B8.1: Probability, Measure and Martingales 2019 Problem Sheet 4 Solutions to optional questions

A. Since $q \in [0,1]$ and $Z_n \ge 0$ we have that $q^{Z_n} \in [0,1]$, so integrability is clear.

$$\mathbb{E}\left[q^{Z_{n+1}} \middle| \mathcal{F}_n\right] = \mathbb{E}\left[q^{X_1^{(n+1)} + \dots + X_{Z_n}^{(n+1)}} \middle| \mathcal{F}_n\right] = \mathbb{E}[f(q)^{Z_n} \mid \mathcal{F}_n] = f(q)^{Z_n} = q^{Z_n}.$$

B. (a) Certainly not. One of the first things we proved about martingales (part (2) of Proposition 5.4) is that $\mathbb{E}(M_n) = \mathbb{E}(M_0)$ for all n.

(b) Simple example: simple symmetric random walk on \mathbb{Z} started from 0, with τ the first hitting time of 1.

Boundedness in \mathcal{L}^1 is not enough for the conclusion of the Optional Stopping Theorem to apply. Indeed, we have seen several examples of martingales Z with $Z_0 > 0$ which are non-negative (hence are bounded in \mathcal{L}^1) and such that Z hits 0 in finite time almost surely. For example, let Z be a branching process with mean offspring size equal to 1 or let $Z_n = Y_1 Y_2 \dots Y_n$ where Y_i takes value 0 or 2 with probability 1/2 each (the "double or quits" martingale). Then putting $M_n = 1 - Z_n$ and τ the first hitting time of 0 by the process Z gives an example.

However, uniform integrability is enough for the conclusion of the Optional Stopping Theorem to apply, as discussed in Lecture 15. So in that case $\mathbb{E}(M_{\tau}) = 0$ for all stopping times τ (we may even allow $\tau = \infty$).

(c) Yes, $M_n \to \infty$ a.s. is possible. For example, let $M_n = \sum_{k=1}^n X_k$ where X_k are independent and X_k takes value 1 with probability $(k^2 - 1)/k^2$, and value $-(k^2 - 1)$ with probability $1/k^2$.

Then each X_k has mean 0 so M is a martingale. But by applying Borel-Cantelli, with probability 1, $\mathbb{P}(X_k = 1 \text{ for all large enough } k) = 1$. So indeed $M_n \to \infty$ with probability 1.

If M is bounded in \mathcal{L}^1 , we know from the Forward Convergence Theorem that M converges a.s. to a finite limit. So $M_n \to \infty$ is not possible.

C. We mimic Example 6.6 in the notes (or equivalently the ABRACADABRA version in the lectures). We assume a fair casino in which each player starts with a fortune of £1. Player *i* bets £1 that the outcome of the *i*th flip is *H*. If she wins then she bets her £2 that the outcome of the (i+1)st flip is *T*. If she wins again, then she bets her £4 that the outcome of the (i+2)nd flip is *H*. And so on. The casino's profits form a martingale in which the changes are bounded by a constant (note that at most 6 people bet at one time).

We stop after the τ th flip (when we have first seen the pattern HTHTHT for the first time). By Lemma 6.5 of lectures (see Question 2 on this sheet), $\mathbb{E}[\tau] < \infty$ and so the expected casino profit at time τ is zero (Doob's Optional Stopping Theorem). At this time player $\tau - 5$ has a fortune of £64, player $\tau - 3$ has a fortune of £16 and player $\tau - 1$ has a fortune of £4. The change in fortune of all players at time τ is then $\pounds(64 + 16 + 4 - \tau)$ which has mean zero giving $\mathbb{E}[\tau] = 84$. More formally, for $k \ge 1$ and $n \ge 0$ define

$$M_n^{(k)} = \begin{cases} 0 & n < k \\ 2^{n-k+1} \mathbf{1}_{\{X_k=1, X_{k+1}=0, \dots, X_n=a\}} - 1 & k \le n \le k+5 \\ 2^6 \mathbf{1}_{\{X_k=1, X_{k+1}=0, \dots, X_n=0\}} - 1 & n \ge k+6 \end{cases}$$

where the X_i are independent Bernoulli random variables with success probability 1/2. For each k the sequence $M_n^{(k)}$ is a martingale in n (the winnings of the kth gambler after n coins have been revealed), and $M_n = \sum_{k \ge 1} M_n^{(k)}$ is the required martingale. (Note that an infinite sum of martingales need not be a martingale, or indeed make sense, but here only finitely many k participate for a given n.)

The maximum expected waiting time is 64+32+16+8+4+2 = 126 for HHHHHH or TTTTTT. The minimum is 64, for example for HHHHHT.

D. There are more elementary methods but let's write a solution using what we know about martingales. Let $M_n = \sum_{i=1}^n X_i$. Then M_n is a martingale, and $\mathbb{E}(M_n^2) = \operatorname{Var}(M_n) = \sum_{i=1}^n \operatorname{Var}(X_i)$ (by independence of the X_i), which is bounded.

