =

n∑
k=1

ak1Ek (6)

where each Ek ∈ F and each ak ∈ R. The canonical form of φ is the unique decomposition as in (6)
where the numbers ak are distinct and non-zero and the sets Ek are disjoint and non-empty.

The following definitions and results were given in Part A Integration in the special case of Lebesgue
measure. But they extend with no change to a general measure space (Ω,F , µ).

Definition 2.5. If φ is a non-negative simple function with canonical form (6), then we define the
integral of φ with respect to µ as ∫

φdµ =
n∑
k=1

akµ(Ek).

This formula then also applies (exercise) whenever φ is as in (6), even if this is not the canonical
form, as long as we avoid ∞−∞ (for example by taking ak > 0).

Definition 2.6. For a non-negative measurable function f on (Ω,F , µ) we define the integral∫
f dµ = sup

{∫
φdµ : φ simple, 0 6 φ 6 f

}
.

Note that the supremum may be equal to +∞.

Definition 2.7. We say that a measurable function f on (Ω,F , µ) is integrable if
∫
|f |dµ < ∞. If f

is integrable, its integral is defined to be∫
f dµ =

∫
f+ dµ−

∫
f−dµ,

where f+ = max(f, 0) and f− = max(−f, 0) are the positive and negative parts of f .

Note that f = f+ − f−. A very important point is that if f is measurable, then
∫
f dµ is defined

either if f is non-negative (when ∞ is a possible value) or if f is integrable.
There are other possible sequences of steps to defining the integral, giving the same result. This

generalized integral has the same basic properties as in the special case of Lebesgue measure, with
the same proofs. For example, if f and g are measurable functions on (Ω,F , µ) that are either both
non-negative or both integrable, and c ∈ R, then∫

(f + g)dµ =

∫
f dµ+

∫
gdµ,

∫
cf dµ = c

∫
f dµ.

We have defined integrals only over the whole space. This is all we need – if f is a measurable
function on (Ω,F , µ) and A ∈ F then we define∫

A
f dµ =

∫
f1Adµ,

i.e., we integrate (over the whole space) the function that agrees with f on A and is 0 outside A.
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If µ is the Lebesgue measure on (R,B(R)), then we have just redefined the Lebesgue integral as in
Part A. For a very different example, suppose that µ is a discrete measure with mass pi at point xi,
for a (finite or countably infinite) sequence x1, x2, . . .. Then you can check that∫

f dµ =
∑
i

f(xi)pi,

whenever f > 0 (where +∞ is allowed as the answer) or the sum converges absolutely. For another
example, suppose that µ has distribution function F (x) =

∫ x
−∞ g(y)dy. Then∫

f dµ =

∫
f(x)g(x)dx,

where the second integral is with respect to Lebesgue measure. In proving statements like this it is often
helpful to start by considering the case f = 1E , then simple functions f , then non-negative measurable
f , and finally general measurable f . It also helps to recall that given any measurable f > 0 there are
simple functions fn > 0 with fn ↑ f .

Remark 2.8. One final property of integration that is easy to check (exercise) from the definitions
is that for f > 0,

∫
f dµ is determined by the numbers µ({x : f(x) > t}) for each t > 0. Hence, for

general f ,
∫
f dµ is determined by the numbers µ({x : f(x) > t}) for t > 0 and µ({x : f(x) 6 t}) for

t 6 0. Since {x : f(x) > t} is the complement of the union of the sets {x : f(x) 6 s}, s < t, on a
probability space, say,

∫
f dµ is determined by the numbers µ({x : f(x) 6 t}) for t ∈ R. This holds

even across probability spaces: if fi is a measurable function on the probability space (Ωi,Fi, µi) and
for every t ∈ R, µ1({x ∈ Ω1 : f1(x) 6 t}) = µ2({x ∈ Ω2 : f2(x) 6 t}), then

∫
f1 dµ1 =

∫
f2 dµ2, or both

are undefined.

Definition 2.9 (µ-almost everywhere). Let (Ω,F , µ) be a measure space. We say that a property
holds µ-almost everywhere or µ-a.e. if it holds except on a set of µ-measure zero. If µ is a probability
measure, we often say almost surely or a.s. instead of almost everywhere. Thus an event A holds
almost surely if P[A] = 1. This does not imply that A = Ω.

An important property of integration is that

f = g µ-almost everywhere =⇒
∫
f dµ =

∫
gdµ.

Generally speaking, we don’t care what happens on sets of measure zero. It is vital to remember that
notions of almost everywhere depend on the underlying measure µ.

The measurable functions that are going to interest us most in what follows are random variables.

Definition 2.10 (Random Variable). In the special case when (Ω,F ,P) is a probability space, we call
a measurable function X : Ω→ R a (real-valued) random variable.

Sometimes we consider X : Ω→ R instead.
As we already did in Prelims, we can think of Ω as the sample space of an experiment, and the

random variable X as an observable, i.e. something that can be measured. What is the integral of X?

Definition 2.11 (Expectation). The expectation of a random variable X defined on (Ω,F ,P) is

E[X] =

∫
X dP =

∫
Ω
X(ω)dP(ω).
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A random variable X induces a probability measure µX on R via

µX(A) = P[X−1(A)] for A ∈ B(R).

In particular, FX(x) = µX((−∞, x]) defines the distribution function of X (c.f. Theorem 1.16). Since
{(−∞, x] : x ∈ R} is a π-system, we see that the distribution function uniquely determines µX . From
Remark 2.8,

E[X] =

∫
Ω
X(ω)dP(ω) =

∫
R
xdµX(x).

Very often in applications we suppress the sample space Ω and work directly with µX .

2.2 The Convergence Theorems

The following theorems were proved in Part A for Lebesgue integral. Again the proofs carry over to
the more general integral defined here.

Theorem 2.12 (Fatou’s Lemma). Let (fn) be a sequence of non-negative measurable functions on
(Ω,F , µ). Then ∫

lim inf
n→∞

fndµ 6 lim inf
n→∞

∫
fndµ.

Theorem 2.13 (Monotone Convergence Theorem). Let (fn) be a sequence of non-negative measurable
functions on (Ω,F , µ). Then

fn ↑ f =⇒
∫
fndµ ↑

∫
f dµ.

Note that we are not excluding
∫
f dµ =∞ here. Also, we could just as well write fn ↑ f µ-almost

everywhere.
Equivalently, considering partial sums, the Monotone Convergence Theorem says that if (fn) is a

sequence of non-negative measurable functions, then∫ ∞∑
n=1

fndµ =

∞∑
n=1

∫
fndµ.

Recall that (fn) converges pointwise to f if, for every x ∈ Ω, we have fn(x)→ f(x) as n→∞.

Theorem 2.14 (Dominated Convergence Theorem). Let (fn) be a sequence of measurable functions
on (Ω,F , µ) with fn → f pointwise. Suppose that for some integrable function g, |fn| 6 g for all n.
Then f is integrable and ∫

fndµ→
∫
f dµ as n→∞.

Again, convergence almost everywhere is enough.
We will also use the following less standard result.

Lemma 2.15 (Reverse Fatou Lemma). Let (fn) be a sequence of measurable functions. Assume that
there exists an integrable function g such that fn 6 g for all n. Then∫

lim sup
n→∞

fndµ > lim sup
n→∞

∫
fndµ.

Proof. Apply Fatou to hn = g − fn. (Note that
∫
gdµ <∞ is needed.)
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2.3 Product Spaces and Independence

Definition 2.16 (Product σ-algebras). Given two sets Ω1 and Ω2, the Cartesian product Ω = Ω1×Ω2

is the set of pairs (ω1, ω2) with ω1 ∈ Ω1 and ω2 ∈ Ω2.
If Fi is a σ-algebra on Ωi, then a measurable rectangle in Ω = Ω1 ×Ω2 is a set of the form A1 ×A2

with A1 ∈ F1 and A2 ∈ F2. The product σ-algebra F = F1 × F2 is the σ-algebra on Ω generated by
the set of all measurable rectangles. (Note that F is not the Cartesian product of F1 and F2.)

Given two probability measures P1 and P2 on (Ω1,F1) and (Ω2,F2) respectively, we’d like to define
a probability measure on (Ω,F) by setting

P[A1 ×A2] = P1[A1]P2[A2] (7)

for each measurable rectangle and extending it to the whole of F . Note that the set I of measurable
rectangles is a π-system with (by definition) σ(I) = F , so if such a probability measure on (Ω,F)
exists, it is unique by Theorem 1.12.

First, we extend P to the algebra A consisting of all finite disjoint unions of measurable rectangles
by setting

P[R1 ∪ · · · ∪Rn] =
n∑
i=1

P[Ri] (8)

when R1, . . . , Rn ∈ I are disjoint. It is a tedious, but straightforward, exercise to check that this is
well-defined. (This also follows from the (proof of) the next lemma.)

To check that we can extend P to the whole of F = σ(A), we need to check that P defined by (7)
and (8) is actually countably additive on A so that we can apply Carathéodory’s Extension Theorem.

Lemma 2.17. The set function P defined on A through (7) and (8) is countably additive on A.

Proof. For any A ∈ A and ω2 ∈ Ω2, define the section

Aω2 = {ω1 : (ω1, ω2) ∈ A} ⊆ Ω1,

and let f(ω2) = P1[Aω2 ]. Then f is a simple function on Ω2 (consider first the case A = A1×A2), and

P[A] =

∫
f(ω2)dP2.

Now let An ∈ A be disjoint sets with union A ∈ A, let An,ω2 = {ω1 : (ω1, ω2) ∈ An}, and define
fn(ω2) = P1[An,ω2 ], so (as above) P[An] =

∫
fndP2.

For each ω2 ∈ Ω2, the sets An,ω2 are disjoint, with union Aω2 . Hence (since P1 is a measure),

P1[Aω2 ] =
∞∑
n=1

P1[An,ω2 ],

i.e., f =
∑∞

n=1 fn. Since the fn are non-negative, the Monotone Convergence Theorem (applied on
(Ω2,F2,P2)) gives

∫
f =

∑∫
fn, i.e., P[A] =

∑
P[An].

By Carathéodory’s Extension Theorem (Theorem 1.13) and Theorem 1.12 we see that P extends
uniquely to a probability measure on σ(A) = F .

Definition 2.18 (Product measure). The measure P defined through (7) is called the product measure
on (Ω,F), and denoted P1 × P2. The probability space (Ω,F ,P) is the product probability space
(Ω1 × Ω2,F1 ×F2,P1 × P2).
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The definitions extend easily to define the product F1 × · · · × Fk of k σ-algebras, and the product
P1 × · · · × Pk of k probability measures. These product operations behave as you expect: for example,
(P1× P2)× P3 = P1× P2× P3. [It is not true in general that P1× P2 = P2× P1. If Ω1 6= Ω2 then these
measures aren’t even defined on the same space.]

Definition 2.19. Let (Ωi,Fi)i>1 be a sequence of measurable spaces. The product σ-algebra F =∏∞
i=1Fi on Ω =

∏∞
i=1 Ωi is the σ-algebra generated by all sets of the form

∏n
i=1Ai ×

∏∞
i=n+1 Ωi where

Ai ∈ Fi, i.e., by all finite-dimensional measurable rectangles.

Remark 2.20 (Countable products of probability measures). Given a sequence of probability spaces,
one can define a product probability measure on the product σ-algebra with the expected properties.
One way to do this is to apply Theorem 1.13 directly as in the proof of Lemma 2.17, but the condition is
quite tricky to verify. It also follows by taking a suitable ‘limit’ of finite products using the Kolmogorov
Consistency Theorem. An alternative approach for Borel measures on R is outlined on the problem
sheets.

The most familiar example of a product measure is, of course, Lebesgue measure on R2, or, more
generally, by extending the above in the obvious way on Rd.

Our integration theory was valid for any measure space (Ω,F , µ) on which µ is a countably additive
measure. But as we already know for R2, in order to calculate the integral of a function of two variables
it is convenient to be able to proceed in stages and calculate the repeated integral. So if f is integrable
with respect to Lebesgue measure on R2 then we know that∫

R2

f(x, y)dxdy =

∫ (∫
f(x, y)dx

)
dy =

∫ (∫
f(x, y)dy

)
dx.

This result (Fubini’s Theorem) applies just as well to the product of general probability measures:

Theorem 2.21 (Fubini + Tonelli). Let (Ω,F ,P) be the product of the probability spaces (Ωi,Fi,Pi),
i = 1, 2, and let f(ω) = f(ω1, ω2) be a measurable function on (Ω,F). The functions

x 7→
∫

Ω2

f(x, y)dP2(y), y 7→
∫

Ω1

f(x, y)dP1(x)

are F1-, F2-measurable respectively.
Suppose either (i) that f is integrable on Ω or (ii) that f > 0. Then∫

Ω
f dP =

∫
Ω2

(∫
Ω1

f(x, y)dP1(x)

)
dP2(y) =

∫
Ω1

(∫
Ω2

f(x, y)dP2(y)

)
dP1(x),

where in case (ii) the common value may be ∞.

Warning: Just as we saw for functions on R2 in Part A Integration, for f to be integrable we
require that

∫
|f |dP <∞. If we drop the assumption that f must be integrable or non-negative, then

it is not hard to cook up examples where both repeated integrals exist but their values are different.
One of the central ideas in probability theory is independence and this is intricately linked with

product measure. Intuitively, two events are independent if they have no influence on each other.
Knowing that one has happened tells us nothing about the chance that the other has happened. More
formally:
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Definition 2.22 (Independence). Let (Ω,F ,P) be a probability space. Let I be a finite or countably
infinite set. We say that the events (Ai)i∈I where each Ai ∈ F are independent if for all finite subsets
J ⊆ I

P

[⋂
i∈J

Ai

]
=
∏
i∈J

P[Ai].

Sub σ-algebras G1,G2, . . . of F are called independent if whenever Ai ∈ Gi and i1, i2, . . . , in are distinct,
then

P[Ai1 ∩ . . . ∩Ain ] =

n∏
k=1

P[Aik ].

Note that we impose these conditions for finite subsets only, but they then also hold for countable
subsets, using Lemma 1.5. They also hold after complementing some or all of the Ai (exercise).

How does this fit in with our notion of independence from Prelims? We need to relate random
variables to σ-algebras.

Definition 2.23 (σ-algebra generated by a random variable). Let (Ω,F ,P) be a probability space and
let X be a real-valued random variable on (Ω,F ,P). The σ-algebra generated by X is

σ(X) = {X−1(A) : A ∈ B(R)}.

It is easy to check that σ(X) is indeed a σ-algebra (see the proof of Proposition 2.2), and by
definition of a random variable (as a measurable function on (Ω,F)), we have σ(X) ⊆ F . Moreover,

σ(X) = σ
(
{{X 6 t} : t ∈ R}

)
,

where {X 6 t} = {ω : X(ω) 6 t} (again, c.f. Proposition 2.2).

Definition 2.24 (σ-algebra generated by a sequence of random variables). More generally, if (Xn) is
a finite or infinite sequence of random variables on (Ω,F ,P), then

σ(X1, X2, . . .) = σ

(⋃
n

σ(Xn)

)
= σ

(
{{Xn 6 t} : n > 1, t ∈ R}

)
.

Definition 2.25. Let X be a random variable on a probability space (Ω,F ,P), and let G ⊆ F be a
σ-algebra. Then X is called G-measurable if X is measurable as a function on (Ω,G).

In other words, X is G-measurable if and only if σ(X) ⊆ G. Thus σ(X) is the smallest σ-algebra
with respect to which X is measurable.

It is easy to check that X is G-measurable if and only if {X 6 t} ∈ G for every t ∈ R.
To understand what these definitions mean, note that a random variable Y is σ(X)-measurable

if and only if Y = f(X) for some measurable function f : R → R. Similarly, Y is σ(X1, X2, . . .)-
measurable if and only if Y = f(X1, X2, . . .) for some measurable function f on the countable product
of (R,B(R)) with itself.

Definition 2.26 (Independent random variables). Random variables X1, X2, . . . are called independent
if the σ-algebras σ(X1), σ(X2), . . . are independent.

If we write this in more familiar language we see that X and Y are independent if for each pair
A,B of Borel subsets of R

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B].

