
B8.1: Probability, Measure and Martingales 2019

Problem Sheet 4

Solutions to optional questions

A. Since q ∈ [0, 1] and Zn > 0 we have that qZn ∈ [0, 1], so integrability is clear.

E
[
qZn+1

∣∣Fn] = E
[
qX

(n+1)
1 +···+X(n+1)

Zn

∣∣∣ Fn] = E[f(q)Zn | Fn] = f(q)Zn = qZn .

B. (a) Certainly not. One of the first things we proved about martingales (part (2) of Proposition
5.4) is that E(Mn) = E(M0) for all n.

(b) Simple example: simple symmetric random walk on Z started from 0, with τ the first hitting
time of 1.

Boundedness in L1 is not enough for the conclusion of the Optional Stopping Theorem to apply.
Indeed, we have seen several examples of martingales Z with Z0 > 0 which are non-negative
(hence are bounded in L1) and such that Z hits 0 in finite time almost surely. For example, let
Z be a branching process with mean offspring size equal to 1 or let Zn = Y1Y2 . . . Yn where Yi
takes value 0 or 2 with probability 1/2 each (the “double or quits” martingale). Then putting
Mn = 1− Zn and τ the first hitting time of 0 by the process Z gives an example.

However, uniform integrability is enough for the conclusion of the Optional Stopping Theorem
to apply, as discussed in Lecture 15. So in that case E(Mτ ) = 0 for all stopping times τ (we may
even allow τ =∞).

(c) Yes, Mn → ∞ a.s. is possible. For example, let Mn =
∑n

k=1Xk where Xk are independent
and Xk takes value 1 with probability (k2 − 1)/k2, and value −(k2 − 1) with probability 1/k2.

Then each Xk has mean 0 so M is a martingale. But by applying Borel-Cantelli, with probability
1, P(Xk = 1 for all large enough k) = 1. So indeed Mn →∞ with probability 1.

If M is bounded in L1, we know from the Forward Convergence Theorem that M converges a.s.
to a finite limit. So Mn →∞ is not possible.

C. We mimic Example 6.6 in the notes (or equivalently the ABRACADABRA version in the lectures).
We assume a fair casino in which each player starts with a fortune of £1. Player i bets £1 that
the outcome of the ith flip is H. If she wins then she bets her £2 that the outcome of the (i+1)st
flip is T . If she wins again, then she bets her £4 that the outcome of the (i+ 2)nd flip is H. And
so on. The casino’s profits form a martingale in which the changes are bounded by a constant
(note that at most 6 people bet at one time).

We stop after the τth flip (when we have first seen the pattern HTHTHT for the first time). By
Lemma 6.5 of lectures (see Question 2 on this sheet), E[τ ] <∞ and so the expected casino profit
at time τ is zero (Doob’s Optional Stopping Theorem). At this time player τ − 5 has a fortune
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of £64, player τ − 3 has a fortune of £16 and player τ − 1 has a fortune of £4. The change in
fortune of all players at time τ is then £(64 + 16 + 4− τ) which has mean zero giving E[τ ] = 84.

More formally, for k > 1 and n > 0 define

M (k)
n =


0 n < k

2n−k+11{Xk=1,Xk+1=0,...,Xn=a} − 1 k 6 n 6 k + 5

261{Xk=1,Xk+1=0,...,Xn=0} − 1 n > k + 6

where the Xi are independent Bernoulli random variables with success probability 1/2. For each

k the sequence M
(k)
n is a martingale in n (the winnings of the kth gambler after n coins have

been revealed), and Mn =
∑

k>1M
(k)
n is the required martingale. (Note that an infinite sum

of martingales need not be a martingale, or indeed make sense, but here only finitely many k
participate for a given n.)

The maximum expected waiting time is 64+32+16+8+4+2 = 126 for HHHHHH or TTTTTT.
The minimum is 64, for example for HHHHHT.

D. There are more elementary methods but let’s write a solution using what we know about martingales.

Let Mn =
∑n

i=1Xi. Then Mn is a martingale, and E(M2
n) = Var(Mn) =

∑n
i=1 Var(Xi) (by

independence of the Xi), which is bounded.