So M is bounded in \mathcal{L}^2 . This is much stronger than we need for a.s. convergence; for example boundedness in \mathcal{L}^1 is enough (by the Forward Convergence Theorem). So indeed M converges almost surely. Since M is bounded in \mathcal{L}^2 we could also deduce that M also converges in \mathcal{L}^2 .

E. Let W_n be the proportion of white balls in Polya's Urn. Let S_n be the same process stopped the first time that it reaches 3/4 or greater (if that ever happens).

The process S starts at 1/2, and is a bounded martingale, and so converges a.s. and in \mathcal{L}^1 to some limit S_{∞} with $\mathbb{E}S_{\infty} = 1/2$.

If the proportion of white balls ever reaches 3/4 or more, then $S_{\infty} \ge 3/4$.

Since S_{∞} is non-negative, Markov's inequality gives $\mathbb{P}(S_{\infty} \ge 3/4) \le \frac{1/2}{3/4} = 2/3$.

(This bound is not sharp. For Markov's inequality to be tight, we would need that S_{∞} only takes the values 0 and 3/4. But certainly the limit can be between 0 and 3/4, and also the limit can be greater than 3/4, since the process W can jump over 3/4 to some higher value.)

F. To show

 $\mathbb{E}(Y_n \mid \mathcal{F}_n) \to \mathbb{E}(Y \mid \mathcal{F}_\infty) \text{ in } \mathcal{L}^1,$

it's enough that

$$\mathbb{E}(Y_n \mid \mathcal{F}_n) - \mathbb{E}(Y \mid \mathcal{F}_n) \to 0 \text{ in } \mathcal{L}^1,$$

and

$$\mathbb{E}(Y \mid \mathcal{F}_n) \to \mathbb{E}(Y \mid \mathcal{F}_\infty) \text{ in } \mathcal{L}^1$$

For the first,

$$\mathbb{E}\left[|\mathbb{E}(Y_n \mid \mathcal{F}_n) - \mathbb{E}(Y \mid \mathcal{F}_n)|\right] \leq \mathbb{E}\left[E(|Y_n - Y| \mid \mathcal{F}_n]\right]$$
$$= \mathbb{E}|Y_n - Y|$$
$$\to 0.$$

For the second: this is the setting of Theorem 8.7; $\mathbb{E}(Y \mid \mathcal{F}_n)$ is a Doob martingale, whose limit a.s. and in \mathcal{L}^1 is $\mathbb{E}(Y \mid \mathcal{F}_\infty)$.

G. $M_n = \prod_{i=1}^n X_i$ where $X_i = e^{tY_i}/\psi(t)$.

The variables X_i are i.i.d. with mean 1, so indeed M_n is a martingale.

It's a non-negative martingale so it converges a.s. The limit M_{∞} is a.s. equal to 0 (for M to converge to a strictly positive limit, it would require X_i to converge to 1, which is a.s. not the case).

H. (a) Many ways to approach this. If a finite Markov chain has a single communicating class, then the class is recurrent, and each state $x \in S$ is reached infinitely often with probability 1. The process $g(X_n)$ is bounded, so if it's a martingale, it converges a.s. But it can only do so if g(x)is the same for all $x \in S$.

(b) Assume that every state may be reached with positive probability (otherwise we may ignore the states which can never be reached – the function g can take arbitrary values there).

By the same argument in (a), the function g must be constant on any closed communicating class.

Let the closed classes be C_1, C_2, \ldots, C_k for some $k \ge 1$. Fix $g(x) = a_i$ for all $x \in C_i$.

We see that $g(X_n)$ converges a.s. to some X_∞ : specifically, $X_\infty = a_i$ if X is absorbed in C_i . We have that $g(X_n)$ is bounded, hence uniformly integrable, so if it's a martingale, then $g(X_0) = \mathbb{E}[g(X_\infty)]$. We must have $g(x) = \sum_i a_i \mathbb{P}_x$ (reach C_i) (where \mathbb{P}_x denotes the law of the Markov chain started from point x).

So there is a k-dimensional space of functions g that give martingales. Once the values $a_i, i = 1, \ldots, k$ are specified, i.e. the values of g at points in C_1, \ldots, C_k , the remaining values of g are forced.

(c) We could consider for example a nearest-neighbour random walk on \mathbb{Z} , with a drift away from the origin: say $p_{x,x+1} = 1 - p_{x,x-1} = 2/3$ for x > 0, and $p_{x,x+1} = 1 - p_{x,x-1} = 1/3$ for $x \leq 0$.

Started from any state, this walk tends to $-\infty$ with positive probability, and to $+\infty$ with positive probability.

We may set for example $g(x) = \mathbb{P}_x(X_n \to \infty)$. Then the process $g(X_n)$ is a martingale, but it is not constant. The "limits" $\pm \infty$ play the role of the absorbing classes C_i in part (b). So although the chain has a single communicating class, it has two different possible limiting behaviours, and non-constant martingales are possible. (The most general form of the function g is in fact now $g(x) = a\mathbb{P}_x(X_n \to \infty) + b\mathbb{P}_x(X_n \to -\infty)$.)