Any measurable function f from a probability space (Ω,F ,P) to a measurable space (Λ,G) induces
a probability measure µf = P◦f−1 on (Λ,G), defined by µf (A) = P[f ∈ A] = P[f−1(A)]. The following
result is easy to check.
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Lemma 2.27. Two random variables X and Y on the probability space (Ω,F ,P) are independent if
and only if the measure µX,Y induced on R2 by (X,Y ) is the product measure µX × µY , where µX and
µY are the measures on R induced by X and Y respectively.

This generalizes the result you learned in Prelims and Part A for discrete/continuous random
variables – two continuous random variables X and Y are independent if and only if their joint density
function can be written as the product of the density function of X and the density function of Y .

Of course the conditions of Definition 2.26 would be impossible to check in general – we don’t have
a nice explicit presentation of the σ-algebras σ(Xi). But we can use Theorem 1.12 (uniqueness of
extension) to reduce it to something much more manageable.

Theorem 2.28. Let (Ω,F ,P) be a probability space. Suppose that G and H are sub σ-algebras of F
and that G0 and H0 are π-systems with σ(G0) = G and σ(H0) = H. Then G and H are independent iff
G0 and H0 are independent, i.e. P[G ∩H] = P[G]P[H] whenever G ∈ G0, H ∈ H0.

Proof. Fix G ∈ G0. The two functions H 7→ P[G ∩H] and H 7→ P[G]P[H] define measures on (Ω,H)
(check!) with the same total mass P[G], and they agree on the π-system H0. So by Theorem 1.12 they
agree on σ(H0) = H. Hence, for G ∈ G0 and H ∈ H

P[G ∩H] = P[G]P[H].

Now fix H ∈ H and repeat the argument with the two measures G 7→ P[G∩H] and G 7→ P[G]P[H].

This extends easily to n σ-algebras and hence (since independence can be defined considering finitely
many at a time) to a sequence of σ-algebras.

Corollary 2.29. A sequence (Xn)n>1 of real-valued random variables on (Ω,F ,P) is independent iff
for all n > 1 and all x1, . . . xn ∈ R (or R),

P[X1 6 x1, . . . , Xn 6 xn] = P[X1 6 x1] . . .P[Xn 6 xn].

The existence of countable product spaces tells us that, given Borel probability measures µ1, µ2, . . .
on R, there is a probability space on which there are independent random variables X1, X2, . . . with
µXi = µi.

We finish this section with one of the most beautiful results in probability theory, concerning ‘tail
events’ associated to sequences of independent random variables.

Definition 2.30 (Tail σ-algebra). For a sequence of random variables (Xn)n>1 define

Tn = σ(Xn+1, Xn+2 . . .)

and

T =
∞⋂
n=1

Tn.

Then T is called the tail σ-algebra of the sequence (Xn)n>1.

Roughly speaking, any event A such that (a) whether A holds is determined by the sequence
(Xn) but (b) changing finitely many of these values does not affect whether A holds is in the tail
σ-algebra. These conditions sound impossible, but many events involving limits have these properties.
For example, it is easy to check that A = {(Xn) converges} is a tail event: just check that A ∈ Tn for
each n.
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Theorem 2.31 (Kolmogorov’s 0-1 law). Let (Xn) be a sequence of independent random variables. Then
the tail σ-algebra T of (Xn) contains only events of probability 0 or 1. Moreover, any T -measurable
random variable is almost surely constant.

Proof. Let Fn = σ(X1, . . . , Xn). Note that Fn is generated by the π-system of events

A =
{
{X1 6 x1, . . . , Xn 6 xn} : x1, . . . , xn ∈ R

}
and Tn is generated by the π-system of events

B =
{
{Xn+1 6 xn+1, . . . , Xn+k 6 xn+k} : k > 1, xn+1, . . . , xn+k ∈ R

}
.

For any A ∈ A, B ∈ B, by the independence of the random variables (Xn), we have

P[A ∩B] = P[A]P[B]

and so by Theorem 2.28 the σ-algebras σ(A) = Fn and σ(B) = Tn are also independent.
Since T ⊆ Tn we conclude that Fn and T are also independent. Hence

⋃
n>1Fn and T are

independent.
Now

⋃
n>1Fn is a π-system (although not in general a σ-algebra) generating the σ-algebra F∞ =

σ((Xn)n>1). So applying Theorem 2.28 again we see that F∞ and T are independent. But T ⊆ F∞
so that if A ∈ T

P[A] = P[A ∩A] = P[A]2

and so P[A] = 0 or P[A] = 1.
Now suppose that Y is any (real-valued) T -measurable random variable. Then its distribution

function FY (y) = P[Y 6 y] is increasing, right continuous and takes only values in {0, 1}. So P[Y =
c] = 1 where c = inf{y : FY (y) = 1}. This extends easily to the extended-real-valued case.

Example 2.32. Let (Xn)n>1 be a sequence of independent, identically distributed (i.i.d.) random
variables and let Sn =

∑n
k=1Xk. Consider L = lim supn→∞ Sn/n. Then L is a tail random variable

and so almost surely constant. We’ll prove later in the course that, under weak assumptions, L = E[X1]
almost surely.

3 Modes of convergence

3.1 The Borel–Cantelli Lemmas

We’ll return to independence, or more importantly lack of it, in the next section, but first we look
at some ramifications of our theory of integration for probability theory. Throughout, (Ω,F ,P) will
denote a probability space.

Definition 3.1. Let (An) be a sequence of sets from F . We define

lim sup
n→∞

An =
∞⋂
n=1

⋃
m>n

Am

= {ω ∈ Ω : ω ∈ Am for infinitely many m}
= {Am occurs infinitely often}
= {Am i.o.}
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and

lim inf
n→∞

An =
∞⋃
n=1

⋂
m>n

Am

= {ω ∈ Ω : ∃m0(ω) such that ω ∈ Am for all m > m0(ω)}
= {Am eventually}
= {Ac

m infinitely often}c.

Lemma 3.2.
1lim supn→∞ An = lim sup

n→∞
1An , 1lim infn→∞ An = lim inf

n→∞
1An .

Proof. Note that 1⋃
n An

= supn 1An and 1⋂
n An

= infn 1An , and apply these twice.

If we apply Fatou’s Lemma to the functions 1An , we see that

P[An eventually] 6 lim inf
n→∞

P[An]

and hence (taking complements)
P[An i.o.] > lim sup

n→∞
P[An].

These are not surprising, and easy to prove directly. In fact we can say more about the probabilities
of these events.

Lemma 3.3 (The First Borel–Cantelli Lemma, BC1). If
∑∞

n=1 P[An] <∞ then P[An i.o.] = 0.

Remark. Notice that we are making no assumptions about independence here. This is a very powerful
result.

Proof. Let Gn =
⋃
m>nAm. Then

P[Gn] 6
∞∑
m=n

P[Am]

and Gn ↓ G = lim supn→∞An, so by Lemma 1.5, P[Gn] ↓ P[G].
Since

∑∞
n=1 P[An] <∞, we have that

∞∑
m=n

P[Am]→ 0 as n→∞,

and so
P
[
lim sup
n→∞

An
]

= lim
n→∞

P[Gn] = 0

as required.

Alternatively, considerN =
∑∞

n=1 1An , the (random) number of events that hold. Use the Monotone
Convergence Theorem to show that E[N ] =

∑
P[An], and note that E[N ] <∞ implies P[N =∞] = 0.

A partial converse to BC1 is provided by the second Borel–Cantelli Lemma, but note that we must
now assume that the events are independent.

Lemma 3.4 (The Second Borel–Cantelli Lemma, BC2). Let (An) be a sequence of independent events.
If
∑∞

n=1 P[An] =∞ then P[An i.o.] = 1.
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Proof. Set am = P[Am] and note that 1−a 6 e−a. We consider the complementary event {Ac
n eventually}.

P

[ ⋂
m>n

Ac
m

]
=

∏
m>n

(1− am) (by independence)

6 exp

(
−
∑
m>n

am

)
= 0.

Hence

P [Ac
n eventually] = P

[⋃
n∈N

⋂
m>n

Ac
m

]
6
∞∑
n=1

P

[ ⋂
m>n

Ac
m

]
= 0,

and
P[An i.o.] = 1− P[Ac

n eventually] = 1.

Example 3.5. A monkey is provided with a typewriter. At each time step it has probability 1/26 of
typing any of the 26 letters independently of other times. What is the probability that it will type
ABRACADABRA at least once? infinitely often?

Solution. We can consider the events

Ak = {ABRACADABRA is typed between times 11k + 1 and 11(k + 1)}

for each k. The events are independent and P[Ak] = (1/26)11 > 0. So
∑∞

k=1 P[Ak] = ∞. Thus BC2
says that with probability 1, Ak happens infinitely often. 2

Later in the course, with the help of a suitable martingale, we’ll be able to work out how long we
must wait, on average, before we see patterns appearing in the outcomes of a series of independent
experiments.

We’ll see many applications of BC1 and BC2 in what follows. Before developing more machinery,
here is one more.

Example 3.6. Let (Xn)n>1 be independent exponentially distributed random variables with mean 1
and let Mn = max{X1, . . . , Xn}. Then

P
[

lim
n→∞

Mn

log n
= 1

]
= 1.

Proof. First recall that if X is an exponential random variable with parameter 1 then

P[X 6 x] =

{
0 x < 0,

1− e−x x > 0.

Fix 0 < ε < 1. Then

P[Mn 6 (1− ε) log n] = P

[
n⋂
i=1

{Xi 6 (1− ε) log n}

]

=

n∏
i=1

P [Xi 6 (1− ε) log n] (independence)

=

(
1− 1

n1−ε

)n
6 exp(−nε).
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Thus
∞∑
n=1

P[Mn 6 (1− ε) log n] <∞

and so by BC1
P[Mn 6 (1− ε) log n i.o.] = 0.

Since ε was arbitrary, taking a suitable countable union gives

P
[
lim inf
n→∞

Mn

log n
< 1

]
= 0.

The reverse bound is similar: use BC1 to show that

P [Mn > (1 + ε) log n i.o.] = P [Xn > (1 + ε) log n i.o.] = 0.

At first sight, it looks as though BC1 and BC2 are not very powerful - they tell us when certain
events have probability zero or one. But for many applications, in particular when the events are
independent, many interesting events can only have probability zero or one, because they are tail
events.

If the Xn in Example 2.32 have mean zero and variance one, then setting

B =

{
lim sup
n→∞

Sn√
2n log log n

= 1

}
, (9)

then by Kolmogorov’s 0/1-law we have P[B] = 0 or P[B] = 1. In fact P[B] = 1. This is called the law of
the iterated logarithm. Under the slightly stronger assumption that ∃α > 0 such that E[|Xn|2+α] <∞,
Varadhan proves this by a (delicate) application of Borel–Cantelli.

You may at this point be feeling a little confused. In Prelims Statistics or Part A Probability (or
possibly even at school) you learned that if (Xn) is a sequence of i.i.d. random variables with mean 0
and variance 1 then

P
[
X1 + · · ·+Xn√

n
6 a

]
= P

[
Sn√
n
6 a

]
n→∞−→

∫ a

−∞

1√
2π

exp

(
−x

2

2

)
dx. (10)

This is the Central Limit Theorem without which statistics would be a very different subject. How
does it fit with (9)? The results (9) and (10) are giving quite different results about the behaviour of
Sn for large n. They correspond to different ‘modes of convergence’.

Definition 3.7 (Modes of convergence). Let X1, X2, . . . and X be random variables on a probability
space (Ω,F ,P).

1. We say that (Xn) converges almost surely to X (written Xn
a.s.→ X or Xn → X a.s.) if

P[Xn → X] = P
[{
ω : lim

n→∞
Xn(ω) = X(ω)

}]
= 1.

2. We say that (Xn) converges to X in probability (written Xn
P→ X) if, for every ε > 0,

lim
n→∞

P(|Xn −X| > ε) = lim
n→∞

P
[{
ω : |Xn(ω)−X(ω)| > ε

}]
= 0.
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3. Suppose thatX and allXn have finite pth moments for some real number p > 0, i.e., E[|X|p],E[|Xn|p] <
∞. We say that Xn converges to X in Lp (or in pth moment) (written Xn

Lp→ X) if

lim
n→∞

E[|Xn −X|p] = 0.

4. Let F and Fn denote the distribution functions of X and Xn respectively. We say that Xn

converges to X in distribution (written Xn
d→ X or Xn

L→ X) if

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F is continuous.

These notions of convergence are all different.

Convergence a.s. =⇒ Convergence in Probability =⇒ Convergence in Distribution

⇑

Convergence in Lp

The notions of convergence almost surely and convergence in Lp were discussed (for Lebesgue
measure, rather than for arbitrary probability measures as here) in Part A Integration.

Example 3.8. On the probability space Ω = [0, 1] with the Borel σ-algebra and Lebesgue measure,
consider the sequence of functions fn given by

fn(x) =

{
n(1− nx) 0 6 x 6 1/n,

0 otherwise.

f

10

n

n

1/n
Then fn → 0 almost everywhere on [0, 1] but fn 6→ 0 in L1. Thinking of each fn as a random variable,
we have fn → 0 almost surely but fn 6→ 0 in L1.

Example 3.9 (Convergence in probability does not imply a.s. convergence). To understand what’s
going on in (9) and (10), let’s stick with [0, 1] with the Borel sets and Lebesgue measure as our
probability space. We define (Xn)n>1 as follows:

for each n there is a unique pair of integers (m, k) such that n = 2m + k and 0 6 k < 2m. We set

Xn(ω) = 1[k/2m,(k+1)/2m)(ω).

Pictorially we have a ‘moving blip’ which travels repeatedly across [0, 1] getting narrower at each pass.
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n=5n=2 n=3 n=4

For fixed ω ∈ (0, 1), Xn(ω) = 1 i.o., so Xn 6→ 0 a.s., but

P[Xn 6= 0] =
1

2m
→ 0 as n→∞,

so Xn
P→ 0. (Also, E[|Xn − 0|] = 1/2m → 0, so Xn

L1

→ 0).) On the other hand, if we look at the
(X2n)n>1, we have

n=16n=2 n=4 n=8

and we see that X2n
a.s.→ 0.

It turns out that this is a general phenomenon.

Theorem 3.10 (Convergence in Probability and a.s. Convergence). Let X1, X2, . . . and X be random
variables on (Ω,F ,P).

1. If Xn
a.s.→ X then Xn

P→ X.

2. If Xn
P→ X, then there exists a subsequence (Xnk)k>1 such that Xnk

a.s.→ X as k →∞.

Proof. For ε > 0 and n ∈ N let
An,ε = {|Xn −X| > ε}.

1. Suppose Xn
a.s.→ X. Then for any ε > 0 we have P[An,ε i.o.] = 0. However, applying Fatou’s

Lemma to 1Ac
n,ε

, we have

P[An,ε i.o.] = P[lim sup
n→∞

An,ε] > lim sup
n→∞

P[An,ε].

Hence P[An,ε]→ 0, so Xn
P→ X.

2. This is the more interesting direction. Suppose that Xn
P→ X. Then for each k > 1 we have

P[An,1/k] → 0, so there is some nk such that P[Ank,1/k] < 1/k2 and nk > nk−1 for k > 2. Setting
Bk = Ank,1/k, we have

∞∑
k=1

P[Bk] 6
∞∑
k=1

k−2 <∞.
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Hence, by BC1, P[Bk i.o.] = 0. But if only finitely many Bk hold, then certainly Xnk → X, so

Xnk
a.s.→ X.

The First Borel–Cantelli Lemma provides a very powerful tool for proving almost sure convergence
of a sequence of random variables. Its successful application often rests on being able to find good
bounds on the random variables Xn. We end this section with some inequalities that are often helpful
in this context. The first is trivial, but has many applications.

Lemma 3.11 (Markov’s inequality). Let (Ω,F ,P) be a probability space and X a non-negative random
variable. Then, for each λ > 0

P[X > λ] 6
1

λ
E[X].

Proof. For each ω ∈ Ω we have X(ω) > λ1{X>λ}(ω). Hence,

E[X] > E[λ1{X>λ}] = λP[X > λ].

Corollary 3.12 (General Chebyshev’s Inequality). Let X be a random variable taking values in a
(measurable) set A ⊆ R, and let φ : A → [0,∞] be an increasing, measurable function. Then for any
λ ∈ A with φ(λ) <∞ we have

P[X > λ] 6
E[φ(X)]

φ(λ)
.

Proof. We have

P[X > λ] 6 P[φ(X) > φ(λ)]

6
1

φ(λ)
E[φ(X)],

by Markov’s inequality.

