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B8.1: Probability, Measure and Martingales 2019
Problem Sheet 4
Solutions to optional questions

Since ¢ € [0,1] and Z,, > 0 we have that ¢%» € [0, 1], so integrability is clear.
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a) Certainly not. One of the first things we proved about martingales (part (2) of Proposition
4) is that E(M,,) = E(M)) for all n.
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(b) Simple example: simple symmetric random walk on Z started from 0, with 7 the first hitting
time of 1.

Boundedness in £! is not enough for the conclusion of the Optional Stopping Theorem to apply.
Indeed, we have seen several examples of martingales Z with Zp > 0 which are non-negative
(hence are bounded in £') and such that Z hits 0 in finite time almost surely. For example, let
Z be a branching process with mean offspring size equal to 1 or let Z, = Y1Ys...Y, where Y;
takes value 0 or 2 with probability 1/2 each (the “double or quits” martingale). Then putting
M, =1— Z, and 7 the first hitting time of 0 by the process Z gives an example.

However, uniform integrability is enough for the conclusion of the Optional Stopping Theorem
to apply, as discussed in Lecture 15. So in that case E(M,) = 0 for all stopping times 7 (we may
even allow 7 = 00).

(c) Yes, M, — oo a.s. is possible. For example, let M,, = > ;| X) where X} are independent
and X}, takes value 1 with probability (k? — 1)/k?, and value —(k? — 1) with probability 1/k2.

Then each X} has mean 0 so M is a martingale. But by applying Borel-Cantelli, with probability
1, P(Xj =1 for all large enough k) = 1. So indeed M,, — oo with probability 1.

If M is bounded in £!, we know from the Forward Convergence Theorem that M converges a.s.
to a finite limit. So M,, — oo is not possible.

We mimic Example 6.6 in the notes (or equivalently the ABRACADABRA version in the lectures).
We assume a fair casino in which each player starts with a fortune of £1. Player i bets £1 that
the outcome of the ith flip is H. If she wins then she bets her £2 that the outcome of the (i+ 1)st
flip is T'. If she wins again, then she bets her £4 that the outcome of the (i 4+ 2)nd flip is H. And
so on. The casino’s profits form a martingale in which the changes are bounded by a constant
(note that at most 6 people bet at one time).

We stop after the 7th flip (when we have first seen the pattern HTHTHT for the first time). By
Lemma 6.5 of lectures (see Question 2 on this sheet), E[7] < co and so the expected casino profit
at time 7 is zero (Doob’s Optional Stopping Theorem). At this time player 7 — 5 has a fortune



of £64, player 7 — 3 has a fortune of £16 and player 7 — 1 has a fortune of £4. The change in
fortune of all players at time 7 is then £(64 + 16 + 4 — 7) which has mean zero giving E[7] = 84.

More formally, for £ > 1 and n > 0 define
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where the X; are independent Bernoulli random variables with success probability 1/2. For each
k the sequence M,Sk) is a martingale in n (the winnings of the kth gambler after n coins have

(k

been revealed), and M,, = > ;- My ) is the required martingale. (Note that an infinite sum
of martingales need not be a martingale, or indeed make sense, but here only finitely many k
participate for a given n.)

The maximum expected waiting time is 64+32+16+8+4+2 = 126 for HHHHHH or TTTTTT.
The minimum is 64, for example for HHHHHT.
. There are more elementary methods but let’s write a solution using what we know about martingales.

Let M, = > | X;. Then M, is a martingale, and E(M?2) = Var(M,) = Y1, Var(X;) (by
independence of the X;), which is bounded.

So M is bounded in £2. This is much stronger than we need for a.s. convergence; for example
boundedness in £! is enough (by the Forward Convergence Theorem). So indeed M converges
almost surely. Since M is bounded in £? we could also deduce that M also converges in £2.

. Let W, be the proportion of white balls in Polya’s Urn. Let S,, be the same process stopped the
first time that it reaches 3/4 or greater (if that ever happens).

The process S starts at 1/2, and is a bounded martingale, and so converges a.s. and in £! to
some limit Sy with ES, = 1/2.

If the proportion of white balls ever reaches 3/4 or more, then Sy, > 3/4.
Since S is non-negative, Markov’s inequality gives P(So > 3/4) < é—ﬁ =2/3.

(This bound is not sharp. For Markov’s inequality to be tight, we would need that Sy, only takes
the values 0 and 3/4. But certainly the limit can be between 0 and 3/4, and also the limit can
be greater than 3/4, since the process W can jump over 3/4 to some higher value.)

. To show
E(Y, | Fn) = E(Y | Foo) in £,

it’s enough that
E(Y, | Fn) —E(Y | F,) = 0in £,
and
E(Y | Fn) = E(Y | Fy) in L.
For the first,
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For the second: this is the setting of Theorem 8.7; E(Y | F,,) is a Doob martingale, whose limit
a.s. and in L' is E(Y | Fuo).

. M, =[], Xi where X; = &7 /1(t).
The variables X; are i.i.d. with mean 1, so indeed M, is a martingale.

It’s a non-negative martingale so it converges a.s. The limit My, is a.s. equal to 0 (for M to
converge to a strictly positive limit, it would require X; to converge to 1, which is a.s. not the
case).

. (a) Many ways to approach this. If a finite Markov chain has a single communicating class, then
the class is recurrent, and each state x € S is reached infinitely often with probability 1. The
process g(X,,) is bounded, so if it’s a martingale, it converges a.s. But it can only do so if g(x)
is the same for all x € S.

(b) Assume that every state may be reached with positive probability (otherwise we may ignore
the states which can never be reached — the function g can take arbitrary values there).

By the same argument in (a), the function g must be constant on any closed communicating
class.

Let the closed classes be C1,Cs,...,Cy for some k > 1. Fix g(x) = a; for all z € C;.

We see that g(X,,) converges a.s. to some X specifically, Xo = a; if X is absorbed in C;. We
have that g(X,,) is bounded, hence uniformly integrable, so if it’s a martingale, then g(Xy) =
Elg(Xo)]. We must have g(xz) = ), a;P;(reach C;) (where P, denotes the law of the Markov
chain started from point x).

So there is a k-dimensional space of functions ¢ that give martingales. Once the values a;,7 =
1,...,k are specified, i.e. the values of g at points in C1,...,Ck, the remaining values of g are
forced.

(c) We could consider for example a nearest-neighbour random walk on Z, with a drift away from
the origin: say pyg41 =1 — paz—1 =2/3 for 2 >0, and py g1 =1 — pgr—1 = 1/3 for z <O0.

Started from any state, this walk tends to —oo with positive probability, and to +oo with positive
probability.

We may set for example g(x) = P,(X,, — 00). Then the process ¢g(X,,) is a martingale, but it is
not constant. The “limits” +oo play the role of the absorbing classes C; in part (b). So although
the chain has a single communicating class, it has two different possible limiting behaviours, and
non-constant martingales are possible. (The most general form of the function g is in fact now
g(x) = aPy(X,, = 00) + bP, (X, = —00).)



