Part B Classical Mechanics: Problem Sheet 4 (of 4)

1. Show that the Poisson bracket relations

$$
\{\mathbf{q}, f\}=\frac{\partial f}{\partial \mathbf{p}} \quad \text { and } \quad\{\mathbf{p}, f\}=-\frac{\partial f}{\partial \mathbf{q}}
$$

hold for any function f on phase space.
2. (a) Show that the angular momentum vector $\mathbf{L}=\mathbf{r} \wedge \mathbf{p}$ satisfies the Poisson bracket relation $\left\{L_{i}, L_{j}\right\}=\sum_{k=1}^{3} \epsilon_{i j k} L_{k}$ [Hint: you may use the identity $\sum_{k=1}^{3} \epsilon_{i j k} \epsilon_{k m n}=$ $\left.\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}\right]$. Deduce that $\left\{\mathbf{L},|\mathbf{L}|^{2}\right\}=\mathbf{0}$.
(b) Show that for a particle moving in a central potential $V=V(|\mathbf{r}|)$ we have $\{\mathbf{L}, H\}=0$. Deduce that angular momentum is conserved.
(c) Recall that the Laplace-Runge-Lenz vector is defined as

$$
\mathbf{A} \equiv \mathbf{p} \wedge \mathbf{L}-m \kappa \frac{\mathbf{r}}{|\mathbf{r}|}
$$

where κ is a constant. Derive the Poisson bracket relations $\left\{L_{i}, A_{j}\right\}=\sum_{k=1}^{3} \epsilon_{i j k} A_{k}$.
(d) (Optional: for the enthusiast.) Assuming that the Hamiltonian is $H=|\mathbf{p}|^{2} / 2 m-$ $\kappa /|\mathbf{r}|$, show that $\{\mathbf{A}, H\}=\mathbf{0}$ and deduce that \mathbf{A} is conserved.
3. (a) Show that $Q=\arctan \frac{q}{p}, P=\frac{1}{2}\left(p^{2}+q^{2}\right)$ is a canonical transformation.
(b) For which functions $f(q)$ does $Q=f(q) \mathrm{e}^{t} \cos p, P=f(q) \mathrm{e}^{-t} \sin p$ define a canonical transformation?
4. Let

$$
\mathcal{D}_{f} \equiv \sum_{\alpha=1}^{2 n} \frac{\partial f}{\partial y_{\alpha}} \Omega_{\alpha \beta} \frac{\partial}{\partial y_{\beta}}
$$

be the Hamiltonian vector field associated to the function $f=f(\mathbf{y})$ on phase space, with coordinates $\mathbf{y}=\left(y_{1}, \ldots, y_{2 n}\right)=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ and where Ω is the symplectic matrix introduced in lectures.
(a) Show that for all functions f, g, h on phase space we have

$$
\mathcal{D}_{f}\left(\mathcal{D}_{g} h\right)-\mathcal{D}_{g}\left(\mathcal{D}_{f} h\right)=\mathcal{D}_{\{f, g\}} h
$$

(b) Hence prove the Jacobi identity

$$
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0
$$

(c) Consider the one-dimensional harmonic oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$. Show that

$$
\mathrm{e}^{-t \mathcal{D}_{H}} q=q \cos t+p \sin t, \quad \mathrm{e}^{-t \mathcal{D}_{H}} p=p \cos t-q \sin t
$$

Deduce that $Q=q \cos s+p \sin s, P=p \cos s-q \sin s$ defines a canonical transformation for any s. What happens for $s=\pi / 2$ and $s=\pi$?
5. Consider the time-dependent Hamiltonian

$$
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+V\left(q_{1}, q_{2}, t\right),
$$

where the potential $V\left(q_{1}, q_{2}, t\right)=U\left(\tilde{q}_{1}, \tilde{q}_{2}\right)$ and $\tilde{q}_{1}=q_{1} \cos t-q_{2} \sin t, \tilde{q}_{2}=q_{1} \sin t+q_{2} \cos t$. Determine the canonical transformation defined by the generating function of the second kind

$$
F_{2}\left(q_{1}, q_{2}, P_{1}, P_{2}, t\right)=\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right)\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\binom{q_{1}}{q_{2}} .
$$

In particular show that the transformed Hamiltonian K is independent of time t, and may be written as $K=\tilde{H}+\Lambda$ where $\Lambda=\Lambda\left(Q_{1}, Q_{2}, P_{1}, P_{2}, t\right)$ satisfies equation (5.70) in the lecture notes.
6. Consider the elliptic cylindrical coordinates on \mathbb{R}^{3}, related to Cartesian coordinates (x, y, z) by

$$
x=a \cosh \mu \cos \nu, \quad y=a \sinh \mu \sin \nu, \quad z=z
$$

Show that the Hamiltonian for a particle of mass m moving in a potential V is given in these coordinates by

$$
H=\frac{1}{2 m a^{2}\left(\sinh ^{2} \mu+\sin ^{2} \nu\right)}\left(p_{\mu}^{2}+p_{\nu}^{2}\right)+\frac{1}{2 m} p_{z}^{2}+V(\mu, \nu, z) .
$$

Assuming the potential V takes the form

$$
V(\mu, \nu, z)=\frac{V_{\mu}(\mu)+V_{\nu}(\nu)}{\sinh ^{2} \mu+\sin ^{2} \nu}+V_{z}(z)
$$

show that the Hamilton-Jacobi equation is completely separable, and determine the three corresponding ordinary differential equations.

Please send comments and corrections to lmason@maths.ox.ac.uk.