The most familiar special case is given by taking φ(x) = x2 on [0,∞) and applying the result to
Y = |X − E[X]|, giving

P
[
|X − E[X]| > t

]
6

E[(X − E[X])2]

t2
=

Var[X]

t2

for t > 0.
Corollary 3.12 is also often applied with φ(x) = eθx, θ > 0, to obtain

P[X > λ] 6 e−θλE[eθX ].

The next step is often to optimize over θ.

Corollary 3.13. For p > 0, convergence in Lp implies convergence in probability.

Proof. Recall that Xn → X in Lp if E[|Xn −X|p]→ 0 as n→∞. Now

P[|Xn −X| > ε] = P[|Xn −X|p > εp] 6
1

εp
E[|Xn −X|p]→ 0.
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The next corollary is a reminder of a result you have seen in Prelims. It is called the ‘weak law’
because the notion of convergence is a weak one.

Corollary 3.14 (Weak law of large numbers). Let (Xn)n>1 be i.i.d. random variables (on some
probability space (Ω,F ,P)) with mean µ and variance σ2 <∞. Set

X(n) =
1

n

n∑
i=1

Xi.

Then X(n)→ µ in probability as n→∞.

Proof. We have E[X(n)] = n−1
∑n

i=1 E[Xi] = µ and, since the Xn are independent,

Var[X(n)] = n−2Var

[
n∑
i=1

Xi

]
= n−2

n∑
i=1

Var[Xi] = σ2/n.

Hence, by Chebyshev’s inequality,

P[|X(n)− µ| > ε] 6
Var[X(n)]

ε2
=

σ2

ε2n
→ 0.

Definition 3.15 (Convex function). Let I ⊆ R be a (bounded or unbouded) interval. A function
f : I → R is convex if for all x, y ∈ I and t ∈ [0, 1],

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y).

Important examples of convex functions include x2, ex, e−x and |x| on R, and 1/x on (0,∞). Note
that a twice differentiable function f is convex if and only if f ′′(x) > 0 for all x.

Theorem 3.16 (Jensen’s inequality). Let f : I → R be a convex function on an interval I ⊆ R. If X
is an integrable random variable taking values in I then

E[f(X)] > f(E[X]).

(We assume the expectation of f(X) exists also; this is usually no problem since f is often non-
negative.)

Perhaps the nicest proof of Theorem 3.16 rests on the following geometric lemma.

Lemma 3.17. Suppose that f : I → R is convex and let m be an interior point of I. Then there exists
a ∈ R such that f(x) > f(m) + a(x−m) for all x ∈ I.

Proof. Let m be an interior point of I. For any x < m and y > m with x, y ∈ I, by convexity we have

f(m) 6
y −m
y − x

f(x) +
m− x
y − x

f(y).

Rearranging (or, better, drawing a picture), this is equivalent to

f(m)− f(x)

m− x
6
f(y)− f(m)

y −m
.
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It follows that

sup
x<m

f(m)− f(x)

m− x
6 inf

y>m

f(y)− f(m)

y −m
,

so choosing a so that

sup
x<m

f(m)− f(x)

m− x
6 a 6 inf

y>m

f(y)− f(m)

y −m

(if f is differentiable at x we can choose a = f ′(x)) we have that f(x) > f(m) + a(x − m) for all
x ∈ I.

Proof of Theorem 3.16. If E[X] is not an interior point of I then it is an endpoint, and X must be
almost surely constant, so the inequality is trivial. Otherwise, setting m = E[X] in the previous lemma
we have

f(X) > f(E[X]) + a(X − E[X]).

Now take expectations to recover
E[f(X)] > f(E[X])

as required. 2

Corollary 3.18. On a probability space, for any 0 < r < p, convergence in Lp implies convergence in
Lr.

Proof. The function f(x) = xp/r on [0,∞) is convex. Suppose Xn
Lp→ X. Then(

E[|Xn −X|r]
)p/r

6 E
[
(|Xn −X|r)p/r

]
= E[|Xn −X|p]→ 0,

so Xn
Lr→ X.

Remark. Jensen’s inequality only works for probability measures, but often one can exploit it to prove
results for finite measures by first normalizing. For example, suppose that µ is a finite measure on
(Ω,F), and define ν by ν(A) = µ(A)/µ(Ω). Then∫

|f |3 dµ = µ(Ω)

∫
|f |3 dν

> µ(Ω)

∣∣∣∣∫ f dν

∣∣∣∣3
= µ(Ω)−2

∣∣∣∣∫ f dµ

∣∣∣∣3 .
4 Conditional Expectation

Probability is a measure of ignorance. When new information decreases that ignorance we change our
probabilities. We formalized this in Prelims through the definition of conditional probability: for a
probability space (Ω,F ,P) and A,B ∈ F with P[B] > 0,

P[A | B] =
P[A ∩B]

P[B]
.

We want now to introduce an extension of this which lies at the heart of martingale theory: the notion
of conditional expectation. The main difficulty is that we will want to condition on a random variable,
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and in many cases, the probability of this taking any specific value will be 0. We get around this by
using σ-algebras to represent the ‘information’ given by random variables.

Here, then, is the definition; we discuss existence, uniqueness and the meaning of this definition
below.

Definition 4.1 (Conditional Expectation). Let (Ω,F ,P) be a probability space and let X be an
integrable random variable (that is one for which E[|X|] < ∞). Let G ⊆ F be a σ-algebra. The
conditional expectation E[X | G] is any G-measurable, integrable random variable Z such that∫

G
Z dP =

∫
G
X dP for all G ∈ G.

The integrals of X and Z over sets G ∈ G are the same, but X is F-measurable whereas Z is
G-measurable. The conditional expectation (assuming it exists – we’ll show this later) satisfies∫

G
E[X | G]dP =

∫
G
X dP for all G ∈ G (11)

and we shall call (11) the defining relation.
Just as the probability of an event is a special case of expectation (corresponding to integrating an

indicator function rather than a general measurable function), so conditional probability is a special case
of conditional expectation. The conditional probability P[A | G] is any G-measurable random variable
such that ∫

G
P[A | G]dP = P[A ∩G] for all G ∈ G. (12)

This is the same as taking X = 1A in (11).
Let’s see how this fits with our understanding from Prelims. Suppose that X is a discrete random

variable taking values {xn}n∈N. Then the events {X = xn} form a partition of Ω (that is Ω is the
disjoint union of these events.) Let2

P[A | X] = P[A | σ(X)] =

∞∑
n=1

P[A | X = xn]1{X=xn},

which means that for a given ω ∈ Ω

P[A | σ(X)](ω) =


P[A | X = x1], if X(ω) = x1,
P[A | X = x2], if X(ω) = x2,

· · · · · ·
P[A | X = xn], if X(ω) = xn

· · · · · ·

To see that this satisfies (12), write Gn = {X = xn}. Then any G ∈ σ(X) is a (necessarily countable)
union of these sets (the advantage of with working with discrete random variables again – the σ-algebra

2We are assuming here that P[X = xn] > 0 for each n. In fact, in this context it does not matter how we define
P[A | X = xn] when P[X = xn] = 0, since there are countably many xn, so the union of the corresponding events
{X = xn} has probability 0.

28



is easy). So G =
⋃
n∈S Gn for some S ⊆ N, and thus (using monotone convergence in the first step)∫

G

( ∞∑
n=1

P[A | X = xn]1{X=xn}

)
dP =

∞∑
n=1

∫
G
P[A | X = xn]1{X=xn}dP

=
∑
n∈S

P[A | X = xn]P[X = xn]

=
∑
n∈S

P[A ∩ {X = xn}]

= P[A ∩G].

This would have worked equally well for any other countable partition in place of {{X = xn}}n∈N.
So, more generally, let {Gn}n∈N be a partition of Ω, let G be the corresponding σ-algebra (consisting
of all unions of sets Gn), and let E[X | Gn] be the conditional expectation relative to the conditional
measure P[· | Gn]. In other words,

E[X | Gn] =

∫
Ω
X(ω)dP[ω | Gn] =

∫
Gn
X dP

P[Gn]
=

E[X1Gn ]

P[Gn]
.

(Note that just like P[A | Gn], E[X | Gn] is a number, not a random variable; conditioning on an event
gives a number, conditioning on a random variable or on a σ-algebra gives a random variable.) We
claim that

E[X | G] =
∞∑
n=1

E[X | Gn]1Gn , (13)

or, spelled out,

E[X | G](ω) =


E[X | G1] if ω ∈ G1,
E[X | G2] if ω ∈ G2,
· · · · · ·

E[X | Gn] if ω ∈ Gn,
· · · · · ·

So E[X | G] is constant on each set Gn, where it takes the value E[X | Gn]. To check this, let Z be
the right-hand side of (13). Certainly Z is G-measurable; we must show that it satisfies the defining
relation. We write the calculation a different way this time even though it is essentially the same as
that for conditional probability above.

On Gn, Z takes the constant value E[X | Gn], so∫
Gn

Z dP = E[X | Gn]P[Gn] =

∫
Gn

X dP, (14)

i.e., the defining relation holds for the set Gn. Now any set G ∈ G is a countable union G =
⋃
n∈S Gn,

and the defining relation for G follows by summing3 over n ∈ S; to see this it may help to rewrite (14)
as

E[1GnZ] = E[1GnX].

At this point, the definition (11) is hopefully starting to make more sense. Since the definition is
so important, let us explain it once again, considering the case G = σ(Y ). We would like to define a
random variable Z = E[X | G] = E[X | Y ] so that Z depends only on the value of Y and such that

Z(ω) = E[X | Y = y] = E[X1Y=y]/P[Y = y]

3Of course, we need to be careful with this infinite sum; if X and Z are non-negative we can use monotone convergence.
Otherwise either consider positive and negative parts, or use dominated convergence.
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when Y (ω) = y. To avoid getting into trouble dividing by zero, we can integrate over {Y = y} to
express this as

E[Z1Y=y] = E[X1Y=y].

Still, if P[Y = y] = 0 for every y (as will often be the case), this condition simply says 0 = 0. So, just
as we did when we failed to express the basic axioms for probability in terms of the probabilities of
individual values, we pass to sets of values, and in particular Borel sets. So instead we insist that Z is
a function of Y and

E[Z1Y ∈A] = E[X1Y ∈A]

for each A ∈ B(R). This is exactly what Definition 4.1 says in the case G = σ(Y ). In general, it is not
the values of Y that matter, but the ‘information’ in Y , coded by the σ-algebra Y generates, so we
define conditional expectation with respect to an arbitrary σ-algebra G. This then covers cases such
as conditioning on two random variables at once.

So far we have proved that conditional expectations exist for sub σ-algebras G generated by
partitions. Before proving existence in the general case we show that we have (a.s.) uniqueness.

Proposition 4.2 (Almost sure uniqueness of conditional expectation). Let (Ω,F ,P) be a probability
space, X an integrable random variable and G ⊆ F a σ-algebra. If Y and Z are two G-measurable
random variables that both satisfy the defining relation (11), then P[Y 6= Z] = 0. That is, Y and Z
agree up to a null set.

Proof. Since Y and Z are both G-measurable,

G1 = {ω : Y (ω) > Z(ω)} ∈ G,

so using linearity of the integral and then the defining relation,∫
G1

(Y − Z)dP =

∫
G1

Y dP−
∫
G1

Z dP =

∫
G1

X dP−
∫
G1

X dP = 0.

Since Y − Z > 0 on G1, from basic properties of integration this implies P[G1] = 0.
Similarly, P[Z > Y ] = 0, which completes the proof.

In the light of this, we sometimes consider the following equivalence relation.

Definition 4.3 (Equivalence class of a random variable). Let (Ω,F ,P) be a probability space and X
a random variable. The equivalence class of X is the collection of random variables that differ from X
only on a null set.

For existence of conditional expectation in the general case we will use another important result
from measure theory, which we come to in a moment. First observe that if Z > 0 is measurable on
(Ω,F ,P), then we can define a new measure Q on (Ω,F) by Q[A] =

∫
A Z dP. Is there a converse?

Well, not every measure can arise in this way, since P[A] = 0 implies Q[A] = 0. However, under this
condition, the Radon–Nikodym theorem does give a converse.

Definition 4.4. Let P and Q be measures on the same measurable space (Ω,F). The measure Q is
absolutely continuous with respect to P, written Q� P, if

P[A] = 0 =⇒ Q[A] = 0 ∀A ∈ F .
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Theorem 4.5 (The Radon–Nikodym Theorem). Let (Ω,F ,P) be a probability space and suppose that Q
is a finite measure on (Ω,F) with Q� P. Then there exists an F-measurable function Z : Ω→ [0,∞)
such that

Q[A] =

∫
A
Z dP for all A ∈ F .

Moreover, Z is unique up to equality P-a.s. It is written

Z =
dQ
dP

and is called the Radon–Nikodym derivative of Q with respect to P.

We omit the proof, which is beyond the scope of the course. Instead, let’s see how to use this result
to deduce the existence of conditional expectation.

Theorem 4.6 (Existence of conditional expectation). Let X be an integrable random variable on the
probability space (Ω,F ,P), and G ⊆ F a σ-algebra. Then there exists a unique equivalence class of
G-measurable random variables for which the defining relation (11) holds.

Proof. We have already dealt with uniqueness in Proposition 4.2, so we just need existence.
Suppose first that X is non-negative. We want to find an integrable G-measurable Z such that, for

all A ∈ G, ∫
A
Z dP =

∫
A
X dP. (15)

So, for A ∈ G, let Q[A] =
∫
AX dP. This defines a finite measure Q on (Ω,G). Let P|G denote the

measure P restricted to the σ-algebra G. Then Q � P|G . So applying the Radon–Nikodym Theorem
to Q and PG on (Ω,G), there is a G-measurable function Z = dQ

dP|G such that (15) holds.4 Certainly Z

is integrable, since Z > 0 and
∫
Z dP =

∫
X dP <∞.

For the general case, write X = X+−X− where X+ and X− are the positive and negative parts of
X. Then E[X+ | G]−E[X− | G] is G-measurable and, by linearity of the integral, satisfies the defining
relation.

So far, we defined conditional expectations only when X is integrable. Just as with ordinary
expectation, the definitions work without problems if X > 0, allowing +∞ as a possible value; this is
an (optional) exercise – you have to be a little careful with uniqueness.

It is much harder to write out E[X | G] explicitly when G is not generated by a partition. It may
help to observe that for non-negative integrable X, if I is a π-system that generates G, then it is
enough to check the defining relation for G ∈ I. (To see this, apply Theorem 1.12 to the measures Q
and

∫
A Z dP above; it works also for any integrable X, either considering positive and negative parts

separately, or a version of Theorem 1.12 for signed measures.)
If G = σ(Y ) for some random variable Y on (Ω,F ,P), then any G-measurable function can, in

principle, be written as a function of Y . We saw an example of this with our branching process in §0.3.
If Zn was the number of descendants of a single ancestor after n generations, then

E[Zn+1 | σ(Zn)] = µZn

where µ is the expected number of offspring of a single individual. In general, of course, the relationship
can be much more complicated.

4There is a small subtlety here: we are using twice (with Y = 1AX and Y = 1AZ) that if Y is G-measurable, then∫
Y dP|G =

∫
Y dP. This follows from Remark 2.8.
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Let’s turn to some elementary properties of conditional expectation. Most of the following are
obvious. Always remember that whereas expectation is a number, conditional expectation is a function
on Ω and, since conditional expectation is only defined up to equivalence (i.e., up to equality almost
surely) we have to qualify many of our statements with the caveat ‘a.s.’.

Proposition 4.7. Let (Ω,F ,P) be a probability space, X and Y integrable random variables, G ⊆ F a
σ-algebra and a, b, c real numbers. Then

1. E[E[X | G]] = E[X].

2. E[aX + bY | G]
a.s.
= aE[X | G] + bE[Y | G].

3. If X is G-measurable, then E[X | G]
a.s.
= X.

4. E[c | G]
a.s.
= c.

5. E[X | {∅,Ω}] = E[X].

6. If σ(X) and G are independent then E[X | G] = E[X] a.s.

7. If X 6 Y a.s. then E[X | G] 6 E[Y | G] a.s.

8.
∣∣E[X | G]

∣∣ 6 E[|X| | G] a.s.

Proof. The proofs all follow from the requirement that E[X | G] be G-measurable and the defining
relation (11). We just do some examples.

1. Set G = Ω in the defining relation.
2. Clearly Z = aE[X | G]+bE[Y | G] is G-measurable, so we just have to check the defining relation.

