Part B Classical Mechanics: Problem Sheet 1 (of 4)

1. Consider a closed system consisting of N point particles with masses my, position vectors
ry in an inertial frame S, such that particle J exerts a force Fy; on particle I for I # J.

(a) Explain why Newton’s third law and Galilean invariance means there exists an inertial
frame Sg where the centre of mass
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is at rest at the origin.

(b) Suppose now that there exist functions Vr; = V1 = Vis(Jr; — ry|), depending only
on the distances |r; —r | between pairs of particles, such that Fr; = —0;,V7;. Show
that the total angular momentum and total energy
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are conserved.
2. Consider the one-dimensional harmonic oscillator with action S[q(t)] = 0% L(q,q)dt, La-
grangian
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and with boundary conditions ¢(0) = ¢(27) = 1. Determine the Lagrange equation of
motion, and show that a solution is ¢(¢) = cost. Is this solution unique? By considering
the two paths ¢1(t) = 1, g2(t) = cos2t show that the critical function ¢(¢) is neither a
maximum nor a minimum of the action S.

3. Consider the change of generalized coordinates q = q(q,t). Show that
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show that the Lagrange equations in the two coordinate systems are related via

4(9E) ok _ nraony ou)ow
dt \0g. ) 94 = LAt \dd) Oap] 9Ga

Hence conclude that the Lagrange equations take the same form in all coordinate systems.

4. Consider the purely kinetic Lagrangian
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where we assume that the symmetric matrix g,, = g5, depends on the generalized coor-
dinates q and is invertible at each point in configuration space. Show that Lagrange’s
equations take the form
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where
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The matrix of functions gu;(q) defines a metric on configuration space, and the Lagrange
equation is known as the geodesic equation.

5. Consider a system of two light rods of equal length, smoothly jointed together, with the
other two ends of the rods fixed at two points in a horizontal plane. A mass m is attached
to the point where the rods are jointed. Introduce an appropriate generalized coordinate
for the system, and determine the Lagrangian.

6. A double pendulum consists of a simple pendulum of mass m; and length [; pivoted at the
origin, together with another simple pendulum of mass mo and length ls, pivoted at the
mass mi. The whole system moves freely in a vertical plane under gravity. If 6; and 6
denote the angles each pendulum makes with the vertical, show that the Lagrangian is
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+magly cos 01 + mag(la cos by + 11 cosby) .

7. (Optional: this question is included for interest.) Consider the central inverse square law
force Lagrangian
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where r = |r| and & is a constant.

(a) Show by direct computation that the vector
r
A = pAL—mk-
,

is conserved, where p = mr and L = r A p are momentum and angular momentum
about the origin, respectively. [Hint: You may find it helpful to write p = h(r): and
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show $(p AL) = —mh(r)r?$(2)]
(b) Show that A -L =0 and |A|> = 2mE|L|?> + m?k?, where E is the conserved energy.
Explain why A is a constant vector in the plane of the orbit.
(c) By taking the dot product A -r derive the orbit equation
1 mk |A|
- = —— (14 ~—cosf
; L] ( —i—mﬁcos > ,

where 6 denotes the angle between r and A. Notice we have found the orbit without
solving any differential equation! The eccentricity is |A|/mk.

Please send comments and corrections to lmason@maths.ox.ac.uk.



