Numerical Solution of Differential Equations: Problem Sheet 1 (of 6)

- 1. Verify that the following functions satisfy a Lipschitz condition with respect to y, uniformly in x, on the respective intervals:
 - (a) $f(x,y) = 2yx^{-4}, \quad x \in [1, \infty), \quad y \in \mathbb{R};$
 - (b) $f(x,y) = e^{-x^2} \tan^{-1} y$, $x \in [1, \infty)$, $y \in \mathbb{R}$;
 - (c) $f(x,y) = 2y(1+y^2)^{-1}(1+e^{-|x|}), \quad x \in \mathbb{R}, \quad y \in \mathbb{R}.$
- 2. Suppose that m is a fixed positive integer. Show that the initial-value problem

$$y' = y^{2m/(2m+1)}, y(0) = 0,$$

has infinitely many continuously differentiable solutions. Why does this not contradict Picard's Theorem?

3. Van der Pol's equation

$$y'' - \varepsilon(1 - y^2)y' + y = 0$$

subject to the initial conditions $y(a) = A_1$ and $y'(a) = A_2$, where A_1 and A_2 are given real numbers, and $\varepsilon > 0$ a parameter, models electrical circuits connected with electronic oscillators. Rewrite the equation as a coupled system of two first-order differential equations with appropriate initial conditions. Formulate Euler's method for this system, when $\varepsilon = 1$, a = 0, $A_1 = 1/2$ and $A_2 = 1/2$, on the interval [0, 1] using a mesh of uniform spacing h. Compute the Euler approximations to y(x) and y'(x) at the point x = h.

- 4. Consider the scalar initial-value problem $y' = y \sin(x^2)$, y(0) = 1.
 - (a) Compute the approximation of y(0.1) obtained using one step of: (i) the explicit Euler method; (ii) the implicit Euler method; and (iii) the implicit midpoint rule.
 - (b) Complete the MATLAB-script elegantoscillatorycurve.m, which, for each of the methods mentioned under (a), plots the numerical approximation of y(x) for $x = 0.1, 0.2, \ldots, 8$, in steps of h = 0.1.