But for G ∈ G,∫
G
Z dP =

∫
G

(
aE[X | G] + bE[Y | G]

)
dP = a

∫
G
E[X | G]dP + b

∫
G
E[Y | G]dP

= a

∫
G
X dP + b

∫
G
Y dP

=

∫
G

(aX + bY )dP.

So Z is a version of E[aX + bY | G], and equality a.s. follows from uniqueness.
5. The sub σ-algebra is just {∅,Ω} and so E[X | {∅,Ω}] (in order to be measurable with respect to

{∅,Ω}) must be constant. Now integrate over Ω to identify that constant.
6. Note that E[X] is G-measurable and for G ∈ G∫

G
E[X]dP = E[X]P[G] = E[X]E[1G]

= E[X1G] (by independence – see Problem Sheet 3)

=

∫
X1GdP =

∫
G
X dP,

so the defining relation holds.

Notice that 6 is intuitively clear. If X is independent of G, then telling me about events in G tells
me nothing about X and so my assessment of its expectation does not change. On the other hand, for
3, if X is G-measurable, then telling me about events in G actually tells me the value of X.

The conditional counterparts of our convergence theorems of integration also hold good.
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Proposition 4.8 (Conditional Convergence Theorems). Let X1, X2, . . . and X be random variables on
a probability space (Ω,F ,P), and let G ⊆ F be a σ-algebra.

1. cMON: If Xn > 0 for all n and Xn ↑ X as n→∞, then E[Xn | G] ↑ E[X | G] a.s. as n→∞.

2. cFatou: If Xn > 0 for all n then

E[lim inf
n→∞

Xn | G] 6 lim inf
n→∞

E[Xn | G] a.s.

3. cDOM: If Y is an integrable random variable, |Xn| 6 Y for all n and Xn
a.s.→ X, then

E[Xn | G]
a.s.→ E[X | G] as n→∞.

The proofs all use the defining relation (11) to transfer statements about convergence of the
conditional probabilities to our usual convergence theorems and are left as an exercise.

The following two results are incredibly useful in manipulating conditional expectations. The first
is sometimes referred to as ‘taking out what is known’.

Lemma 4.9. Let X and Y be random variables on (Ω,F ,P) with X, Y and XY integrable. Let G ⊆ F
be a σ-algebra and suppose that Y is G-measurable. Then

E[XY | G]
a.s.
= Y E[X | G].

Proof. The function Y E[X | G] is clearly G-measurable, so we must check that it satisfies the defining
relation for E[XY | G]. We do this by a standard sequence of steps.

First suppose that X and Y are non-negative. If Y = 1A for some A ∈ G, then for any G ∈ G we
have G ∩A ∈ G and so by the defining relation (11) for E[X | G]∫

G
Y E[X | G]dP =

∫
G∩A

E[X | G]dP =

∫
G∩A

X dP =

∫
G
Y X dP.

Now extend by linearity to simple random variables Y . Now suppose that Y > 0 is G-measurable.
Then there is a sequence (Yn)n>1 of simple G-measurable random variables with Yn ↑ Y as n→∞, it
follows that YnX ↑ Y X and YnE[X | G] ↑ Y E[X | G] from which we deduce the result by the Monotone
Convergence Theorem. Finally, for X, Y not necessarily non-negative, write XY = (X+ −X−)(Y + −
Y −) and use linearity of the integral.

Proposition 4.10 (Tower property of conditional expectations). Let (Ω,F ,P) be a probability space,
X an integrable random variable and F1, F2 σ-algebras with F1 ⊆ F2 ⊆ F . Then

E
[
E[X | F2]

∣∣ F1

]
= E[X | F1] a.s.

In other words, writing Xi = E[X | Fi],

E[X2 | F1] = X1 a.s.

Proof. The left-hand side is certainly F1-measurable, so we need to check the defining relation for
E[X | F1]. Let G ∈ F1, noting that G ∈ F2. Applying the defining relation twice∫

G
E
[
E[X | F2]

∣∣ F1

]
dP =

∫
G
E[X | F2]dP =

∫
G
X dP.
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This extends Part 1 of Proposition 4.7 which (in the light of Part 5) is just the case F1 = {∅,Ω}.
Jensen’s inequality also extends to the conditional setting.

Proposition 4.11 (Conditional Jensen’s Inequality). Suppose that (Ω,F ,P) is a probability space and
that X is an integrable random variable taking values in an interval I ⊆ R. Let f : I → R be convex
and let G be a sub σ-algebra of F . If E[|f(X)|] <∞ then

E[f(X) | G] > f (E[X | G]) a.s.

Sketch proof; not examinable. We shall take I to be an open interval so that we don’t have to worry
about endpoints. In general the endpoints cause an inconvenience rather than a real problem.

Recall from our proof of Jensen’s inequality that if f is convex, then for m in the interior of I (i.e.,
now for all m ∈ I) we can find at least one straight line touching f from below at x = m; i.e., we can
find a, b ∈ R with f(x) > ax+ b for all x ∈ I, with equality at m.

Consider the set of all functions g(x) of the form g(x) = ax+b with g(x) 6 f(x) for all x ∈ I. Then
we can check that f is the pointwise supremum of this set of functions. Also f is continuous. With a
little work, it follows that we can find a countable set of linear functions such that f(x) = supn{anx+bn}.

Now for our random variable X, since f(X) > anX + bn we have

E[f(X) | G] > E[anX + bn | G] = anE[X | G] + bn a.s. (16)

Since the union of a countable collection of null (i.e., probability zero) sets is null we can arrange
for (16) to hold simultaneously for all n ∈ N except possibly on a null set and so

E[f(X) | G] > sup
n
{anE[X | G] + bn} a.s.

= f (E[X | G]) a.s.

An important special case is f(x) = xp for p > 1. In particular, for p = 2

E[X2 | G] > E[X | G]2 a.s.

A very simple special case of this is the following.

Example 4.12. Suppose that X is a non-negative random variable. Then

P[X > 0] >
E[X]2

E[X2]
.

Proof. Although this is not the simplest way to see it, we use the conditional form of Jensen’s inequality.
Recall that for a random variable Y , E[X | Y ] is short for E[X | σ(Y )]. Let A = {X > 0}. Then

E[X] = E
[
E[X | 1A]

]
= P[A]E[X | A] + P[Ac]E[X | Ac] = P[A]E[X | A].

Similarly, and using Proposition 4.11,

E[X2] = E
[
E[X2 | 1A]

]
> E

[
E[X | 1A]2

]
= P[A]E[X | A]2.

Combining and rearranging gives the result.

There is another interesting characterization of E[X | G].
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Remark (Conditional Expectation and Mean Square Approximation). Let (Ω,F ,P) be a probability
space and X, Y square integrable random variables. Let G be a sub σ-algebra of F and suppose that
Y is G-measurable. Then

E[(Y −X)2] = E
[(
Y − E[X | G] + E[X | G]−X

)2]
= E

[
(Y − E[X | G])2

]
+ E

[
(E[X | G]−X)2

]
+ 2E[WZ]

where W = Y − E[X | G] and Z = E[X | G] −X. Now Y and E[X | G] are G-measurable, so W is G
measurable, and using Proposition 4.7 part 1 and Lemma 4.9 we have

E[WZ] = E
[
E[WZ | G]

]
= E

[
WE[Z | G]

]
.

But E
[
E[X | G] | G

]
= E[X | G], so E[Z | G] = 0. Hence E[WZ] = 0, i.e., the cross-terms vanish.

In particular, we can minimize E[(Y −X)2] by choosing Y = E[X | G]. In other words, E[X | G] is
the best mean-square approximation of X among all G-measurable random variables.

If you have already done Hilbert space theory then E[X | G] is the orthogonal projection of X ∈
L2(Ω,F ,P) onto the closed subspace L2(Ω,G,P). Indeed this is a route to showing that conditional
expectations exist without recourse to the Radon–Nikodym Theorem.

5 Martingales

Much of modern probability theory derived from two sources: the mathematics of measure and
gambling. (The latter perhaps explains why it took so long for probability theory to become a
respectable part of mathematics.) Although the term ‘martingale’ has many meanings outside mathematics
– it is the name given to a strap attached to a fencer’s épée, it’s a strut under the bowsprit of a sailing
ship and it is part of a horse’s harness that prevents the horse from throwing its head back – it’s
introduction to mathematics, by Ville in 1939, was inspired by the gambling strategy ‘the infallible
martingale’. This is a strategy for making a sure profit on games such as roulette in which one makes a
sequence of bets. The strategy is to stake £1 (on, say, black or red at roulette) and keep doubling the
stake until that number wins. When it does, all previous losses and more are recouped and you leave
the table with a profit. It doesn’t matter how unfavourable the odds are, only that a winning play
comes up eventually. But the martingale is not infallible. Nailing down why in purely mathematical
terms had to await the development of martingales in the mathematical sense by J.L. Doob in the
1940’s. Doob originally called them ‘processes with property E’, but in his famous book on stochastic
processes he reverted to the term ‘martingale’ and he later attributed much of the success of martingale
theory to the name.

The mathematical term martingale doesn’t refer to the gambling strategy, but rather models the
outcomes of a series of fair games (although as we shall see this is only one application).

We begin with some terminology.

Definition 5.1 (Filtration). A filtration on the probability space (Ω,F ,P) is a sequence (Fn)n>0 of
σ-algebras Fn ⊆ F such that for all n, Fn ⊆ Fn+1.

We then call (Ω,F , (Fn)n>0,P) a filtered probability space.

Usually n is interpreted as time and Fn represents knowledge accumulated by time n (we never
forget anything). We usually start at time 0 (the beginning), but not always.

Definition 5.2 (Adapted stochastic process). A stochastic process (Xn)n>0 is simply a sequence of
random variables defined on some probability space (Ω,F ,P). The process is integrable if each Xn is
integrable.

We say that (Xn)n>0 is adapted to the filtration (Fn)n>0 if, for each n, Xn is Fn-measurable.
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Definition 5.3 (Martingale, submartingales, supermartingale). Let (Ω,F ,P) be a probability space
and (Fn)n>0 a filtration. An integrable, Fn-adapted stochastic process (Xn)n>0 is called

1. a martingale if for every n > 0, E[Xn+1 | Fn] = Xn a.s.,

2. a submartingale if for every n > 0, E[Xn+1 | Fn] > Xn a.s.,

3. a supermartingale if for every n > 0, E[Xn+1 | Fn] 6 Xn a.s.

If we think of Xn as our accumulated fortune when we make a sequence of bets, then a martingale
represents a fair game in the sense that the conditional expectation of Xn+1−Xn, given our knowledge
at the time when we make the (n + 1)st bet (that is Fn), is zero. A submartingale represents a
favourable game and a supermartingale an unfavourable game. It could be argued that these terms are
the wrong way round, but they are very well established, so even if so, it’s too late to change this!

Here are some elementary properties.

Proposition 5.4. Let (Ω,F ,P) be a probability space.

1. A stochastic process (Xn)n>0 on (Ω,F ,P) is a submartingale w.r.t. the filtration (Fn)n>0 if and
only if (−Xn)n>0 is a supermartingale. It is a martingale if and only if it is both a supermartingale
and a submartingale.

2. If (Xn)n>0 is a martingale w.r.t. (Fn)n>0 then

E[Xn] = E[X0] for all n.

3. If (Xn)n>0 is a submartingale and n > m then

E[Xn | Fm] > Xm a.s.

and
E[Xn] > E[Xm].

Of course, part 3 holds for a supermartingale with the inequalities reversed, and for a martingale
with equality instead.

Proof. 1. is obvious.
2. Is a special case of (the martingale version of ) 3.
3. Fix m; we prove the result by induction on n. The base case is n = m where, since Xm is

Fm-measurable, we have E[Xm | Fm] = Xm a.s.
For n > m we have Fm ⊆ Fn, so

E[Xn+1 | Fm] = E
[
E[Xn+1 | Fn] | Fm

]
> E[Xn | Fm] a.s.,

so E[Xn | Fm] > Xm a.s. follows by induction. To deduce that E[Xn] > E[Xm] just take the expectation.

Note that whether (Xn) is a martingale or not depends on the filtration under consideration. If
none is specified, there is a default.

Definition 5.5 (Natural filtration). The natural filtration (Gn)n>0 associated with a stochastic process
(Xn)n>0 on the probability space (Ω,F ,P) is defined by

Gn = σ(X0, X1, . . . , Xn), n > 0.
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A stochastic process is automatically adapted to the natural filtration associated with it.

Proposition 5.6. If (Xn)n>0 is a submartingale w.r.t. some filtration (Fn)n>0 on (Ω,F ,P), then it is
also a submartingale with respect to its natural filtration (Gn)n>0.

Proof. (Xn)n>0 is certainly adapted to its natural filtration (Gn)n>0. For each n, since F0, . . . ,Fn−1 ⊆
Fn, all of X0, . . . , Xn are Fn-measurable. Since (by definition) Gn is the smallest σ-algebra with this
property, Gn ⊆ Fn. Thus, by the tower property,

E[Xn+1 | Gn] = E
[
E[Xn+1 | Fn] | Gn

]
> E[Xn | Gn] = Xn a.s.

Warning: There is a reason why we usually have a filtration in mind. It’s clear that if (Xn) and (Yn)
are martingales with respect to the same filtration (Fn), then so is (Xn + Yn). But it is easy to find
examples where (Xn) is a martingale with respect to its natural filtration, (Yn) is a martingale with
respect to its natural filtration, but (Xn +Yn) is not a martingale with respect to its natural filtration.
So it’s not just to be fussy that we specify a filtration (Fn).

Example 5.7 (Sums of independent random variables). Suppose that Y1, Y2, . . . are independent
random variables on the probability space (Ω,F ,P) and that E[Yn] = 0 for each n. For n > 0 let

Xn =
n∑
k=1

Yk,

so in particular X0 = 0. Then (Xn)n>0 is a martingale with respect to the natural filtration given by

Fn = σ(X0, X1, . . . , Xn) = σ(Y1, . . . , Yn).

In this sense martingales generalize the notion of sums of independent random variables with
mean zero. The independent random variables (Yi)i>1 of Example 5.7 can be replaced by martingale
differences (which are not necessarily independent).

Definition 5.8 (Martingale differences). Let (Ω,F ,P) be a probability space and (Fn)n>0 a filtration.
A sequence (Yn)n>1 of integrable random variables, adapted to the filtration (Fn)n>1, is called a
martingale difference sequence w.r.t. (Fn) if

E[Yn+1 | Fn] = 0 a.s. for all n > 0.

It is easy to check that (Xn)n>0 is a martingale w.r.t. (Fn)n>0 if and only if X0 is integrable and
F0-measurable, and (Xn −Xn−1)n>1 is a martingale difference sequence w.r.t. (Fn).

Example 5.9. Let (Ω,F ,P) be a probability space and let (Zn)n>1 be a sequence of independent
random variables with E[Zn] = 1 for all n. Define

Xn =
n∏
i=1

Zi for n > 0,

so X0 = 1. Then (Xn)n>0 is a martingale w.r.t. its natural filtration. (Exercise).

This is an example where the martingale is (obviously) not a sum of independent random variables.
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Example 5.10. Let (Ω,F ,P) be a probability space and let (Fn)n>0 be a filtration. Let X be an
integrable random variable (that is E[|X|] <∞). Then setting

Xn = E[X | Fn]

defines a martingale (Xn)n>0 w.r.t. (Fn)n>0. Indeed, Xn is certainly Fn-measurable, and by the tower
property of conditional expectation,

E[Xn+1 | Fn] = E[E[X | Fn+1] | Fn] = E[X | Fn] = Xn a.s.

We shall see later that a large class of martingales (called uniformly integrable) can be written in this
way. One can think of (Fn)n>0 as representing unfolding information about X, and we’ll see that under
suitable assumptions Xn → X a.s. as n→∞.

We now turn to ways of obtaining (sub/super)martingales from other martingales. The first way
is trivial: suppose that (Xn)n>0 is a (sub)martingale with respect to (Fn)n>0, and that Y is F0-
measurable. Then (Xn − Y )n>0 is also a (sub)martingale w.r.t. (Fn). In particular, if X0 is F0-
measurable, then (Xn)n>0 is a martingale if and only if (Xn − X0)n>0 is a martingale. This is often
useful, as in many contexts it allows us to assume without loss of generality that X0 = 0.

