
Part B Classical Mechanics: Problem Sheet 1 (of 4)

1. Consider a closed system consisting of N point particles with masses mI , position vectors
rI in an inertial frame S, such that particle J exerts a force FIJ on particle I for I 6= J .

(a) Explain why Newton’s third law and Galilean invariance means there exists an inertial
frame S0 where the centre of mass

R =

∑N
I=1

mIrI
∑N

I=1
mI

is at rest at the origin.

(b) Suppose now that there exist functions VIJ = VJI = VIJ(|rI − rJ |), depending only
on the distances |rI − rJ | between pairs of particles, such that FIJ = −∂rIVIJ . Show
that the total angular momentum and total energy

E =
N
∑

I=1

1

2
mI |ṙI |

2 +
∑

I<J

VIJ(|rI − rJ |)

are conserved.

2. Consider the one-dimensional harmonic oscillator with action S[q(t)] =
∫

2π

0
L(q, q̇) dt, La-

grangian

L = L(q, q̇) =
1

2
mq̇2 −

1

2
mq2 ,

and with boundary conditions q(0) = q(2π) = 1. Determine the Lagrange equation of
motion, and show that a solution is q(t) = cos t. Is this solution unique? By considering
the two paths q1(t) = 1, q2(t) = cos 2t show that the critical function q(t) is neither a
maximum nor a minimum of the action S.

3. Consider the change of generalized coordinates q = q(q̃, t). Show that

q̇a =
n
∑

b=1

∂qa
∂q̃b

˙̃qb +
∂qa
∂t

.

Defining

L̃(q̃, ˙̃q, t) ≡ L(q(q̃, t), q̇(q̃, ˙̃q, t), t) ,

show that the Lagrange equations in the two coordinate systems are related via

d

dt

(

∂L̃

∂ ˙̃qa

)

−
∂L̃

∂q̃a
=

n
∑

b=1

[

d

dt

(

∂L

∂q̇b

)

−
∂L

∂qb

]

∂qb
∂q̃a

.

Hence conclude that the Lagrange equations take the same form in all coordinate systems.

4. Consider the purely kinetic Lagrangian

L = T =
1

2

n
∑

a,b=1

gab(q)q̇aq̇b ,

1



where we assume that the symmetric matrix gab = gba depends on the generalized coor-
dinates q and is invertible at each point in configuration space. Show that Lagrange’s
equations take the form

q̈a +

n
∑

b,c=1

Γa
bcq̇bq̇c = 0 , a = 1, . . . , n ,

where

Γa
bc ≡

1

2

n
∑

d=1

(g−1)ad
(

∂gbd
∂qc

+
∂gcd
∂qb

−
∂gbc
∂qd

)

.

The matrix of functions gab(q) defines a metric on configuration space, and the Lagrange
equation is known as the geodesic equation.

5. Consider a system of two light rods of equal length, smoothly jointed together, with the
other two ends of the rods fixed at two points in a horizontal plane. A mass m is attached
to the point where the rods are jointed. Introduce an appropriate generalized coordinate
for the system, and determine the Lagrangian.

6. A double pendulum consists of a simple pendulum of mass m1 and length l1 pivoted at the
origin, together with another simple pendulum of mass m2 and length l2, pivoted at the
mass m1. The whole system moves freely in a vertical plane under gravity. If θ1 and θ2
denote the angles each pendulum makes with the vertical, show that the Lagrangian is

L =
1

2
m1l

2

1θ̇
2

1 +
1

2
m2

[

l21θ̇
2

1 + l22θ̇
2

2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

]

+m1gl1 cos θ1 +m2g(l2 cos θ2 + l1 cos θ1) .

7. (Optional: this question is included for interest.) Consider the central inverse square law
force Lagrangian

L =
1

2
m|ṙ|2 +

κ

r
,

where r = |r| and κ is a constant.

(a) Show by direct computation that the vector

A = p ∧ L−mκ
r

r

is conserved, where p = mṙ and L = r ∧ p are momentum and angular momentum
about the origin, respectively. [Hint : You may find it helpful to write ṗ = h(r) r

r
and

show d

dt
(p ∧ L) = −mh(r)r2 d

dt
( r
r
).]

(b) Show that A · L = 0 and |A|2 = 2mE|L|2 +m2κ2, where E is the conserved energy.
Explain why A is a constant vector in the plane of the orbit.

(c) By taking the dot product A · r derive the orbit equation

1

r
=

mκ

|L|2

(

1 +
|A|

mκ
cos θ

)

,

where θ denotes the angle between r and A. Notice we have found the orbit without
solving any differential equation! The eccentricity is |A|/mκ.

Please send comments and corrections to lmason@maths.ox.ac.uk.
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