So M is bounded in L2. This is much stronger than we need for a.s. convergence; for example
boundedness in L1 is enough (by the Forward Convergence Theorem). So indeed M converges
almost surely. Since M is bounded in L2 we could also deduce that M also converges in L2.

E. Let Wn be the proportion of white balls in Polya’s Urn. Let Sn be the same process stopped the
first time that it reaches 3/4 or greater (if that ever happens).

The process S starts at 1/2, and is a bounded martingale, and so converges a.s. and in L1 to
some limit S∞ with ES∞ = 1/2.

If the proportion of white balls ever reaches 3/4 or more, then S∞ > 3/4.

Since S∞ is non-negative, Markov’s inequality gives P(S∞ > 3/4) 6 1/2
3/4 = 2/3.

(This bound is not sharp. For Markov’s inequality to be tight, we would need that S∞ only takes
the values 0 and 3/4. But certainly the limit can be between 0 and 3/4, and also the limit can
be greater than 3/4, since the process W can jump over 3/4 to some higher value.)

F. To show
E(Yn | Fn)→ E(Y | F∞) in L1,

it’s enough that

E(Yn | Fn)− E(Y | Fn)→ 0 in L1,

and

E(Y | Fn)→ E(Y | F∞) in L1.

For the first,

E [|E(Yn | Fn)− E(Y | Fn)|] 6 E [E(|Yn − Y | | Fn]

= E|Yn − Y |
→ 0.
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For the second: this is the setting of Theorem 8.7; E(Y | Fn) is a Doob martingale, whose limit
a.s. and in L1 is E(Y | F∞).

G. Mn =
∏n
i=1Xi where Xi = etYi/ψ(t).

The variables Xi are i.i.d. with mean 1, so indeed Mn is a martingale.

It’s a non-negative martingale so it converges a.s. The limit M∞ is a.s. equal to 0 (for M to
converge to a strictly positive limit, it would require Xi to converge to 1, which is a.s. not the
case).

H. (a) Many ways to approach this. If a finite Markov chain has a single communicating class, then
the class is recurrent, and each state x ∈ S is reached infinitely often with probability 1. The
process g(Xn) is bounded, so if it’s a martingale, it converges a.s. But it can only do so if g(x)
is the same for all x ∈ S.

(b) Assume that every state may be reached with positive probability (otherwise we may ignore
the states which can never be reached – the function g can take arbitrary values there).

By the same argument in (a), the function g must be constant on any closed communicating
class.

Let the closed classes be C1, C2, . . . , Ck for some k > 1. Fix g(x) = ai for all x ∈ Ci.
We see that g(Xn) converges a.s. to some X∞: specifically, X∞ = ai if X is absorbed in Ci. We
have that g(Xn) is bounded, hence uniformly integrable, so if it’s a martingale, then g(X0) =
E[g(X∞)]. We must have g(x) =

∑
i aiPx(reach Ci) (where Px denotes the law of the Markov

chain started from point x).

So there is a k-dimensional space of functions g that give martingales. Once the values ai, i =
1, . . . , k are specified, i.e. the values of g at points in C1, . . . , Ck, the remaining values of g are
forced.

(c) We could consider for example a nearest-neighbour random walk on Z, with a drift away from
the origin: say px,x+1 = 1− px,x−1 = 2/3 for x > 0, and px,x+1 = 1− px,x−1 = 1/3 for x 6 0.

Started from any state, this walk tends to −∞ with positive probability, and to +∞ with positive
probability.

We may set for example g(x) = Px(Xn →∞). Then the process g(Xn) is a martingale, but it is
not constant. The “limits” ±∞ play the role of the absorbing classes Ci in part (b). So although
the chain has a single communicating class, it has two different possible limiting behaviours, and
non-constant martingales are possible. (The most general form of the function g is in fact now
g(x) = aPx(Xn →∞) + bPx(Xn → −∞).)
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