Proposition 5.11. Let (Ω,F ,P) be a probability space. Suppose that (Xn)n>0 is a martingale with
respect to the filtration (Fn)n>0. Let f be a convex function on R. If f(Xn) is an integrable random
variable for each n > 0, then (f(Xn))n>0 is a submartingale w.r.t (Fn)n>0.

Proof. Since Xn is Fn-measurable, so is f(Xn). By Jensen’s inequality for conditional expectations
and the martingale property of (Xn),

E[f(Xn+1) | Fn] > f
(
E[Xn+1 | Fn]

)
= f(Xn) a.s.

Corollary 5.12. If (Xn)n>0 is a martingale w.r.t. (Fn)n>0 and K ∈ R then (subject to integrability)
(|Xn|)n>0, (X2

n)n>0, (eXn)n>0, (e−Xn)n>0, (max(Xn,K))n>0 are all submartingales w.r.t. (Fn)n>0.

Definition 5.13 (Predictable process). Let (Ω,F ,P) be a probability space and (Fn)n>0 a filtration.
A sequence (Vn)n>1 of random variables is predictable with respect to (Fn)n>0 if Vn is Fn−1-measurable
for all n > 1.

In other words, the value of Vn is known ‘one step in advance.’

Theorem 5.14 (Discrete stochastic integral or martingale transform). Let (Ω,F ,P) be a probability
space and (Fn)n>0 a filtration. Let (Yn)n>0 be a martingale with respect to (Fn) with difference sequence
(Dn)n>1. Suppose that (Vn)n>1 is predictable w.r.t. (Fn), and let

Xn =

n∑
k=1

VkDk =

n∑
k=1

Vk(Yk − Yk−1).

Then, assuming each Xn is integrable, (Xn)n>0 is a martingale w.r.t. (Fn).

The sequence (Xn)n>0 is called a martingale transform, and is often denoted

((V ◦ Y )n)n>0.

It is a discrete version of the stochastic integral. Here we started with X0 = 0; as far as obtaining a
martingale is concerned, it makes no difference if we add some F0-measurable random variable Z to
all Xn; sometimes we take Z = Y0, so Xn = Y0 +

∑n
k=1 VkDk.
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Proof. For k 6 n, Dk and Vk are Fn-measurable, so Xn is Fn-measurable. Also,

E[Xn+1 −Xn | Fn]
a.s.
= E[Dn+1Vn+1 | Fn]
a.s.
= Vn+1E[Dn+1 | Fn] (taking out what is known)

= 0 a.s

Typical examples of predictable sequences appear in gambling or finance contexts where they might
constitute strategies for future action. The strategy is then based on the current state of affairs. If, for
example, (k − 1) rounds of some gambling game have just been completed, then the strategy for the
kth round is to bet Vk; a quantity that can only depend on what is known by time k − 1. The change
in fortune in the kth round is then VkDk.

Another situation is when Vk = 1 as long as some special event has not yet happened and Vk = 0
thereafter. That is the game goes on until the event occurs. This is called a stopped martingale – a
topic we’ll return to in due course.

Theorem 5.15. Let (Ω,F ,P) be a probability space and (Fn)n>0 a filtration. Let (Yn)n>0 be a
supermartingale with respect to (Fn) with difference sequence (Dn)n>1, and (Vn)n>1 a non-negative
(Fn)-predictable sequence. Then (modulo integrability)

Xn =

n∑
k=1

VkDk

defines a supermartingale w.r.t. (Fn).

Proof. Exercise: imitate the proof of Theorem 5.14.

There are more examples on the problem sheet. Here is one last one.

Example 5.16. Let (Yi)i>1 be independent random variables such that E[Yi] = µi, Var(Yi) = E[Y 2
i ]−

E[Yi]
2 = σ2

i <∞. Let

s2
n =

n∑
i=1

σ2
i .

(That is s2
n = Var(

∑n
i=1 Yi) by independence.) Take (Fn)n>0 to be the natural filtration generated by

(Yn)n>1.
By Example 5.7,

Xn =
n∑
i=1

(Yi − µi)

is a martingale and so by Proposition 5.11, since f(x) = x2 is a convex function, (X2
n)n>0 is a

submartingale. But we can recover a martingale from it by compensation:

Mn =

(
n∑
i=1

(Yi − µi)

)2

− s2
n, n > 0

is a martingale with respect to (Fn)n>0.
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Proof. Clearly Mn is Fn-measurable. By considering the sequence Ỹi = Yi − µi of independent mean
zero random variables if necessary, we see that w.l.o.g. we may assume µi = 0 for all i. Then

E[Mn+1 | Fn] = E

( n∑
i=1

Yi + Yn+1

)2

− s2
n+1

∣∣∣∣ Fn


= E

( n∑
i=1

Yi

)2

+ 2Yn+1

n∑
i=1

Yi + Y 2
n+1 − s2

n+1

∣∣∣∣ Fn


=

(
n∑
i=1

Yi

)2

+ 2

n∑
i=1

YiE[Yn+1 | Fn] + E[Y 2
n+1 | Fn]− s2

n − σ2
n+1 a.s.

= Mn

since, by independence, E[Yn+1 | Fn] = E[Yn+1] = 0 a.s. and E[Y 2
n+1 | Fn] = E[Y 2

n+1] = σ2
n+1.

This process of ‘compensation’, whereby we correct a process by something predictable (in this
example it was deterministic) in order to obtain a martingale reflects a general result due to Doob.

Theorem 5.17 (Doob’s Decomposition Theorem). Let (Ω,F ,P) be a probability space and (Fn)n>0 a
filtration. Let (Xn)n>0 be a sequence of integrable random variables, adapted to (Fn)n>0. Then

1. (Xn)n>0 has a Doob decomposition

Xn = X0 +Mn +An (17)

where (Mn)n>0 is a martingale w.r.t. (Fn)n>0, (An)n>1 is predictable w.r.t. (Fn), and M0 = 0 =
A0.

2. Doob decompositions are essentially unique: if Xn = X0+M̃n+Ãn is another Doob decomposition
of (Xn)n>0 then

P[Mn = M̃n, An = Ãn for all n] = 1.

3. (Xn)n>0 is a submartingale if and only if (An)n>0 in (17) is an increasing process (i.e., An+1 > An
a.s. for all n) and a supermartingale if and only if (An)n>0 is a decreasing process.

Proof.
1. Let

An =
n∑
k=1

E[Xk −Xk−1 | Fk−1] =
n∑
k=1

(
E[Xk | Fk−1]−Xk−1

)
and

Mn =

n∑
k=1

(
Xk − E[Xk | Fk−1]

)
.

Then Mn + An =
∑n

k=1(Xk − Xk−1) = Xn − X0, so (17) holds. The kth summand in An is Fk−1-
measurable, so An is Fn−1-measurable and (An) is predictable w.r.t. (Fn). Also, since

E[Mn+1 −Mn | Fn] = E
[
Xn+1 − E[Xn+1 | Fn]

∣∣ Fn] = 0,

the process (Mn)n>0 is a martingale w.r.t. (Fn).
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2. For uniqueness, note that in any Doob decomposition, by predictability we have

An+1 −An = E[An+1 −An | Fn]

= E[(Xn+1 −Xn)− (Mn+1 −Mn) | Fn]

= E[Xn+1 −Xn | Fn] a.s.,

which combined with A0 = 0 proves uniqueness of (An). Since Mn = Xn − X0 − An, uniqueness of
(Mn) follows.

3. Just note that

E[Xn+1 | Fn]−Xn = E[Xn+1 −Xn | Fn] = An+1 −An a.s.

as shown above.

Remark (The angle bracket process 〈M〉). Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration and
(Mn)n>0 a martingale with respect to (Fn)n>0 with E[M2

n] <∞ for each n. (Such a martingale is called
an L2-martingale.) Then by Proposition 5.11, (M2

n)n>0 is a submartingale. Thus by Theorem 5.17 it
has a Doob decomposition (which is essentially unique),

M2
n = M2

0 +Nn +An

where (Nn)n>0 is a martingale and (An)n>0 is an increasing predictable process. The process (An)n>0

is often denoted by (〈M〉n)n>0.
Note that E[M2

n] = E[M2
0 ] + E[An] and (since E[Mn+1 | Fn] = Mn) that

An+1 −An = E[M2
n+1 −M2

n | Fn] = E[(Mn+1 −Mn)2 | Fn].

That is, the increments of An are the conditional variances of our martingale difference sequence. It
turns out that (〈M〉n)n>0 is an extremely powerful tool with which to study (Mn)n>0. It is beyond our
scope here, but see for example Neveu 1975, Discrete Parameter Martingales.

6 Stopping Times and Stopping Theorems

Much of the power of martingale methods, as we shall see, comes from the fact that (under suitable
boundedness assumptions) the martingale property is preserved if we ‘stop’ the process at certain
random times. Such times are called ‘stopping times’ (or sometimes ‘optional times’).

Intuitively, stopping times are times that we can recognize when they arrive, like the first time
heads comes up in a series of coin tosses or the first time the FTSE 100 index takes a 3% fall in a single
day. They are times which can be recognized without reference to the future. Something like ‘the day
in December when the FTSE 100 reaches its maximum’ is not a stopping time - we must wait until
the end of December to determine the maximum, and by then, in general, the time has passed.

Stopping times can be used for strategies of investing and other forms of gambling. We recognize
them when they arrive and can make decisions based on them (for example to stop playing).

Definition 6.1 (Stopping time). Let (Ω,F ,P) be a probability space and (Fn)n>0 a filtration. A
random variable τ taking values in N∪ {∞} = {0, 1, 2, . . . ,∞} is called a stopping time with respect to
(Fn)n>0 if {τ = n} ∈ Fn for all n. Stopping times are sometimes called optional times.
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Equivalently, τ is a stopping time if and only if {τ > n} ∈ Fn for all n.

Warning: Some authors assume P[τ <∞] = 1.

We write n ∧ τ for the smaller of n and τ , i.e., for min{n, τ}. If (Xn)n>0 is a stochastic process,
then (Xn∧τ )n>0 is the process stopped at time τ : we have Xn∧τ = Xn if n 6 τ and Xn∧τ = Xτ if n > τ .
Note that τ =∞ corresponds to never stopping.

Lemma 6.2. Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration, (Mn)n>0 a (sub/super)martingale
with respect to (Fn)n>0 and τ a stopping time with respect to (Fn)n>0. Then (Mn∧τ )n>0 is also a
(sub/super)martingale with respect to (Fn)n>0.

Proof. Note that Xn∧τ−X(n−1)∧τ = 1τ>n(Xn−Xn−1). Let Vn = 1τ>n. Since {τ > n} = {τ 6 n−1}c ∈
Fn−1, the random variable Vn is Fn−1-measurable, so (Vn) is predictable. Since Vn is non-negative (and
bounded, so there are no problems with integrability) the conditions of Theorem 5.14/Theorem 5.15
are satisfied.

This lemma tells us that if (Mn) is a martingale and τ is a stopping time, then E[Mn∧τ ] = E[M0].
Can we let n→∞ to obtain E[Mτ ] = E[M0]? The answer is ‘no’.

Example 6.3. Let (Yk)k>1 be i.i.d. random variables with P[Yk = 1] = P[Yk = −1] = 1/2. Set
Mn =

∑n
k=1 Yk. Thus Mn is the position of a simple random walk started from the origin after n steps.

In particular, (Mn)n>0 is a martingale and E[Mn] = 0 for all n.
Now let τ = min{n : Mn = 1}, which is defined a.s. It is clear that τ is a stopping time and

evidently Mτ = 1. But then E[Mτ ] = 1 6= 0 = E[M0].

The problem is that τ is too large – E[τ ] =∞. It turns out that if we impose suitable boundedness
assumptions then we will have E[Mτ ] = E[M0] and that is the celebrated Optional Stopping Theorem.
There are many variants of this result.

Theorem 6.4 (Doob’s Optional Stopping Theorem). Let (Ω,F ,P) be a probability space, (Fn)n>0 a
filtration, (Mn)n>0 a martingale with respect to (Fn)n>0 and τ a stopping time with respect to (Fn)n>0.
Suppose any of the following conditions holds:

1. τ is bounded, i.e., there is some N ∈ N such that τ(ω) 6 N for all ω ∈ Ω.

2. τ is a.s. finite and (Mn)n>0 is uniformly bounded, i.e., there is some K ∈ R such that |Mn(ω)| 6
K for every n ∈ N and every ω ∈ Ω.

3. E[τ ] <∞ and there exists L ∈ R such that

E
[
|Mn+1 −Mn|

∣∣ Fn] 6 L, a.s. for all n.

Then Mτ is integrable and
E[Mτ ] = E[M0] (18)

Proof. By Lemma 6.2, (Mn∧τ )n>0 is a martingale, so for each n, E[Mn∧τ ] = E[M0∧τ ] = E[M0].
1. Since τ 6 N always holds, we have Mτ = MN∧τ , so we are done by the comment above.
2. Because τ < ∞, limn→∞Mn∧τ = Mτ a.s. and since (Mn)n>0 is bounded we may apply the

Dominated Convergence Theorem with dominating function g(ω) ≡ K to deduce the result.
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3. Replacing Mn by Mn −M0, we assume without loss of generality that M0 = 0. Then

|Mn∧τ | = |Mn∧τ −M0∧τ | 6
n∑
i=1

|Mi∧τ −M(i−1)∧τ |

6
∞∑
i=1

|Mi∧τ −M(i−1)∧τ |

=

∞∑
i=1

1τ>i|Mi −Mi−1|. (19)

Now

E

[ ∞∑
i=1

1τ>i|Mi −Mi−1|

]
=

∞∑
i=1

E
[
1τ>i|Mi −Mi−1|

]
(by monotone convergence)

=

∞∑
i=1

E
[
E
[
1τ>i|Mi −Mi−1|

∣∣ Fi−1

] ]
(tower property)

=

∞∑
i=1

E
[

1τ>iE
[
|Mi −Mi−1|

∣∣ Fi−1

] ]
(since {τ > i} ∈ Fi−1)

6 L

∞∑
i=1

E[1τ>i]

= L

∞∑
i=1

P[τ > i] = LE[τ ] <∞.

Moreover, τ < ∞ a.s. and so Mn∧τ → Mτ a.s. as n → ∞ and so by the Dominated Convergence
Theorem with the function on the right hand side of (19) as dominating function, we have the result.

We stated the Optional Stopping Theorem for martingales, but similar results are available for
sub/super -martingales – just replace the equality in (18) by the appropriate inequality.

Note that if |Mi −Mi−1| 6 L always holds, and E[τ ] < ∞, then the third case applies; this is
perhaps the most important case of the Optional Stopping Theorem for applications.

In order to make use of condition 3, we need to be able to check when E[τ ] < ∞. The following
lemma provides a useful test.

Lemma 6.5. Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration and τ a stopping time with respect
to (Fn)n>0. Suppose that there exist K ∈ N and ε > 0 such that for all n ∈ N

P[τ 6 n+K | Fn] > ε a.s.

Then E[τ ] <∞.

The proof is an exercise.
Let’s look at an application of Theorem 6.4.

Example 6.6. Suppose that (Ω,F ,P) is a probability space and (Xi)i>1 are i.i.d. random variables
with P[Xi = j] = pj > 0 for each j = 0, 1, 2, . . .. What is the expected number of random variables
that must be observed before the subsequence 0, 1, 2, 0, 1 occurs?
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Solution
Consider a casino offering fair bets, where the expected gain from each bet is zero. In particular,

a gambler betting £a on the outcome of the next random variable being a j will lose with probability
1 − pj and will win £a/pj with probability pj . (Her expected pay-out is 0(1 − pj) + pja/pj = a, the
same as the stake.)

Imagine a sequence of gamblers betting at the casino, each with an initial fortune of £1.
Gambler i bets £1 that Xi = 0; if she wins, she bets her entire fortune of £1/p0 that Xi+1 = 1;

if she wins again she bets her fortune of £1/(p0p1) that Xi+2 = 2; if she wins that bet, then she bets
£1/(p0p1p2) that Xi+3 = 0; if she wins that bet then she bets her total fortune of £1/(p2

0p1p2) that
Xi+4 = 1; if she wins she quits with a fortune of £1/(p2

0p
2
1p2).

Let Mn be the casino’s winnings after n games (so when Xn has just been revealed). Then (Mn)n>0

is a mean zero martingale w.r.t. the filtration (Fn)n>0 where Fn = σ(X1, . . . , Xn). If we write τ for
the number of random variables to be revealed before we see the required pattern, then by Lemma 6.5,
E[τ ] < ∞. Since at most 5 people bet at any one time, |Mn+1 −Mn| is bounded by a constant (say
L = 5/(p2

0p
2
1p2)), so Condition 3 of Theorem 6.4 is satisfied (with this L).

After Xτ has been revealed, gamblers 1, 2, . . . , τ − 5 have each lost £1.

• Gambler τ − 4 has gained £1/(p2
0p

2
1p2)− 1,

• Gamblers τ − 3 and τ − 2 have each lost £1,

• Gambler τ − 1 has gained £1/(p0p1)− 1,

• Gambler τ has lost £1.

Of course, gamblers τ + 1, τ + 2, . . . have not bet at all yet. Thus

Mτ = τ − 1

p2
0p

2
1p2
− 1

p0p1
.

By Theorem 6.4 E[Mτ ] = 0, so taking expectations,

E[τ ] =
1

p2
0p

2
1p2

+
1

p0p1
.

2

The same trick can be used to calculate the expected time until any specified (finite) pattern occurs
in i.i.d. data.

Before finishing this section, we’ll use a stopping-time idea to give a tail bound for (sub)martingales.
According to Markov’s inequality, if X is a random variable and λ > 0, then

P[|X| > λ] 6
E[|X|]
λ

.

Martingales satisfy a similar, but much more powerful inequality, which bounds the maximum of the
process.

Lemma 6.7. Let X be a submartingale, and let N ∈ N. Let τ be a stopping time. Then E[Xτ∧N ] 6
E[XN ].

Proof. Let Yn = Xn − Xτ∧n =
∑n

k=1 Vk(Xk − Xk−1, where Vk = 1τ<k. Then V is a non-negative,
bounded, and predictable process, so by Theorem 5.15, Y is a submartingale. Then 0 = E[Y0] 6
E[YN ] = E[XN −Xτ∧N ].
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Theorem 6.8 (A form of Doob’s maximal inequality). Let (Xn)n>0 be a non-negative submartingale
(w.r.t. a filtration (Fn)n>0). Then for fixed N > 0 and λ > 0,

P
[
max
n6N

Xn > λ
]
6

E[XN ]

λ
.

Proof. Let τ = inf{n : Xn > λ}. Then τ is a stopping time, and {maxn6N Xn > λ} = {Xτ∧N > λ}.
Thus using Lemma 6.7,

P
[
max
n6N

Xn > λ
]

= P[Xτ∧N > λ] 6
1

λ
E[Xτ∧N ] 6

1

λ
E[XN ]

as required.

Corollary 6.9. Let (Ω,F ,P) be a probability space and (Fn)n>0 a filtration. If (Mn)n>0 is a martingale
with respect to (Fn)n>0 then for N > 0 and λ > 0,

P
[
max
n6N
|Mn| > λ

]
6

E[|MN |]
λ

,

and, assuming E[M2
n] <∞ for each n,

P
[
max
n6N
|Mn| > λ

]
6

E[M2
N ]

λ2
.

Proof. For the first statement, note that since f(x) = |x| is convex, (|Mn|)n>0 is a submartingale.
For the second, use f(x) = x2; by the integrability assumption and Proposition 5.11, (M2

n) is a
submartingale. Hence,

P
[
max
n6N
|Mn| > λ

]
= P

[
max
n6N

M2
n > λ2

]
6

E[M2
N ]

λ2
.

Of course, this works using |Mn|p for any p > 1, or, more generally, any non-negative increasing
convex function of |Mn|.

7 The Upcrossing Lemma and Martingale Convergence

Let (Xn)n>0 be an integrable random process, for example modelling the value of an asset. Suppose
that (Vn)n>1 is a predictable process representing an investment strategy based on that asset. The
result of Theorem 5.15 tells us that if (Xn)n>0 is a supermartingale and our strategy (Vn)n>1 only
allows us to hold non-negative amounts of the asset, then our fortune is also a supermartingale. (This
is of course bad news, our expected fortune goes down.)

Consider the following strategy:

1. You do not invest until the value of X goes below some level a (representing what you consider
to be a bottom price), in which case you buy a share.

2. You keep your share until X gets above some level b (a value you consider to be overpriced) in
which case you sell your share and you return to the first step.

Three remarks:
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1. However clever this strategy may seem, if (Xn)n>0 is a supermartingale and you stop playing at
some bounded stopping time, then in expectation your losses will at least equal your winnings.

2. Your ‘winnings’, i.e., profit from shares actually sold, are at least (b − a) times the number of
times the process went up from a to b. (They can be greater, since the price can ‘jump over’ a
and b.)

3. If you stop, owning a share, at a time n when the value is below the price at which you bought,
then (selling out) you lose an amount which is at most (Xn − a)−: you bought at or below a.

Combining these remarks, if (Xn)n>0 is a supermartingale we should be able to bound (from above)
the expected number of times the stock price rises from a to b by E[(Xn−a)−]/(b−a). This is precisely
what Doob’s upcrossing inequality will tell us. To make it precise, we need some notation.

Definition 7.1 (Upcrossings). If x = (xn)n>0 is a sequence of real numbers and a < b are fixed, define
two integer-valued sequences (Sk)k>1 = (Sk([a, b],x))k>1 and (Tk)k>0 = (Tk([a, b],x))k>0 recursively as
follows:

Let T0 = 0 and for k > 1 let
Sk = inf{n > Tk−1 : xn 6 a},

Tk = inf{n > Sk : xn > b},

with the usual convention that inf ∅ =∞.
Let

Un([a, b],x) = max{k > 0 : Tk 6 n}

be the number of upcrossings of [a, b] by x by time n and let

U([a, b],x) = sup
n
Un([a, b],x) = sup{k > 0 : Tk <∞}

be the total number of upcrossings of [a, b] by x.

Lemma 7.2 (Doob’s upcrossing lemma). Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration and
X = (Xn)n>0 a supermartingale w.r.t. (Fn)n>0. Let a < b be fixed real numbers. Then for every n > 0,

E[Un([a, b],X)] 6
E[(Xn − a)−]

b− a
.

Proof. It is an easy induction to check that for k > 1, the random variables Sk = Sk([a, b],X) and
Tk = Tk([a, b],X) are stopping times. Now set

Vn =
∑
k>1

1{Sk<n6Tk}.

Notice that Vn only takes the values 0 and 1. It is 1 at time n if X is in the process of making
an upcrossing from a to b or if Sk < n and Tk = ∞. It is precisely the predictable process in our
investment strategy above: we hold one unit of stock during an upcrossing or if Tk is infinite for some
k and n > Sk.
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V = 0 V = 1
S1 T1 S2 T2

a

b

V = 0 V = 1

Notice that
{Sk < n 6 Tk} = {Sk 6 n− 1} ∩ {Tk 6 n− 1}c ∈ Fn−1.

So (Vn)n>1 is predictable (recall Definition 5.13). Now just as in Theorem 5.14 we construct the discrete
stochastic integral

(V ◦X)n =
n∑
k=1

Vk(Xk −Xk−1)

=

Un∑
i=1

(XTi −XSi) + 1{SUn+1<n}(Xn −XSUn+1
) (20)

> (b− a)Un − (Xn − a)−. (21)

For the last step, note that if indicator function in (20) is non-zero, then SUn+1 <∞, so XSUn+1
6 a.

Hence Xn −XSUn+1
> X − a > −(X − a)−.

Since (Vn)n>1 is bounded, non-negative and predictable and (Xn)n>0 is a supermartingale, by
Theorem 5.15 ((V ◦X)n)n>0 is a supermartingale. So taking expectations in (21),

0 = E[(V ◦X)0] > E[(V ◦X)n] > (b− a)E[Un]− E[(Xn − a)−]

and rearranging gives the result.

One way to show that a sequence of real numbers converges as n → ∞ is to show that it doesn’t
oscillate too wildly; this can be expressed in terms of upcrossings as follows.

Lemma 7.3. A real sequence x = (xn) converges to a limit in [−∞,∞] if and only if U([a, b],x) <∞
for all a, b ∈ Q with a < b.

Proof. From the definitions/basic analysis, x converges if and only if lim inf xn = lim supxn.
(i) If U([a, b],x) =∞, then

lim inf
n→∞

xn 6 a < b 6 lim sup
n→∞

xn

and so x does not converge.
(ii) If x does not converge, then we can choose rationals a and b with

lim inf
n→∞

xn < a < b < lim sup
n→∞

xn,

and then U([a, b],x) =∞.
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A supermartingale (Xn) is just a random sequence; by Doob’s Upcrossing Lemma we can bound
the expected number of upcrossings of [a, b] that it makes for any a < b and so our hope is that we
can combine this with Lemma 7.3 to show that the random sequence (Xn) converges. This is our next
result.

Definition 7.4. Let (Xn) be a sequence of random variables on a probability space (Ω,F ,P), and let
p > 1. We say that (Xn) is bounded in Lp if

sup
n

E[|Xn|p] <∞.

Note that the condition says exactly that the set {Xn} of random variables is a bounded subset of
Lp(Ω,F ,P): there is some K such that ||Xn||p 6 K for all n.

Theorem 7.5 (Doob’s Forward Convergence Theorem). Let (Ω,F ,P) be a probability space and
(Fn)n>0 a filtration. Suppose that (Xn)n>0 is a sub- or supermartingale w.r.t (Fn)n>0 that is bounded
in L1. Then (Xn)n>0 converges a.s to a limit X∞, and X∞ is integrable.

Proof. Considering (−Xn) if necessary, we may suppose without loss of generality that X = (Xn) is a
supermartingale.

Fix rationals a < b. Then by Doob’s Upcrossing Lemma

E[Un([a, b],X)] 6
E[(Xn − a)−]

b− a
6

E[|Xn|] + |a|
b− a

.

Since Un(· · · ) ↑ U(· · · ) as n→∞, by the Monotone Convergence Theorem

E[U([a, b],X)] = lim
n→∞

E[Un([a, b],X)] 6
supn E[|Xn|] + |a|

b− a
<∞.

Hence P[U([a, b],X) =∞] = 0. Since Q is countable, it follows that

P
[
∃ a, b ∈ Q, a < b, s.t. U([a, b],X) =∞

]
= 0.

So by Lemma 7.3 (Xn)n>0 converges a.s. to some X∞. (Specifically, we may take X∞ = lim inf Xn,
which is always defined, and measurable.) It remains to check thatX∞ is integrable. Since |Xn| → |X∞|
a.s., Fatou’s Lemma gives

E[|X∞|] = E
[
lim inf
n→∞

|Xn|
]
6 lim inf

n→∞
E[|Xn|] 6 sup

n
E[|Xn|],

which is finite by assumption.

Corollary 7.6. If (Xn)n>0 is a non-negative supermartingale, then X∞ = limn→∞Xn exists a.s.

Proof. Since E[|Xn|] = E[Xn] 6 E[X0] we may apply Theorem 7.5.

Of course, the result holds for any supermartingale bounded below by a constant, and for any
submartingale bounded above by a constant. The classic example of a non-negative supermartingale
is your bankroll if you bet in a (realistic) casino, where all bets are at unfavourable (or, unrealistically,
neutral) odds, and you can’t bet more than you have. Here is another example.
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Example 7.7 (Galton–Watson branching process). Recall Definition 0.1: let X be a non-negative
integer valued random variable with 0 < µ = E[X] < ∞. Let (Xn,r)n,r>1 be an array of i.i.d. random
variables with the same distribution as X. Set Z0 = 1 and

Zn+1 =

Zn∑
r=1

Xn+1,r,

so Zn is the number of individuals in generation n of our branching process. Finally, let Mn = Zn/µ
n,

and let (Fn) be the natural filtration associated to the sequence (Zn) (or (Mn)). Then

E[Mn+1 | Fn] =
1

µn+1
E[Zn+1 | Fn]

=
1

µn+1
E
[
Xn+1,1 + · · ·+Xn+1,Zn

∣∣ Fn]
=

Zn
µn+1

E[X] =
Zn
µn

= Mn,

so (Mn)n>0 is a martingale w.r.t. (Fn).
[The above derivation is valid but somewhat informal. Since the process is discrete (so Fn corresponds

to a countable partition of Ω), there is no problem making it precise using the Prelims definition of
conditional expectation, which we have shown is the same as the general definition in this discrete case.
As practice using the general definition of conditional expectation, here is a derivation using what we
know about conditional expectation, without going back to the Prelims version. Here we take

Fn = σ({Xi,j : i 6 n})

since this turns out to be more convenient.
First note that Zn+1 =

∑∞
i=1 1{Zn>i}Xn+1,i; this is the standard way to handle a sum with a random

number of terms. Thus, by cMON (which applies since everything is non-negative)

E[Zn+1 | Fn] =
∞∑
i=1

E[1{Zn>i}Xn+1,i | Fn] a.s.

=

∞∑
i=1

1{Zn>i}E[Xn+1,i | Fn] a.s. (taking out what is known)

=

∞∑
i=1

1{Zn>i}E[Xn+1,i] a.s. (independence)

=

∞∑
i=1

1{Zn>i}µ = Znµ,

which gives E[Mn+1 | Fn] = Mn a.s.]
Since (Mn)n>0 is a non-negative martingale, by Corollary 7.6 we see that (Mn)n>0 converges a.s.

to a finite limit M∞. Does it converge in any other senses?
Recall that for a random variable X on (Ω,F ,P) (i.e., a measurable function) and a real number

p > 1, the Lp norm of X is

||X||p =

(∫
|X|pdP

)1/p

= E
[
|X|p

]1/p
,
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and that Lp = Lp(Ω,F ,P) denotes the set of all random variables X with ||X||p finite, i.e., with E[|X|p]
finite. Recall (from Part A integration) that Lp is a vector space: the key point is that

||X + Y ||p 6 ||X||p + ||Y ||p, (22)

so the space Lp is closed under addition. Recall also that Xn → X in Lp if the sequence (Xn)
converges to X in the space Lp, i.e., if ||Xn −X||p → 0, or equivalently, if E[|Xn −X|p]→ 0, and that
this convergence condition is stronger for larger p (see Corollary 3.18). Finally, note that if Xn → X in
Lp then ||Xn||p → ||X||p, or, equivalently, E[|Xn|p]→ E[|X|p]; this follows from the triangle inequality
(22). Of course, the reverse implication does not hold.

As we saw in §0.3, if µ 6 1 then Mn → 0 with probability one. [We can now prove this in a
different, rather clean way: by Corollary 7.6 the non-negative supermartingale (Zn) converges, i.e., is
eventually constant. It is not hard to check that the constant can only be 0.] Hence M∞ = 0 a.s., and
E[M∞] = 0, even though E[Mn] = 1 for all n. It follows that Mn does not converge to M∞ in L1, or
in Lp for any p > 1.

Convergence in L1 will require a stronger condition. What is happening for our subcritical branching
process is that although for large n, Mn is very likely to be zero, if it is not zero then it is very big
with sufficiently high probability that E[Mn] 6→ 0. This mirrors what we saw in Part A Integration
with sequences like

f

10

n

n

1/n

for which we have a strict inequality in Fatou’s Lemma. In §8 we will introduce a condition called
‘uniform integrability’ which is just enough to prohibit this sort of behaviour. First we consider another
sort of boundedness.

7.1 Martingales bounded in L2

Suppose that (Mn)n>0 is a square-integrable martingale, i.e., that E[M2
n] < ∞ for all n – we are not

assuming that (Mn) is bounded in L2. Adopting for the moment the ugly convention that M−1 = 0,
for k > j > 0 we have

E[(Mk −Mk−1)(Mj −Mj−1)] = E [E [(Mk −Mk−1)(Mj −Mj−1) | Fk−1]] (tower property)

= E [(Mj −Mj−1)E[Mk −Mk−1 | Fk−1]] (taking out what is known)

= 0. (martingale property)
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This allows us to obtain a ‘Pythagoras rule’:

E[M2
n] = E

( n∑
k=0

(Mk −Mk−1)

)2


=

n∑
k=0

E[(Mk −Mk−1)2] + 2
∑

n>k>j>0

E[(Mk −Mk−1)(Mj −Mj−1)]

= E[M2
0 ] +

n∑
k=1

E[(Mk −Mk−1)2]. (23)

Similarly (using again only that the cross terms in the expanded sum have zero expectation), for
m > n > 0 we have

E[(Mm −Mn)2] =

m∑
k=n+1

E[(Mk −Mk−1)2]. (24)

Lemma 7.8. Let (Mn)n>0 be a martingale. Then (Mn)n>0 is bounded in L2 if and only if

E[M2
0 ] <∞ and

∑
k>1

E[(Mk −Mk−1)2] <∞. (25)

Proof. This follows easily from (23). (Starting from assumption (25), before we can apply (23) we must
first check that each E[M2

n] is finite. But this follows from (25) and the fact that L2 is closed under
addition.)

Theorem 7.9. Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration and (Mn)n>0 a martingale
w.r.t. (Fn)n>0 that is bounded in L2. Then there is a random variable M∞ such that Mn → M∞ a.s.
and

lim
n→∞

E[(Mn −M∞)2] = 0,

that is Mn →M∞ in L2.

Proof. From Jensen’s inequality (since f(x) = x2 is convex)

E[|Mn|]2 6 E[M2
n],

so since (Mn) is bounded in L2, it is bounded in L1. Hence Doob’s Forward Convergence Theorem
shows that M∞ = limn→∞Mn exists a.s. To check convergence in L2 we use Pythagoras: from (24),

E[(Mn+k −Mn)2] =
n+k∑
j=n+1

E[(Mj −Mj−1)2], (26)

and so by Fatou’s Lemma

E[(M∞ −Mn)2] = E
[
lim inf
k→∞

(Mn+k −Mn)2
]

6 lim inf
k→∞

E[(Mn+k −Mn)2]

=
∞∑

j=n+1

E[(Mj −Mj−1)2]. (using (26))

The final bound is the tail of a sum that, by Lemma 7.8, is convergent. Hence, as n→∞, this bound
tends to 0.
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For L2 convergence we have a very nice result: a sequence can only converge in L2 (or in any
normed space) if it is bounded in L2 (in that space), so we have shown that a martingale converges in
L2 exactly when we could hope that it might.

Notice that martingales that are bounded in L2 form a strict subset of those that are bounded in L1

(those for which we proved Doob’s Forwards Convergence Theorem). And convergence in L2 implies
convergence in L1, so for these martingales we don’t have the difficulty we had with our branching
process example. L2-boundedness is often relatively straightforward to check, so is convenient, but it
is a stronger condition than we need for L1-convergence.

8 Uniform Integrability

If X is an integrable random variable (that is E[|X|] <∞), then the decreasing function E[|X|1{|X|>K}]
tends to 0 as K → ∞. Indeed, setting fn = |X|1{|X|>n}, the functions fn converge to 0 a.s., and are
dominated by the integrable function |X|. So by the Dominated Convergence Theorem, E[fn] → 0.
Uniform integrability demands that this property holds uniformly for random variables from some
class.

Definition 8.1 (Uniform Integrability). A collection C of random variables is called uniformly integrable
if for every ε > 0 there exists a K such that

E[|X|1{|X|>K}] < ε for all X ∈ C.

Note that, unsurprisingly, the singleton family {X} is uniformly integrable if and only if X is
integrable. Uniform integrability says essentially that the ‘upper tail’ of the integrals tends to zero
uniformly; the following formulation is sometimes more convenient.

Proposition 8.2. A collection C is uniformly integrable if and only if E[(|X| −K)+]→ 0 as K →∞,
uniformly in X ∈ C, i.e., for every ε > 0 there exists a K such that E[(|X| −K)+] < ε for all X ∈ C.

Proof. The forward implication is immediate since 0 6 (|X| − K)+ 6 |X|1{|X|>K}. For the reverse,
note that

|X|1{|X|>2K} 6 2(|X| −K)+.

There are two reasons why uniform integrability is important:

1. For sequences that converge in probability (or a.s.), uniform integrability is necessary and sufficient
for passing to the limit under an expectation,

2. it is often easy to verify in the context of martingale theory.

Property 1 should be sufficient to guarantee that uniform integrability is interesting, but in fact uniform
integrability is not often used in analysis where it is usually simpler to use the Monotone or Dominated
Convergence Theorem. It more commonly used in probability, and one reason is 2 above.

Proposition 8.3. Suppose that {Xα, α ∈ I} is a uniformly integrable family of random variables on
some probability space (Ω,F ,P). Then

1.
sup
α

E[|Xα|] <∞,
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2.
P[|Xα| > K]→ 0 as K →∞, uniformly in α,

i.e., ∀ε > 0 ∃K ∀α ∈ I : P[|Xα| > K] < ε.

3.
E[|Xα|1A]→ 0 as P[A]→ 0, uniformly in α.

i.e., ∀ε > 0 ∃δ > 0 ∀α ∈ I : P[A] < δ =⇒ E[|Xα|1A] < ε.

Conversely, either 1 and 3 or 2 and 3 implies uniform integrability.

Proof. 1. By definition of uniform integrability, there exists K such that for all α

E[|Xα|1{|Xα|>K}] 6 1.

Then for all α

E[|Xα|] = E
[
|Xα|1{|Xα|6K} + |Xα|1{|Xα|>K}

]
6 K + E

[
|Xα|1{|Xα|>K}

]
6 K + 1.

Now 1 implies 2 since

P[|Xα| > K] 6
1

K
E[|Xα|] (Markov)

6
1

K
sup
β

E[|Xβ|]

and the final bound, which evidently tends to zero as K →∞, is independent of α.
To see 3, fix ε > 0 and choose K such that

E[|Xα|1{|Xα|>K}] <
ε

2
for all α.

Set δ = ε/(2K) and suppose that P[A] < δ. Then for any α,

E[|Xα|1A] = E[|Xα|1A1{|Xα|>K}] + E[|Xα|1A1{|Xα|6K}]

6 E[|Xα|1{|Xα|>K}] + E[K1A]

6
ε

2
+KP[A]

< ε.

For the converse, since 1 implies 2, it is enough to check that 2 and 3 imply uniform integrability.
Let ε > 0 be given. By 3 there exists δ > 0 such that P[A] < δ implies E[|Xα|1A] < ε for all α. By 2
there is a K such that P[|Xα| > K] < δ for all α. But then

E
[
|Xα|1{|Xα|>K}

]
< ε for all α.

[If we impose a very minor technical condition on our probability space, namely that it is atomless,
then 3 on its own implies uniform integrability. So ‘morally’ 3 is really equivalent to uniform integrability,
and is often the best way of thinking about it.]

Recall that for a sequence of random variables (Xn) on (Ω,F ,P) we say that Xn → X in L1 if

E[|Xn −X|]→ 0 as n→∞.
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We say that Xn → X in probability if, for every ε > 0,

P[|Xn −X| > ε]→ 0

as n → ∞. Finally, Xn → X a.s. if P[Xn → X] = 1. Recall that either of convergence a.s. or in L1

implies convergence in probability, but not the reverse, essentially because of the possible contribution
of rare but very large values.

The following is a variant of the Bounded Convergence Theorem that you may or may not have
seen in Part A integration; for us, it is just a warm up to the next result.

Lemma 8.4. Let (Xn) be a sequence of random variables with Xn → X in probability, and suppose
that X and all Xn are bounded by the same real number K. Then Xn → X in L1.

Proof. We use an idea which recurs again and again in this context: split by whether the relevant
quantity is ‘small’ or ‘large’. Specifically, fix ε > 0. Let An be the event {|Xn −X| > ε}. Then

E[|Xn −X|] = E
[
|Xn −X|1An + |Xn −X|1Ac

n

]
6 E[|Xn|1An ] + E[|X|1An ] + ε (27)

6 2E[K1An ] + ε = 2KP[An] + ε.

Since Xn converges to X in probability, P[An] → 0, so the bound above is at most 2ε if n is large
enough, and E[|Xn −X|]→ 0 as required.

The next result extends this to the situation when the (Xn) are uniformly integrable. This is the
right condition: Xn → X in L1 if and only if Xn → X in probability and (Xn) is uniformly integrable.

Theorem 8.5 (Vitali’s Convergence Theorem). Let (Xn) be a sequence of integrable random variables
which converges in probability to a random variable X. TFAE (The Following Are Equivalent):

1. the family {Xn} is uniformly integrable,

2. E[|Xn −X|]→ 0 as n→∞,

3. E[|Xn|]→ E[|X|] <∞ as n→∞.

Proof. Suppose 1 holds. We try to repeat the proof of Lemma 8.4, using the bound (27). Proposition 8.3
will tell us that the first term tends to 0: surprisingly, the hardest part is to deal with the second term,
which requires us to show that X is integrable.

Since |Xn| → |X| in probability, by Theorem 3.10 there exists a subsequence (Xnk)k>1 that
converges to X a.s. Fatou’s Lemma gives

E[|X|] 6 lim inf
k→∞

E[|Xnk |] 6 sup
n

E[|Xn|],

which is finite by Proposition 8.3. Thus X is integrable. Now fix ε > 0, and let An be the event
{|Xn −X| > ε}. Then, as before,

E[|Xn −X|] = E
[
|Xn −X|1An

]
+ E

[
|Xn −X|1Ac

n

]
6 E

[
|Xn|1An

]
+ E

[
|X|1An

]
+ ε.

Since Xn → X in probability we have P[An] → 0 as n → ∞, so by uniform integrability and
Proposition 8.3,

E[|Xn|1An ]→ 0 as n→∞.
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Similarly, since {X} is uniformly integrable,

E[|X|1An ]→ 0 as n→∞.

Hence E[|Xn −X|] 6 2ε for n large enough. Since ε > 0 was arbitrary this proves 2.
For 2 implies 3 we are implicitly assuming that Xn −X is integrable, so X is integrable. Then, as

noted earlier, our assumption ||Xn −X||1 → 0 implies that ||Xn||1 → ||X||1.
It remains to show that 3 implies 1. To avoid clutter, let Yn = |Xn| and Y = |X|, noting that

Yn, Y > 0, Yn
P→ Y , and by assumption E[Yn]→ E[Y ] <∞.

Let ε > 0 be given. Then, since {Y } (or {X} – it makes no difference) is uniformly integrable,
there is some K such that

E[(Y −K)+] < ε.

For any random variable Z, define

Z ∧K =

{
Z Z 6 K,
K Z > K,

noting that
(Z −K)+ = Z − (Z ∧K). (28)

Since |(a∧K)−(b∧K)| 6 |a−b|, we have Yn∧K
P→ Y ∧K, so by Lemma 8.4 E[Yn∧K]→ E[Y ∧K].

Since E[Yn]→ E[Y ], using (28) for Yn and Y it follows that

E[(Yn −K)+]→ E[(Y −K)+] < ε.

Hence there is an n0 such that for n > n0,

E[(|Xn| −K)+] = E[(Yn −K)+] < 2ε.

There are only finitely many n < n0, so there exists K ′ > K such that such that

E[(|Xn| −K ′)+] < 2ε

for all n, as required.

We will use the next result to show that one of the basic constructions of a martingale gives
something that is automatically uniformly integrable.

Theorem 8.6. Let X be an integrable random variable on (Ω,F ,P) and {Fα : α ∈ I} a family of
σ-algebras with Fα ⊆ F . Then the family {Xα : α ∈ I} with

Xα = E[X | Fα]

is uniformly integrable.

An important special case is when (Fn) is a filtration, in which case (Xn) is a martingale; see
Example 5.10.

Proof. 5 Since f(x) = |x| is convex, by the conditional form of Jensen’s inequality (Proposition 4.11),

|Xα| = |E[X | Fα]| 6 E
[
|X| | Fα

]
a.s. (29)

5An alternative strategy is to deal with the case X > 0 first, and handle the general case by writing X = X+ −X−.
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which certainly implies that
E[|Xα|] 6 E[|X|].

Also, using (29),

E[|Xα|1{|Xα|>K}] 6 E
[
E[|X| | Fα]1{|Xα|>K}

]
= E[|X|1{|Xα|>K}], (30)

since we may move the indicator function inside the conditional expectation and then apply the tower
law.

Now the single integrable random variable X forms on its own a uniformly integrable family and
so by Proposition 8.3 given ε > 0 we can find δ > 0 such that P[A] < δ implies E[|X|1A] < ε. Since

P[|Xα| > K] 6
E[|Xα|]
K

6
E[|X|]
K

,

setting K = 2E[|X|]/δ <∞, it follows that E[|Xα|1{|Xα|>K}] < ε for every α.

Theorem 8.7. Let (Ω,F ,P) be a probability space, (Fn)n>0 a filtration and (Mn)n>0 a martingale
w.r.t. (Fn)n>0. TFAE

1. (Mn)n>0 is uniformly integrable,

2. there is some M∞ such that Mn →M∞ almost surely and in L1,

3. there is an integrable M∞ such that Mn = E[M∞ | Fn] a.s. for all n.

Proof. We already have most of the ingredients.
1 =⇒ 2: If (Mn)n>0 is uniformly integrable then it is bounded in L1 and so by Doob’s Forward

Convergence Theorem (Theorem 7.5) it converges a.s. to some M∞. Since a.s. convergence implies
convergence in probability, Mn →M∞ in L1 by Theorem 8.5.

2 =⇒ 3: Since (Mn) is a martingale, for m > n we have

E[Mm | Fn] = Mn a.s.,

so for any A ∈ Fn we have6

E[Mm1A] = E[Mn1A].

Since ∣∣E[M∞1A]− E[Mm1A]
∣∣ 6 E[|(M∞ −Mm)1A|] 6 E[|M∞ −Mm|]→ 0,

it follows that
E[M∞1A] = E[Mn1A] for all A ∈ Fn.

Since Mn is Fn-measurable, this shows that Mn = E[M∞ | Fn] a.s. by definition of conditional
expectation.

3 =⇒ 1 by Theorem 8.6.

Finally we record a version of the Optional Stopping Theorem 6.4 for uniformly integrable martingales,
which applies for any stopping time.

Theorem 8.8. Let M be a uniformly integrable martingale. Let τ be a stopping time (we allow τ to
take the value ∞ with positive probability). Then Mτ is integrable and E[Mτ ] = E[M0].

6Recall that E[X1A] and
∫
A
X dP mean the same thing.
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Proof. The function x 7→ |x| is convex, so (|Mn|) is a submartingale by Proposition 5.11. Then Lemma
6.7 gives that for any n,

E[|Mτ∧n|] 6 E[|Mn|] 6 sup
k

E[|Mk|] <∞,

so (Mτ∧n) is a martingale bounded in L1. It converges to Mτ , which by Theorem 7.5 is integrable.
We want to show that (Mτ∧n) is in fact uniformly integrable. For any K,

E[|Mτ∧n|1|Mτ∧n|>K ] 6 E[|Mτ |1|Mτ |>K ] + E[|Mn|1|Mn|>K ,

since Mτ∧n is equal to either Mτ or Mn. Now the RHS goes to 0 as K → ∞, uniformly in n, since
(for the first term) Mτ is integrable, and (for the second term) (Mn) is uniformly integrable. So indeed
(Mτ∧n) is uniformly integrable.

Hence in fact (Theorem 8.7) Mτ∧n → Mτ in L1. Then we have E[Mτ ] = limn→∞ E[Mτ∧n] =
limn→∞ E[M0] = E[M0] as required.

9 Backwards Martingales and the Strong Law of Large Numbers

So far our martingales were sequences (Mt) of random variables on (Ω,F ,P) defined for all integers
t > 0. But in fact the definition makes just as good sense for any ‘interval’ I of integers. The conditions
are that for every t ∈ I we have a σ-algebra Ft ⊆ F (information known at time t) and an integrable,
Ft-measurable random variable Mt, with E[Mt+1 | Ft] = Mt a.s. Note that we already implicitly
considered the finite case I = {0, 1, 2, . . . , N}.

Backwards martingales are martingales for which time is indexed by I = {t ∈ Z : t 6 0}. The main
difficulty is deciding whether to write (Mn)n60 or (M−n)n>0. From now on we write the latter. Note
that a backwards martingale ends at time 0.

Definition 9.1. Given σ-algebras (F−n)n>0 with F−n ⊆ F and

· · · ⊆ F−(n+1) ⊆ F−n ⊆ · · · ⊆ F−2 ⊆ F−1 ⊆ F0,

a backwards martingale w.r.t. (F−n) is a sequence (M−n)n>0 of integrable random variables with M−n
F−n-measurable and

E[M−n+1 | F−n] = M−n a.s.

for all n > 1.

For any backwards martingale, we have

E[M0 | F−n] = M−n a.s.

SinceM0 is integrable, it follows from Theorem 8.6 that (M−n)n>0 is automatically uniformly integrable.
Doob’s Upcrossing Lemma, a result about finite martingales, shows that if Um([a, b],M) is the

number of upcrossings of [a, b] by a backwards martingale between times −m and 0, then

E[Um([a, b],M)] 6
E[(M0 − a)−]

b− a
. (31)

(Simply consider the finite martingale (M−m,M−m+1, . . . ,M−1,M0).) A minor variant of the proof of
Doob’s Forward Convergence Theorem (Theorem 7.5) then shows that as n→∞, M−n converges a.s.
to a random limit M−∞. (For definiteness, say M−∞ = lim infn→∞M−n.) Let

F−∞ =

∞⋂
k=0

F−k,
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noting that as k increases, the σ-algebras decrease. The limit M−∞ is F−k-measurable for every k (since
M−n is for all n > k), so M−∞ is F−∞-measurable. Since (M−n) is uniformly integrable, adapting the
proof of Theorem 8.7 gives the following result.

Theorem 9.2. Let (M−n)n>0 be a backwards martingale w.r.t. (F−n)n>0. Then M−n converges a.s.
and in L1 as n→∞ to the random variable M−∞ = E[M0 | F−∞].

We now use this result to prove the celebrated Kolmogorov Strong Law.

Theorem 9.3 (Kolmogorov’s Strong Law of Large Numbers). Let (Xn)n>1 be a sequence of i.i.d.
random variables each of which is integrable and has mean µ, and set

Sn =
n∑
k=1

Xk.

Then
Sn
n
→ µ a.s. and in L1 as n→∞.

Proof. For n > 1 set

F−n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .),

noting that F−n−1 ⊆ F−n. Conditioning on F−n preserves the symmetry between X1, . . . , Xn, since
none of Sn, Sn+1, . . . is affected by permuting X1, . . . , Xn. Hence,

E[X1 | F−n] = E[X2 | F−n] = · · · = E[Xn | F−n]

and so they are all equal (a.s.) to their average

1

n
E[X1 + · · ·+Xn | F−n] =

1

n
E[Sn | F−n] =

1

n
Sn.

Let M−n = Sn/n. Then, for n > 2,

E[M−n+1 | F−n] = E[Sn−1/(n− 1) | F−n] =
1

n− 1

n−1∑
i=1

E[Xi | F−n] = Sn/n = Mn.

In other words, (M−n)n>1 is a backwards martingale w.r.t. (F−n)n>1. Thus, by Theorem 9.2, Sn/n
converges a.s. and in L1 to M−∞ = E[M−1 | F−∞], where F−∞ =

⋂
k>1F−k.

Now by L1 convergence, E[M−∞] = limn→∞ E[M−n] = E[M−1] = E[S1] = µ. In terms of the random
variables X1, X2, . . . , the limit M−∞ = lim inf Sn/n is a tail random variable, so by Kolmogorov’s 0-1
law it is a.s. constant, so M−∞ = µ a.s.

9.1 Exchangeability and the ballot theorem (not covered in lectures)

The material in Section 9.1 is not part of the “examinable syllabus”. You won’t be asked to reproduce
these results directly. However, just like many of the problem sheet questions, the methods help to
develop your intuition for the ideas of the course.

In our proof of the Strong Law of Large Numbers we used symmetry in a key way. There it followed
from independence of our random variables, but in general a weaker condition suffices.
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Definition 9.4 (Exchangeability). The random variables X1, . . . , Xn are said to be exchangeable if the
vector (Xi1 , . . . , Xin) has the same probability distribution for every permutation i1, . . . , in of 1, . . . , n.

Example 9.5. Let X1, . . . , Xn be the results of n successive samples without replacement from a pool
of at least n values (some of which may be the same). Then the random variables X1, . . . , Xn are
exchangeable but not independent.

It turns out that we can use the construction in the proof of the Strong Law of Large Numbers
to manufacture a finite martingale from a finite collection of exchangeable random variables. Suppose
that X1, . . . , Xn are exchangeable and integrable, and set Sj =

∑j
i=1Xi. Let

Zj = E[X1 | σ(Sn+1−j , . . . , Sn−1, Sn)], j = 1, 2, . . . n.

Note that Zj is defined by conditioning on the last j sums; since we condition on more as j increases,
(Zj)

n
j=1 is certainly a martingale. Now

Sn+1−j = E[Sn+1−j | σ(Sn+1−j , . . . , Sn)]

=

n+j−1∑
i=1

E[Xi | σ(Sn+1−j , . . . , Sn)]

= (n+ 1− j)E[X1 | σ(Sn+1−j , . . . , Sn)] (by exchangeability)

= (n+ 1− j)Zj ,

so Zj = Sn+1−j/(n+ 1− j).

Definition 9.6. The martingale

Zj =
Sn+1−j
n+ 1− j

, j = 1, 2, . . . , n,

is sometimes called a Doob backward martingale.

Example 9.7 (The ballot problem). In an election between candidates A and B, candidate A receives
n votes and candidate B receives m votes, where n > m. Assuming that in the count of votes all
orderings are equally likely, what is the probability that A is always ahead of B during the count?

Solution:
Let Xi = 1 if the ith vote counted is for A and −1 if the ith vote counted is for B, and let Sk =∑k
i=1Xi. Because all orderings of the n+m votes are equally likely, X1, . . . , Xn+m are exchangeable,

so

Zj =
Sn+m+1−j

n+m+ 1− j
, j = 1, 2, . . . , n+m,

is a Doob backward martingale.
Because

Z1 =
Sn+m

n+m
=
n−m
n+m

,

the mean of this martingale is (n−m)/(n+m).
Because n > m, either (i) A is always ahead in the count, or (ii) there is a tie at some point. Case

(ii) happens if and only if some Sj = 0, i.e., if and only if some Zj = 0.
Define the bounded stopping time τ by

τ = min{j > 1 : Zj = 0 or j = n+m}.
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In case (i), Zτ = Zn+m = X1 = 1. (If A is always ahead, he must receive the first vote.) Clearly, in
case (ii), Zτ = 0, so

Zτ =

{
1 if A is always ahead,
0 otherwise.

By Lemma 6.2 (or Theorem 6.4), E[Zτ ] = (n−m)/(n+m) and so

P[A is always ahead] =
n−m
n+m

.

2

10 Azuma-Hoeffding inequality and concentration of Lipschitz functions

The material in Section 10 is not part of the “examinable syllabus”. You won’t be asked to reproduce any
of these results directly. However, the methods involved are very good illustrations of ideas from earlier
in the course: particularly the Doob martingale ideas involved in Theorem 10.5 and its applications.

By applying Markov’s inequality to the moment generating function, we can get better bounds than
we get from the mean and variance alone.

Lemma 10.1. (i) Let Y be a random variable with mean 0, taking values in [−c, c]. Then

E[eθY ] 6 exp

(
1

2
θ2c2

)
.

(ii) Let G be a σ-algebra, and Y be a random variable with E[Y |G] = 0 a.s. and Y ∈ [−c, c] a.s. Then

E[eθY | G] 6 exp

(
1

2
θ2c2

)
a.s.

Proof. Let f(y) = eθy. Since f is convex,

f(y) 6
c− y

2c
f(−c) +

c+ y

2c
f(c)

for all y ∈ [−c, c]. Then taking expectations,

E[f(Y )] 6 E
[
c− Y

2c
f(−c) +

c+ Y

2c
f(c)

]
=

1

2
f(−c) +

1

2
f(c)

=
e−θc + eθc

2
.

Now, comparing Taylor expansions term by term,

e−θc + eθc

2
=

∞∑
n=0

(θc)2n

(2n)!
6
∞∑
n=0

(θc)2n

2nn!
= exp

(
1

2
θ2c2

)
.

giving part (i).
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For the conditional version of the statement, consider any G ∈ G with P[G] > 0. Then E[Y 1G] = 0,
so E[Y | G] = 0. Applying part (i) with probability measure P[. | G], we obtain E[eθY | G] 6
exp

(
1
2θ

2c2
)
.

Now consider the G-measurable set G := {ω : E[eθY |G](ω) > exp
(

1
2θ

2c2
)
}. If this set has positive

probability, it contradicts the previous paragraph. So indeed E[eθY | G] 6 exp
(

1
2θ

2c2
)

a.s. as required.

Lemma 10.2. Suppose M is a martingale with M0 = 0 and |Mn −Mn−1| 6 c a.s. for all n. Then

E
[
eθMn

]
6 exp

(
1

2
θ2c2n

)
.

Proof. Let Wn = eθMn , so that Wn is non-negative and Wn = Wn−1e
θ(Mn−Mn−1).

Then applying Lemma 10.1(ii) with Y = Mn −Mn−1 and G = Fn=1,

E(Wn | Fn−1) = Wn−1E
[
eθ(Mn−Mn−1) | Fn−1

]
6Wn−1 exp

(
1

2
θ2c2

)
a.s.

Taking expectations we obtain E[Wn] 6 exp
(

1
2θ

2c2
)
E[Wn−1] and the result follows by induction.

Theorem 10.3 (Simple version of the Azuma-Hoeffding inequality). Suppose M is a martingale with
M0 = 0 and |Mn −Mn−1| 6 c a.s. for all n. Then

P(Mn > a) 6 exp

(
−1

2

a2

c2n

)
,

and

P(|Mn| > a) 6 2 exp

(
−1

2

a2

c2n

)
.

Proof.

P(Mn > a) 6 P
(
eθMn 6 eθa

)
6 e−θa exp

(
1

2
θ2c2

)
using Markov’s inequality. Now we are free to optimise over θ. The RHS is minimised when θ = a/(c2n),
giving the required bound.

The same argument applies replacing M by the martingale −M . Summing the two bounds then
gives the bound for |M |.

We now introduce the idea of discrete Lipschitz functions.

Definition 10.4. Let h be a function of n variables. The function h is said to be c-Lipschitz, where
c > 0, if changing the value of any one coordinate causes the value of h to change by at most c. That is,
whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) differ in at most one coordinate, then |h(x)−h(y)| 6 c.

61



Theorem 10.5 (Concentration of discrete Lipschitz functions). Suppose h is a c-Lipschitz function,
and X1, . . . , Xn are independent random variables. Then

P (|h(X1, . . . , Xn)− E[h(X1, . . . , Xn)]| > a) 6 2 exp

(
−1

2

a2

c2n

)
.

Proof. The proof is based on the idea of the Doob martingale. We reveal information about the
underlying random variables X1, . . . , Xn one step at a time, gradually acquiring a more precise idea of
the value h(X1, . . . , Xn).

For 0 6 k 6 n, let Fk = σ(X1, . . . , Xk), and let

Mk = E[h(X1, . . . , Xn) | Fk]− E[h(X1, . . . , Xn)].

Then M0 = 0, and Mn = h(X1, . . . , Xn)− E[h(X1, . . . , Xn).
We claim |Mk+1 − Mk| 6 c a.s. To show this, let X̂k+1 be a random variable with the same

distribution as Xk+1, which is independent of X1, . . . , Xn.
Then

Mk = E[h(X1, . . . , Xk, X̂k+1, . . . , Xn) | Fk]

= E[h(X1, . . . , Xk, X̂k+1, . . . , Xn) | Fk]

= E[h(X1, . . . , Xk, X̂k+1, . . . , Xn) | Fk+1].

This gives

Mk+1 −Mk = E[h(X1, . . . , Xk, X̂k+1, . . . , Xn)− h(X1, . . . , Xk, Xk+1, . . . , Xn) | Fk+1].

But the difference between the two values of h inside the conditional expectation on the RHS is in
[−c, c], so we obtain |Mk+1 −Mk| 6 c a.s. as required. Now the required estimate for Mn follows from
the Azuma-Hoeffding bound (Theorem 10.3).

The examples below of the application of Theorem 10.5 show that martingale methods can be
applied to problems far away from what one might think of as “stochastic process theory”.

Example 10.6 (Longest common subsequence). Let X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym)
be two independent sequences, each with independent entries.

Let Lm be the length of the longest sequence which is a subsequence (not necessarily consecutive)
of both sequences.

For example, if m = 12 and X =“CAGGGTAGTAAG” and Y =“CGTGTGAAAACT” then both
X and Y contain the substring “CGGTAAA”, and Lm = 6.

Changing a single entry can’t change the length of the longest common subsequence by more than
1. We can apply Theorem 10.5 with n = 2m and c = 1, to get

P(|Lm − E[Lm]| > a) 6 2 exp

(
− a2

4m

)
.

We obtain that for large m, “typical fluctuations” of Lm around its mean are on the scale at most
√
m.

Note that we didn’t require the sequences X and Y to have the same distribution, or for the entries
of each sequence to be identically distributed.

As suggested by the choice of strings above, longest common subsequence problems arise for
example in computational biology, involving the comparison of DNA strings (which evolve via mutation,
insertion or deletion of individual nucleotides).
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Example 10.7 (Minimum-length matching). Suppose there are m red points in the box [0, 1]2 ⊂ R2,
with positions R1, . . . , Rm, and m blue points with positions B1, . . . , Bm.

Let X be the length of the minimal-length matching, which joins pairs consisting of one blue and
one red point. That is,

Xm = min
m∑
k=1

‖Rk −Bik‖,

where the minimum is taken over all permutations i1, i2, . . . , im of 1, 2, . . . ,m, and ‖r − b‖ denotes
Euclidean distance between r and b.

Alternatively let Y be the length of the minimal-length alternating tour, a path which visits all 2m
points, alternating between red and blue, and returning to its starting point:

Ym = min

{
m∑
k=1

‖Rik −Bjk‖+

m−1∑
k=1

‖Bjk −Rik+1
‖+ ‖Bjm −Ri1‖

}
,

where now the minimum is over all pairs of permutations i1, i2, . . . , im and j1, j2, . . . , jm of 1, 2, . . . ,m.
Moving a single point cannot change Xm by more than

√
2, and cannot change Ym by more than

2
√

2. If the positions of the points are independent, then applying Theorem 10.5 with n = 2m and the
appropriate value of c, we obtain

P(|Xm − E[Xm]| > a) 6 2 exp

(
− a2

8m

)
P(|Ym − E[Ym]| > a) 6 2 exp

(
− a2

32m

)
.

Again this gives concentration of Xm and Ym around their means on the scale of
√
m. This may be

a poor bound; for example if all the points are i.i.d. uniform on the box [0, 1]2, then in fact the means
themselves grow like

√
m as m → ∞. However, we didn’t assume identical distribution. For example

we might have red points uniform on the left half [0, 1/2]× [0, 1], and blue points uniform on the right
half [1/2, 1]× [0, 1], in which case the means grow linearly in m, and the O(

√
m) fluctuation bound is

more interesting.

Example 10.8 (Chromatic number of a random graph). The Erdös-Rényi random graph model
G(N, p) consists of a graph with N vertices, in which each edge (out of the

(
N
2

)
possible edges)

appears independently with probability p. If p = 1/2, then the graph is uniformly distributed over all
possible graphs with N vertices.

The chromatic number χ(G) of a graph G is the minimal number of colours needed to colour the
vertices of G so that any two adjacent vertices have different colours.

Consider applying Theorem 10.5 to the chromatic number χ(G) of a random graph G ∼ G(N, 1/2).
We could write χ(G) as a function of

(
N
2

)
independent Bernoulli random variables, each one encoding

the presence or absence of a given edge. Adding or removing a single edge cannot change the chromatic
number by more than 1. This would give us a fluctuation bound on χ(G) on the order of N as N →∞.
However, for large N this is an extremely poor, in fact trivial, result, since χ(G) itself is known to be
on the order of N/ log(N).

We can do much better. For 2 6 k 6 N , let Xk consist of a collection of k − 1 Bernoulli random
variables, encoding the presence or absence of the k − 1 edges {1, k}, {2, k}, . . . , {k − 1, k}. It’s still
the case that X2, . . . , XN are independent. All the information in Xk concerns edges that intersect
the vertex k; changing the status of any subset of these edges can only change the chromatic number
by at most 1 (consider recolouring vertex k as necessary). The Doob martingale from the proof of
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Theorem 10.5 involves revealing information about the graph vertex by vertex, rather than edge by
edge, and is called the vertex exposure martingale. Applying the theorem with n = N − 1 and c = 1,
we obtain

P (|χ(G)− E[χ(G)]| > a) 6 2 exp

(
− a2

2(N − 1)

)
,

giving a concentration bound on the scale of
√
N for large N .
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